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We discuss the existence and uniqueness of solutions for a new class of sequential 𝑞-fractional integrodifferential equations with
𝑞-antiperiodic boundary conditions. Our results rely on the standard tools of fixed-point theory such as Krasnoselskii’s fixed-point
theorem, Leray-Schauder nonlinear alternative, and Banach’s contraction principle. An illustrative example is also presented.

1. Introduction

We consider a 𝑞-antiperiodic boundary value problem of
sequential 𝑞-fractional integrodifferential equations given by

𝑐

𝐷
𝛼

𝑞
(
𝑐

𝐷
𝛾

𝑞
+ 𝜆) 𝑥 (𝑡) = 𝐴𝑓 (𝑡, 𝑥 (𝑡)) + 𝐵𝐼

𝜌

𝑞
𝑔 (𝑡, 𝑥 (𝑡)) ,

0 ≤ 𝑡 ≤ 1, 0 < 𝑞 < 1,

𝑥 (0) = −𝑥 (1) , (𝑡
(1−𝛾)

𝐷
𝑞
𝑥 (𝑡))

󵄨󵄨󵄨󵄨󵄨𝑡=0
= −𝐷
𝑞
𝑥 (1) ,

(1)

where 𝑐𝐷𝛼
𝑞
and 𝑐𝐷𝛾

𝑞
denote the fractional 𝑞-derivative of the

Caputo type, 0 < 𝛼, 𝛾 ≤ 1, 𝐼𝜌
𝑞
(⋅) denotes Riemann-Liouville

integral with 0 < 𝜌 < 1, 𝑓, 𝑔 being given continuous
functions, 𝜆 ∈ R and 𝐴, 𝐵 being real constants.

The aim of the present study is to establish some existence
and uniqueness results for the problem (1) by means of Kras-
noselskii’s fixed-point theorem, Leray-Schauder nonlinear
alternative, and Banach’s contraction principle. Though the
tools employed in this work are standard, yet their exposition
in the framework of the given problem is new.

Fractional calculus has developed into a popular math-
ematical modelling tool for many real world phenomena
occurring in physical and technical sciences, see, for example,
[1–4]. A fractional-order differential operator distinguishes
itself from an integer-order differential operator in the sense

that it is nonlocal in nature and can describe thememory and
hereditary properties of some important and useful materials
and processes. This feature has fascinated many researchers
and several results ranging from theoretical analysis to
asymptotic behavior and numerical methods for fractional
differential equations have been established. For some recent
work on the topic, see [5–12] and references therein.

The mathematical modeling of linear control systems,
concerning the controllability of systems consisting of a
set of well-defined interconnected objects, is based on the
linear systems of divided difference functional equations.The
controllability in mathematical control theory studies the
concepts such as controllability of the state, controllability
of the output, controllability at the origin, and complete
controllability. The 𝑞-difference equations play a key role in
the control theory as these equations are always completely
controllable and appear in the 𝑞-optimal control problem
[13]. The variational 𝑞-calculus is known as a generalization
of the continuous variational calculus due to the presence
of an extra-parameter 𝑞 whose nature may be physical or
economical. The study of the 𝑞-uniform lattice rely on the 𝑞-
Euler equations. In other words, it suffices to solve the 𝑞-
Euler-Lagrange equation for finding the extremum of the
functional involved instead of solving the Euler-Lagrange
equation [14]. One can find more details in a series of papers
[15–21].
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The subject of fractional 𝑞-difference (𝑞-fractional) equa-
tions is regarded as fractional analogue of 𝑞-difference equa-
tions and has recently gained a considerable attention. For
examples and details, we refer the reader to the works [22–33]
and references therein while some earlier work on the subject
can be found in [34–36]. The present work is motivated by
recent interest in the study of fractional-order differential
equations.

2. Preliminaries on Fractional 𝑞-Calculus

Let us describe the notations and terminology for 𝑞-
fractional calculus [35].

For a real parameter 𝑞 ∈ R+ \ {1}, a 𝑞-real number
denoted by [𝑎]

𝑞
is defined by

[𝑎]
𝑞
=
1 − 𝑞
𝑎

1 − 𝑞
, 𝑎 ∈ R. (2)

The 𝑞-analogue of the Pochhammer symbol (𝑞-shifted
factorial) is defined as

(𝑎; 𝑞)
0
= 1, (𝑎; 𝑞)

𝑘
=

𝑘−1

∏

𝑖=0

(1 − 𝑎𝑞
𝑖

) , 𝑘 ∈ N ∪ {∞} .

(3)

The 𝑞-analogue of the exponent (𝑥 − 𝑦)𝑘 is

(𝑥 − 𝑦)
(0)

= 1, (𝑥 − 𝑦)
(𝑘)

=

𝑘−1

∏

𝑗=0

(𝑥 − 𝑦𝑞
𝑗

) ,

𝑘 ∈ N, 𝑥, 𝑦 ∈ R.

(4)

The 𝑞-gamma function Γ
𝑞
(𝑦) is defined as

Γ
𝑞
(𝑦) =

(1 − 𝑞)
(𝑦−1)

(1 − 𝑞)
𝑦−1

, (5)

where 𝑦 ∈ R \ {0, −1, −2, . . .}. Observe that Γ
𝑞
(𝑦 + 1) =

[𝑦]
𝑞
Γ
𝑞
(𝑦).

Definition 1 (see [35]). Let 𝑓 be a function defined
on [0, 1]. The fractional 𝑞-integral of the Riemann-Liouville
type of order 𝛽 ≥ 0 is (𝐼0

𝑞
𝑓)(𝑡) = 𝑓(𝑡) and

𝐼
𝛽

𝑞
𝑓 (𝑡) := ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑓 (𝑠) 𝑑
𝑞
𝑠

= 𝑡
𝛽

(1 − 𝑞)
𝛽

∞

∑

𝑘=0

𝑞
𝑘

(𝑞
𝛽

; 𝑞)
𝑘

(𝑞; 𝑞)
𝑘

𝑓 (𝑡𝑞
𝑘

) ,

𝛽 > 0, 𝑡 ∈ [0, 1] .

(6)

Observe that the above 𝑞-integral reduces to the following
one for 𝛽 = 1.

𝐼
𝑞
𝑓 (𝑡) := ∫

𝑡

0

𝑓 (𝑠) 𝑑
𝑞
𝑠 = 𝑡 (1 − 𝑞)

∞

∑

𝑘=0

𝑞
𝑘

𝑓 (𝑡𝑞
𝑘

) . (7)

Further details of 𝑞-integrals and fractional 𝑞-integrals can
be found respectively in Section 1.3 and Section 4.2 of the text
[35].

Remark 2. The semigroup property holds for 𝑞-fractional
integration (Proposition 4.3 [35]):

𝐼
𝛾

𝑞
𝐼
𝛽

𝑞
𝑓 (𝑡) = 𝐼

𝛽+𝛾

𝑞
𝑓 (𝑡) ; 𝛾, 𝛽 ∈ R

+

. (8)

Further, it has been shown in Lemma 6 of [37] that

𝐼
𝛽

𝑞
(𝑥)
(𝜐)

=
Γ
𝑞
(𝜐 + 1)

Γ
𝑞
(𝛽 + 𝜐 + 1)

(𝑥)
(𝛽+𝜐)

,

0 < 𝑥 < 𝑎, 𝛽 ∈ R
+

, 𝜐 ∈ (−1,∞) .

(9)

Before giving the definition of fractional 𝑞-derivative, we
recall the concept of 𝑞-derivative.

Let 𝑓 be a real valued function defined on a 𝑞-geometric
set 𝐴 (|𝑞| ̸= 1). Then the 𝑞-derivative of a function 𝑓 is
defined as

𝐷
𝑞
𝑓 (𝑡) =

𝑓 (𝑡) − 𝑓 (𝑞𝑡)

𝑡 − 𝑞𝑡
, 𝑡 ∈ 𝐴 \ {0} . (10)

For 0 ∈ 𝐴, the 𝑞-derivative at zero is defined for |𝑞| < 1 by

𝐷
𝑞
𝑓 (0) = lim

𝑛→∞

𝑓 (𝑡𝑞
𝑛

) − 𝑓 (0)

𝑡𝑞𝑛
, 𝑡 ∈ 𝐴 \ {0} . (11)

Provided that the limit exists and does not depend on 𝑡.
Furthermore,

𝐷
0

𝑞
𝑓 = 𝑓, 𝐷

𝑛

𝑞
𝑓 = 𝐷

𝑞
(𝐷
𝑛−1

𝑞
𝑓) , 𝑛 = 1, 2, 3, . . . . (12)

Definition 3 (see [35]). The Caputo fractional 𝑞-derivative of
order 𝛽 > 0 is defined by

𝑐

𝐷
𝛽

𝑞
𝑓 (𝑡) = 𝐼

⌈𝛽⌉−𝛽

𝑞
𝐷
⌈𝛽⌉

𝑞
𝑓 (𝑡) , (13)

where ⌈𝛽⌉ is the smallest integer greater than or equal to 𝛽.

Next we enlist some properties involving Riemann-
Liouville 𝑞-fractional integral and Caputo fractional 𝑞-
derivative (Theorem 5.2 [35]):

𝐼
𝛽

𝑞

𝑐

𝐷
𝛽

𝑞
𝑓 (𝑡) = 𝑓 (𝑡) −

⌈𝛽⌉−1

∑

𝑘=0

𝑡
𝑘

Γ
𝑞
(𝑘 + 1)

(𝐷
𝑘

𝑞
𝑓) (0
+

) ,

∀𝑡 ∈ (0, 𝑎] , 𝛽 > 0;

𝑐

𝐷
𝛽

𝑞
𝐼
𝛽

𝑞
𝑓 (𝑡) = 𝑓 (𝑡) , ∀𝑡 ∈ (0, 𝑎] , 𝛽 > 0.

(14)

Now we establish a lemma that plays a key role in the
sequel.
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Lemma 4. For a given ℎ ∈ 𝐶([0, 1],R), the boundary value
problem
𝑐

𝐷
𝛼

𝑞
(
𝑐

𝐷
𝛾

𝑞
+𝜆) 𝑥 (𝑡) = ℎ (𝑡) , 0 ≤ 𝑡 ≤ 1, 0 < 𝑞 < 1,

𝑥 (0) = −𝑥 (1) , (𝑡
(1−𝛾)

𝐷
𝑞
𝑥 (𝑡))

󵄨󵄨󵄨󵄨󵄨𝑡=0
= −𝐷
𝑞
𝑥 (1)

(15)

is equivalent to the 𝑞-integral equation

𝑥 (𝑡)

= ∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× (∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

ℎ (𝑚) 𝑑
𝑞
𝑚 − 𝜆𝑥 (𝑢))𝑑

𝑞
𝑢

+
(1 − 2𝑡

𝛾

)

4[𝛾]
𝑞

× ∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× (∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

ℎ (𝑚) 𝑑
𝑞
𝑚 − 𝜆𝑥 (𝑢))𝑑

𝑞
𝑢

−
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× (∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

ℎ (𝑚) 𝑑
𝑞
𝑚 − 𝜆𝑥 (𝑢))𝑑

𝑞
𝑢.

(16)

Proof. It is well known that the solution of 𝑞-fractional
equation in (15) can be written as

𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× (∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

ℎ (𝑚) 𝑑
𝑞
𝑚 − 𝜆𝑥 (𝑢))𝑑

𝑞
𝑢

−
𝑡
𝛾

Γ
𝑞
(𝛾 + 1)

𝑐
0
− 𝑐
1
.

(17)

Differentiating (17), we obtain

𝐷
𝑞
𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× (∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

ℎ (𝑚) 𝑑
𝑞
𝑚 − 𝜆𝑥 (𝑢))𝑑

𝑞
𝑢

−

[𝛾]
𝑞
𝑡
𝛾−1

Γ
𝑞
(𝛾 + 1)

𝑐
0
.

(18)

Using the boundary conditions (15) in (17) and (18) and
solving the resulting expressions for 𝑐

0
and 𝑐
1
, we get

𝑐
0
=
Γ
𝑞
(𝛾 + 1)

2[𝛾]
𝑞

× ∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× (∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

ℎ (𝑚) 𝑑
𝑞
𝑚 − 𝜆𝑥 (𝑢))𝑑

𝑞
𝑢,

𝑐
1
=
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× (∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

ℎ (𝑚) 𝑑
𝑞
𝑚 − 𝜆𝑥 (𝑢))𝑑

𝑞
𝑢

−
1

4[𝛾]
𝑞

× ∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× (∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

ℎ (𝑚) 𝑑
𝑞
𝑚 − 𝜆𝑥 (𝑢))𝑑

𝑞
𝑢.

(19)

Substituting the values of 𝑐
0
and 𝑐
1
in (17) yields the solution

(16). The converse follows in a straightforward manner. This
completes the proof.

Let C = 𝐶([0, 1],R) denote the Banach space of all
continuous functions from [0, 1] into R endowed with the
usual norm defined by ‖𝑥‖ = sup{|𝑥(𝑡)|, 𝑡 ∈ [0, 1]}.

In view of Lemma 4, we define an operatorU : C → C
as

(U𝑥) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× (𝐴∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

× 𝑓 (𝑚, 𝑥 (𝑚)) 𝑑
𝑞
𝑚

+ 𝐵∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× 𝑔 (𝑚, 𝑥 (𝑚)) 𝑑
𝑞
𝑚

− 𝜆𝑥 (𝑢))𝑑
𝑞
𝑢 +

(1 − 2𝑡
𝛾

)

4[𝛾]
𝑞
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× ∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× (𝐴∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

× 𝑓 (𝑚, 𝑥 (𝑚)) 𝑑
𝑞
𝑚

+ 𝐵∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× 𝑔 (𝑚, 𝑥 (𝑚)) 𝑑
𝑞
𝑚 − 𝜆𝑥 (𝑢))𝑑

𝑞
𝑢

−
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× (𝐴∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

× 𝑓 (𝑚, 𝑥 (𝑚)) 𝑑
𝑞
𝑚

+ 𝐵∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× 𝑔 (𝑚, 𝑥 (𝑚)) 𝑑
𝑞
𝑚

− 𝜆𝑥 (𝑢))𝑑
𝑞
𝑢.

(20)

Observe that the problem (1) has solutions only if the operator
equation 𝑥 = U𝑥 has fixed points.

3. Main Results

For the forthcoming analysis, the following conditions are
assumed.

(𝐴
1
) 𝑓, 𝑔 : [0, 1] × R → R are continuous functions
such that |𝑓(𝑡, 𝑥) −𝑓(𝑡, 𝑦)| ≤ 𝐿

1
|𝑥 −𝑦| and |𝑔(𝑡, 𝑥) −

𝑔(𝑡, 𝑦)| ≤ 𝐿
2
|𝑥−𝑦|, for all 𝑡 ∈ [0, 1], 𝐿

1
, 𝐿
2
> 0, 𝑥, 𝑦 ∈

R.
(𝐴
2
) There exist 𝜁

1
, 𝜁
2
∈ 𝐶([0, 1],R+) with |𝑓(𝑡, 𝑥)| ≤

𝜁
1
(𝑡), |𝑔(𝑡, 𝑥)| ≤ 𝜁

2
(𝑡), for all (𝑡, 𝑥) ∈ [0, 1] × R,

where ‖𝜁
𝑖
‖ = sup

𝑡∈[0,1]
|𝜁
𝑖
(𝑡)|, 𝑖 = 1, 2.

For computational convenience, we set

𝛿
1
=

3

2Γ
𝑞
(𝛼 + 𝛾 + 1)

+
1

4[𝛾]
𝑞
Γ
𝑞
(𝛼 + 𝛾)

,

𝛿
2
=

3

2Γ
𝑞
(𝛼 + 𝜌 + 𝛾 + 1)

+
1

4[𝛾]
𝑞
Γ
𝑞
(𝛼 + 𝜌 + 𝛾)

,

𝛿
3
=

3

2Γ
𝑞
(𝛾 + 1)

+
1

4Γ
𝑞
(𝛾 + 1)

,

(21)

Λ = 𝐿[|𝐴|(
1

4[𝛾]
𝑞
Γ
𝑞
(𝛼 + 𝛾)

+
1

2Γ
𝑞
(𝛼 + 𝛾 + 1)

)

+ |𝐵|(
1

4[𝛾]
𝑞
Γ
𝑞
(𝛼 + 𝜌 + 𝛾)

+
1

2Γ
𝑞
(𝛼 + 𝜌 + 𝛾 + 1)

)]

+ |𝜆| [
1

4Γ
𝑞
(𝛾 + 1)

+
1

2Γ
𝑞
(𝛾 + 1)

] .

(22)

Our first existence result is based on Krasnoselskii’s fixed
point theorem.

Lemma 5 (see, Krasnoselskii [38]). Let 𝑌 be a closed, convex,
bounded, and nonempty subset of a Banach space𝑋. Let𝑄

1
, 𝑄
2

be the operators such that (i) 𝑄
1
𝑥 +𝑄
2
𝑦 ∈ 𝑌 whenever 𝑥, 𝑦 ∈

𝑌; (ii) 𝑄
1
is compact and continuous; and (iii) 𝑄

2
is a con-

traction mapping. Then there exists 𝑧 ∈ 𝑌 such that 𝑧 =

𝑄
1
𝑧 + 𝑄

2
𝑧.

Theorem 6. Let 𝑓, 𝑔 : [0, 1] × R → R be continuous func-
tions satisfying (A

1
)-(A
2
). Furthermore Λ < 1, where Λ is

given by (22) and 𝐿 = max{𝐿
1
, 𝐿
2
}. Then the problem (1) has

at least one solution on [0, 1].

Proof. Consider the set 𝐵
𝜎
= {𝑥 ∈ C : ‖𝑥‖ ≤ 𝜎}, where 𝜎 is

given by

𝜎 ≥
|𝐴|

󵄩󵄩󵄩󵄩𝜁1
󵄩󵄩󵄩󵄩 𝛿1 + |𝐵|

󵄩󵄩󵄩󵄩𝜁2
󵄩󵄩󵄩󵄩 𝛿2

1 − |𝜆| 𝛿
3

, 1 − |𝜆| 𝛿
3
> 0. (23)

Define operators U
1
and U

2
on 𝐵
𝜎
as

(U
1
𝑥) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× (𝐴∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑓 (𝑚, 𝑥 (𝑚)) 𝑑
𝑞
𝑚

+ 𝐵∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× 𝑔 (𝑚, 𝑥 (𝑚)) 𝑑
𝑞
𝑚

− 𝜆𝑥 (𝑢))𝑑
𝑞
𝑢, 𝑡 ∈ [0, 1] ,

(U
2
𝑥) (𝑡) =

(1 − 2𝑡
𝛾

)

4[𝛾]
𝑞

× ∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)
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× (𝐴∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× 𝑓 (𝑚, 𝑥 (𝑚)) 𝑑
𝑞
𝑚

+ 𝐵∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× 𝑔 (𝑚, 𝑥 (𝑚)) 𝑑
𝑞
𝑚

− 𝜆𝑥 (𝑢))𝑑
𝑞
𝑢

−
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× (𝐴∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑓 (𝑚, 𝑥 (𝑚)) 𝑑
𝑞
𝑚

+ 𝐵∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× 𝑔 (𝑚, 𝑥 (𝑚)) 𝑑
𝑞
𝑚

− 𝜆𝑥 (𝑢))𝑑
𝑞
𝑢, 𝑡 ∈ [0, 1] .

(24)

For 𝑥, 𝑦 ∈ 𝐵
𝜎
, we find that

󵄩󵄩󵄩󵄩U1𝑥 +U
2
𝑦
󵄩󵄩󵄩󵄩 ≤ |𝐴|

󵄩󵄩󵄩󵄩𝜁1
󵄩󵄩󵄩󵄩 𝛿1 + |𝐵|

󵄩󵄩󵄩󵄩𝜁2
󵄩󵄩󵄩󵄩 𝛿2 + |𝜆| 𝜎𝛿3 ≤ 𝜎.

(25)

Thus, U
1
𝑥 + U

2
𝑦 ∈ 𝐵

𝜎
. Continuity of 𝑓 and 𝑔 imply

that the operator U
1
is continuous. Also, U

1
is uniformly

bounded on 𝐵
𝜎
as

󵄩󵄩󵄩󵄩U1𝑥
󵄩󵄩󵄩󵄩 ≤

|𝐴|
󵄩󵄩󵄩󵄩𝜁1
󵄩󵄩󵄩󵄩

Γ
𝑞
(𝛼 + 𝛾 + 1)

+
|𝐵|
󵄩󵄩󵄩󵄩𝜁2
󵄩󵄩󵄩󵄩

Γ
𝑞
(𝛼 + 𝜌 + 𝛾 + 1)

+
|𝜆| 𝜎

Γ
𝑞
(𝛾 + 1)

.

(26)

Now, we prove the compactness of the operator U
1
. In view

of (𝐴
1
), we define

sup
(𝑡,𝑥)∈[0,1]×𝐵

𝜎

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨 = 𝑓, sup

(𝑡,𝑥)∈[0,1]×𝐵
𝜎

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨 = 𝑔.

(27)

Consequently, for 𝑡
1
, 𝑡
2
∈ [0, 1], we have

󵄩󵄩󵄩󵄩(U1𝑥) (𝑡2) − (U1𝑥) (𝑡1)
󵄩󵄩󵄩󵄩

≤ ∫

𝑡
1

0

(𝑡
2
− 𝑞𝑢)
(𝛾−1)

− (𝑡
1
− 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| 𝑓∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑑
𝑞
𝑚 + |𝐵| 𝑔

×∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

𝑑
𝑞
𝑚 + |𝜆| 𝜎] 𝑑

𝑞
𝑢

+ ∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| 𝑓∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑑
𝑞
𝑚 + |𝐵| 𝑔

×∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

𝑑
𝑞
𝑚 + |𝜆| 𝜎] 𝑑

𝑞
𝑢,

(28)

which is independent of 𝑥 and tends to zero as 𝑡
2
→ 𝑡
1
.

Thus, U
1
is relatively compact on 𝐵

𝜎
. Hence, by the Arzelá-

Ascoli Theorem, U
1
is compact on 𝐵

𝜎
. Now, we shall show

that U
2
is a contraction.

From (𝐴
1
) and for 𝑥, 𝑦 ∈ 𝐵

𝜎
, we have

󵄩󵄩󵄩󵄩U2𝑥 −U
2
𝑦
󵄩󵄩󵄩󵄩

≤ sup
𝑡∈[0,1]

{
1

4[𝛾]
𝑞

× ∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

×
󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚))

−𝑓 (𝑚, 𝑦 (𝑚))
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

×
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚))

−𝑔 (𝑚, 𝑦 (𝑚))
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆|
󵄨󵄨󵄨󵄨𝑥 (𝑢) − 𝑦 (𝑢)

󵄨󵄨󵄨󵄨] 𝑑𝑞𝑢
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+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

×
󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚))

−𝑓 (𝑚, 𝑦 (𝑚))
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

×
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚))

−𝑔 (𝑚, 𝑦 (𝑚))
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆|
󵄨󵄨󵄨󵄨𝑥 (𝑢) − 𝑦 (𝑢)

󵄨󵄨󵄨󵄨] 𝑑𝑞𝑢}

≤ sup
𝑡∈[0,1]

{
1

4[𝛾]
𝑞

× ∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝐿
1

×
󵄨󵄨󵄨󵄨𝑥 (𝑚) − 𝑦 (𝑚)

󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× 𝐿
2

󵄨󵄨󵄨󵄨𝑥 (𝑚) − 𝑦 (𝑚)
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆|
󵄨󵄨󵄨󵄨𝑥 (𝑢) − 𝑦 (𝑢)

󵄨󵄨󵄨󵄨] 𝑑𝑞𝑢

+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

× 𝐿
1

󵄨󵄨󵄨󵄨𝑥 (𝑚) − 𝑦 (𝑚)
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× 𝐿
2

󵄨󵄨󵄨󵄨𝑥 (𝑚) − 𝑦 (𝑚)
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆|
󵄨󵄨󵄨󵄨𝑥 (𝑢) − 𝑦 (𝑢)

󵄨󵄨󵄨󵄨] 𝑑𝑞𝑢}

≤ [𝐿[|𝐴|(
1

4[𝛾]
𝑞
Γ
𝑞
(𝛼 + 𝛾)

+
1

2Γ
𝑞
(𝛼 + 𝛾 + 1)

)

+ |𝐵|(
1

4[𝛾]
𝑞
Γ
𝑞
(𝛼 + 𝜌 + 𝛾)

+
1

2Γ
𝑞
(𝛼 + 𝜌 + 𝛾 + 1)

)]

+ |𝜆| [
1

4[𝛾]
𝑞
Γ
𝑞
(𝛾)

+
1

2Γ
𝑞
(𝛾 + 1)

]]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

= Λ
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ,

(29)

where we have used (22). In view of the assumption Λ < 1,
the operator U

2
is a contraction. Thus, all the conditions of

Lemma 5 are satisfied. Hence, by the conclusion of Lemma 5,
the problem (1) has at least one solution on [0, 1].

Our next result is based on Leray-Schauder nonlinear
alternative.

Lemma 7 (nonlinear alternative for single valued maps, see
[39]). Let 𝐸 be a Banach space, 𝐶 a closed, convex subset of
𝐸,𝑊 an open subset of 𝐶, and 0 ∈ 𝑊. Suppose thatU : 𝑊 →

𝐶 is a continuous, compact (i.e.,U(𝑊) is a relatively compact
subset of 𝐶) map. Then either

(i) U has a fixed point in𝑊, or

(ii) there is a 𝑥 ∈ 𝜕𝑊 (the boundary of 𝑊 in 𝐶) and 𝜅 ∈
(0, 1) with 𝑥 = 𝜅U(𝑥).

Theorem 8. Let 𝑓, 𝑔 : [0, 1] × R → R be continuous
functions and the following assumptions hold:

(𝐴
3
) there exist functions ]

1
, ]
2

∈ 𝐶([0, 1],R+), and
nondecreasing functions 𝜗

1
, 𝜗
2
: R+ → R+ such

that |𝑓(𝑡, 𝑥)| ≤ ]
1
(𝑡)𝜗
1
(‖𝑥‖), |𝑔(𝑡, 𝑥)| ≤ ]

2
(𝑡)𝜗
2
(‖𝑥‖),

for all (𝑡, 𝑥) ∈ [0, 1] ×R;

(𝐴
4
) there exists a constant 𝜔 > 0 such that

𝜔 >
|𝐴|

󵄩󵄩󵄩󵄩]1
󵄩󵄩󵄩󵄩 𝜗1 (𝜔) 𝛿1 + |𝐵|

󵄩󵄩󵄩󵄩]2
󵄩󵄩󵄩󵄩 𝜗2 (𝜔) 𝛿2

1 − |𝜆| 𝛿
3

, 1 − |𝜆| 𝛿
3
> 0.

(30)

Then the boundary value problem (1) has at least one solution
on [0, 1].

Proof. Consider the operator U : C → C defined by (20).
The proof consists of several steps.

(i) It is easy to show thatU is continuous.

(ii) Umaps bounded sets into bounded sets in 𝐶([0, 1] ×
R).
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For a positive number 𝑟, let 𝐵
𝑟
= {𝑥 ∈ C : ‖𝑥‖ ≤ 𝑟} be a

bounded set in 𝐶([0, 1] ×R) and 𝑥 ∈ 𝐵
𝑟
. Then, we have

‖(U𝑥)‖

≤ sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚))
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

×
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚))

󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆| |𝑥 (𝑢)|] 𝑑
𝑞
𝑢

+
1

4[𝛾]
𝑞

× ∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚))
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

×
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚))

󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆| |𝑥 (𝑢)|] 𝑑
𝑞
𝑢

+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚))
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

×
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚))

󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆| |𝑥 (𝑢)|] 𝑑
𝑞
𝑢}

≤ sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

]
1
(𝑚) 𝜗
1
(‖𝑥‖) 𝑑

𝑞
𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× ]
2
(𝑚) 𝜗
2
(‖𝑥‖) 𝑑

𝑞
𝑚

+ |𝜆| |𝑥 (𝑢)|] 𝑑
𝑞
𝑢

+
1

4[𝛾]
𝑞

∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

× ]
1
(𝑚) 𝜗
1
(‖𝑥‖) 𝑑

𝑞
𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× ]
2
(𝑚) 𝜗
2
(‖𝑥‖) 𝑑

𝑞
𝑚

+ |𝜆| |𝑥 (𝑢)|] 𝑑
𝑞
𝑢

+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

× ]
1
(𝑚) 𝜗
1
(‖𝑥‖) 𝑑

𝑞
𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× ]
2
(𝑚) 𝜗
2
(‖𝑥‖) 𝑑

𝑞
𝑚

+ |𝜆| |𝑥 (𝑢)|] 𝑑
𝑞
𝑢}

≤ |𝐴|
󵄩󵄩󵄩󵄩]1
󵄩󵄩󵄩󵄩 𝜗1 (‖𝑥‖)

× {∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

[∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑑
𝑞
𝑚]𝑑
𝑞
𝑢

+
1

4[𝛾]
𝑞

∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× [∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑑
𝑞
𝑚]𝑑
𝑞
𝑢

+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)
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×[∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑑
𝑞
𝑚]𝑑
𝑞
𝑢}

+ |𝐵|
󵄩󵄩󵄩󵄩]2
󵄩󵄩󵄩󵄩 𝜗2 (‖𝑥‖)

× {∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

[∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑑
𝑞
𝑚]𝑑
𝑞
𝑢

+
1

4[𝛾]
𝑞

∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× [∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑑
𝑞
𝑚]𝑑
𝑞
𝑢

+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑑
𝑞
𝑚]𝑑
𝑞
𝑢}

+ |𝜆| ‖𝑥‖{∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

𝑑
𝑞
𝑢 +

1

4[𝛾]
𝑞

× ∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

𝑑
𝑞
𝑢

+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

𝑑
𝑞
𝑢}

≤ |𝐴|
󵄩󵄩󵄩󵄩]1
󵄩󵄩󵄩󵄩 𝜗1 (𝑟) 𝛿1 + |𝐵|

󵄩󵄩󵄩󵄩]2
󵄩󵄩󵄩󵄩 𝜗2 (𝑟) 𝛿2 + |𝜆| 𝑟𝛿3 ≤ 𝑟.

(31)

This shows that U𝑥 ∈ 𝐵
𝑟
.

(iii) U maps bounded sets into equicontinuous sets of
𝐶([0, 1] ×R).

Let 𝑡
1
, 𝑡
2
∈ [0, 1] with 𝑡

1
< 𝑡
2
and 𝑥 ∈ 𝐵

𝑟
, where 𝐵

𝑟
is a

bounded set of 𝐶([0, 1],R). Then, we obtain

󵄩󵄩󵄩󵄩(U𝑥) (𝑡2) − (U𝑥) (𝑡1)
󵄩󵄩󵄩󵄩

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

0

(𝑡
2
− 𝑞𝑢)
(𝛾−1)

− (𝑡
1
− 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

]
1
(𝑚) 𝜗
1
(𝑟) 𝑑
𝑞
𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× ]
2
(𝑚) 𝜗
2
(𝑟) 𝑑
𝑞
𝑚 + |𝜆| 𝑟] 𝑑

𝑞
𝑢

+ ∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

]
1
(𝑚) 𝜗
1
(𝑟) 𝑑
𝑞
𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× ]
2
(𝑚) 𝜗
2
(𝑟) 𝑑
𝑞
𝑚

+ |𝜆| 𝑟] 𝑑
𝑞
𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
(𝑡
𝛾

2
− 𝑡
𝛾

1
)

2[𝛾]
𝑞

× ∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

]
1
(𝑚) 𝜗
1
(𝑟) 𝑑
𝑞
𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× ]
2
(𝑚) 𝜗
2
(𝑟) 𝑑
𝑞
𝑚

+ |𝜆| 𝑟] 𝑑
𝑞
𝑢.

(32)

Obviously the right-hand side of the above inequality tends
to zero independently of 𝑥 ∈ 𝐵

𝑟
as 𝑡
2
− 𝑡
1
→ 0. Therefore,

it follows by the Arzelá-Ascoli theorem that U : C → C is
completely continuous.

(iv) Let 𝑥 be a solution of the given problem such
that 𝑥 = 𝜅U𝑥 for 𝜅 ∈ (0, 1). Then, for 𝑡 ∈ [0, 1], it
follows by the procedure used to establish (ii) that

|𝑥 (𝑡)| = |𝜅 (U𝑥) (𝑡)|

≤ |𝐴|
󵄩󵄩󵄩󵄩]1
󵄩󵄩󵄩󵄩 𝜗1 (‖𝑥‖) 𝛿1 + |𝐵|

󵄩󵄩󵄩󵄩]2
󵄩󵄩󵄩󵄩 𝜗2 (‖𝑥‖) 𝛿2

+ |𝜆| ‖𝑥‖ 𝛿
3
.

(33)

Consequently, we have

‖𝑥‖ ≤
|𝐴|

󵄩󵄩󵄩󵄩]1
󵄩󵄩󵄩󵄩 𝜗1 (‖𝑥‖) 𝛿1 + |𝐵|

󵄩󵄩󵄩󵄩]2
󵄩󵄩󵄩󵄩 𝜗2 (‖𝑥‖) 𝛿2

1 − |𝜆| 𝛿
3

. (34)

In view of (𝐴
4
), there exists 𝜔 such that ‖𝑥‖ ̸= 𝜔. Let

us set

𝑊 = {𝑥 ∈ C : ‖𝑥‖ < 𝜔} . (35)
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Note that the operator U : 𝑊 → 𝐶([0, 1],R) is
continuous and completely continuous. From the
choice of 𝑊, there is no 𝑥 ∈ 𝜕𝑊 such that 𝑥 =

𝜅U(𝑥) for some 𝜅 ∈ (0, 1). In consequence, by
the nonlinear alternative of Leray-Schauder type
(Lemma 7), we deduce that Uhas a fixed point 𝑥 ∈

𝑊 which is a solution of the problem (1). This
completes the proof.

Finally we show the existence of a unique solution of
the given problem by applying Banach’s contractionmapping
principle (Banach fixed-point theorem).

Theorem 9. Suppose that the assumption (A
1
) holds and

Λ = (𝐿Λ
1
+ |𝜆| 𝛿

3
) < 1, Λ

1
= |𝐴| 𝛿

1
+ |𝐵| 𝛿

2
, (36)

where 𝛿
1
, 𝛿
2
, and 𝛿

3
are given by (21) and 𝐿 = max{𝐿

1
, 𝐿
2
}.

Then the boundary value problem (1) has a unique solution.

Proof. Fix 𝑀 = max{𝑀
1
,𝑀
2
}, where 𝑀

1
,𝑀
2
are finite

numbers given by 𝑀
1

= sup
𝑡∈[0,1]

|𝑓(𝑡, 0)|, 𝑀
2

=

sup
𝑡∈[0,1]

|𝑔(𝑡, 0)|. Selecting 𝜎 ≥ 𝑀Λ
1
/(1 − Λ), we show

that U𝐵
𝜎
⊂ 𝐵
𝜎
, where 𝐵

𝜎
= {𝑥 ∈ C : ‖𝑥‖ ≤ 𝜎}. For 𝑥 ∈ 𝐵

𝜎
,

we have
‖(U𝑥)‖

≤ sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚))
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

×
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚))

󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆| |𝑥 (𝑢)|] 𝑑
𝑞
𝑢

+
1

4[𝛾]
𝑞

∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

×
󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚))

󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

×
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚))

󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆| |𝑥 (𝑢)|] 𝑑
𝑞
𝑢

+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

×
󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚))

󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

×
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚))

󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆| |𝑥 (𝑢)| ] 𝑑
𝑞
𝑢}

≤ sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

× (
󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚)) − 𝑓 (𝑚, 0)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓 (𝑚, 0)

󵄨󵄨󵄨󵄨) 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× (
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚)) − 𝑔 (𝑚, 0)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑔 (𝑚, 0)

󵄨󵄨󵄨󵄨) 𝑑𝑞𝑚

+ |𝜆| |𝑥 (𝑢)|] 𝑑
𝑞
𝑢

+
1

4[𝛾]
𝑞

∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

× (
󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚)) − 𝑓 (𝑚, 0)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓 (𝑚, 0)

󵄨󵄨󵄨󵄨) 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× (
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚)) − 𝑔 (𝑚, 0)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑔 (𝑚, 0)

󵄨󵄨󵄨󵄨) 𝑑𝑞𝑚
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+ |𝜆| |𝑥 (𝑢)|] 𝑑
𝑞
𝑢

+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

× (
󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚)) − 𝑓 (𝑚, 0)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓 (𝑚, 0)

󵄨󵄨󵄨󵄨) 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

× (
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚)) − 𝑔 (𝑚, 0)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑔 (𝑚, 0)

󵄨󵄨󵄨󵄨) 𝑑𝑞𝑚

+ |𝜆| |𝑥 (𝑢)|] 𝑑
𝑞
𝑢}

≤ |𝐴| (𝐿
1
𝜎 +𝑀

1
)

× sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑑
𝑞
𝑚]𝑑
𝑞
𝑢

+
1

4[𝛾]
𝑞

∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× [∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑑
𝑞
𝑚]𝑑
𝑞
𝑢

+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑑
𝑞
𝑚]𝑑
𝑞
𝑢}

+ |𝐵| (𝐿
2
𝜎 +𝑀

2
)

× sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

𝑑
𝑞
𝑚]𝑑
𝑞
𝑢

+
1

4[𝛾]
𝑞

∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× [∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

𝑑
𝑞
𝑚]𝑑
𝑞
𝑢

+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

𝑑
𝑞
𝑚]𝑑
𝑞
𝑢}

+ |𝜆| 𝜎 sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

𝑑
𝑞
𝑢 +

1

4[𝛾]
𝑞

× ∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

𝑑
𝑞
𝑢

+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

𝑑
𝑞
𝑢}

≤ 𝑀Λ
1
+ Λ𝜎 ≤ 𝜎

(37)

This shows thatU𝐵
𝜎
⊂ 𝐵
𝜎
. For 𝑥, 𝑦 ∈ R, we obtain

󵄩󵄩󵄩󵄩U𝑥 −U𝑦
󵄩󵄩󵄩󵄩

≤ sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

×
󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚)) − 𝑓 (𝑚, 𝑦 (𝑚))

󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

×
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚)) − 𝑔 (𝑚, 𝑦 (𝑚))

󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆|
󵄨󵄨󵄨󵄨𝑥 (𝑢) − 𝑦 (𝑢)

󵄨󵄨󵄨󵄨] 𝑑𝑞𝑢 +
1

4[𝛾]
𝑞

× ∫

1

0

(1 − 𝑞𝑢)
(𝛾−2)

Γ
𝑞
(𝛾 − 1)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

×
󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚))

−𝑓 (𝑚, 𝑦 (𝑚))
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚
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+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

×
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚))

−𝑔 (𝑚, 𝑦 (𝑚))
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆|
󵄨󵄨󵄨󵄨𝑥 (𝑢) − 𝑦 (𝑢)

󵄨󵄨󵄨󵄨] 𝑑𝑞𝑢

+
1

2
∫

1

0

(1 − 𝑞𝑢)
(𝛾−1)

Γ
𝑞
(𝛾)

× [|𝐴| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼−1)

Γ
𝑞
(𝛼)

×
󵄨󵄨󵄨󵄨𝑓 (𝑚, 𝑥 (𝑚))

−𝑓 (𝑚, 𝑦 (𝑚))
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝐵| ∫

𝑢

0

(𝑢 − 𝑞𝑚)
(𝛼+𝜌−1)

Γ
𝑞
(𝛼 + 𝜌)

×
󵄨󵄨󵄨󵄨𝑔 (𝑚, 𝑥 (𝑚))

−𝑔 (𝑚, 𝑦 (𝑚))
󵄨󵄨󵄨󵄨 𝑑𝑞𝑚

+ |𝜆|
󵄨󵄨󵄨󵄨𝑥 (𝑢) − 𝑦 (𝑢)

󵄨󵄨󵄨󵄨] 𝑑𝑞𝑢}

≤ Λ
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(38)

Since Λ ∈ (0, 1) by the given assumption, therefore U
is a contraction. Hence, it follows by Banach’s contraction
principle that the problem (1) has a unique solution.

Example 10. Consider a 𝑞-fractional integrodifferential
equation with 𝑞-antiperiodic boundary conditions given by

𝑐

𝐷
𝛼

𝑞
(
𝑐

𝐷
𝛾

𝑞
+
1

15
) 𝑥 (𝑡)

=
1

5
𝑓 (𝑡, 𝑥 (𝑡)) +

1

8
𝐼
𝜌

𝑞
𝑔 (𝑡, 𝑥 (𝑡)) ,

0 < 𝑡 < 1, 0 < 𝑞 < 1,

𝑥 (0) = −𝑥 (1) , (𝑡
(1−𝛾)

𝐷
𝑞
𝑥 (𝑡))

󵄨󵄨󵄨󵄨󵄨𝑡=0
= −𝐷
𝑞
𝑥 (1) ,

(39)

where 𝛼 = 𝛾 = 𝜌 = 𝑞 = 1/2, 𝜆 = 1/15, 𝐴 =

1/5, 𝐵 = 1/8, 𝑓(𝑡, 𝑥) = (𝑡/20𝜋) sin 2𝜋𝑥 + (𝑡 + 1)(1 + 𝑥)4/(1 +
(1 + 𝑥)

4

), 𝑔(𝑡, 𝑥) = (1/8𝜋)tan−1𝑥 + 1/16. With the given
data, 𝛿

1
≃ 1.92678, 𝛿

2
≃ 1.72332, 𝛿

3
≃ 1.90037, and

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨 ≤ (𝑡 + 1) (

‖𝑥‖

10
+ 1) ,

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨 ≤

1

8
. (40)

Clearly, ]
1
(𝑡) = 𝑡 + 1, 𝜗

1
(‖𝑥‖) = ‖𝑥‖/10 + 1, ]

2
(𝑡) =

1/8, 𝜗
1
(‖𝑥‖) = 1, and the condition (A

4
) implies that 𝜔 >

1.00176. Thus all the assumptions of Theorem 8 are satisfied.
Hence, the conclusion of Theorem 8 applies to the problem
(39).

Example 11. Consider the following 𝑞-fractional 𝑞-
antiperiodic boundary value problem:

𝑐

𝐷
𝛼

𝑞
(
𝑐

𝐷
𝛾

𝑞
+
1

8
) 𝑥 (𝑡)

=
1

2
𝑓 (𝑡, 𝑥 (𝑡)) +

1

4
𝐼
𝜌

𝑞
𝑔 (𝑡, 𝑥 (𝑡)) ,

0 < 𝑡 < 1, 0 < 𝑞 < 1,

𝑥 (0) = −𝑥 (1) , (𝑡
(1−𝛾)

𝐷
𝑞
𝑥 (𝑡))

󵄨󵄨󵄨󵄨󵄨𝑡=0
= −𝐷
𝑞
𝑥 (1) ,

(41)

where 𝛼 = 𝛾 = 𝜌 = 𝑞 = 𝐴 = 1/2, 𝜆 = 1/8, 𝐵 = 1/4, 𝑓(𝑡, 𝑥) =

(1/(𝑡
2

+2))(|𝑥|/(1+|𝑥|))+sin2𝑡, 𝑔(𝑡, 𝑥) = (1/4)tan−1𝑥+cos2𝑡+
𝑡
3

+ 5. With the given data, it is found that 𝐿
1
= 1/2, 𝐿

2
=

1/4 as |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ (1/2)|𝑥 − 𝑦|, |𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦)| ≤
(1/4)|𝑥 − 𝑦|. Clearly 𝐿 = max{𝐿

1
, 𝐿
2
} = 1/2. Moreover,

𝛿
1
≃ 1.92678, 𝛿

2
≃ 1.72332, and 𝛿

3
≃ 1.90037. Using

the given values, it is found that Λ ≃ 0.934655 < 1. Thus
all the assumptions of Theorem 9 are satisfied. Hence, by the
conclusion of Theorem 9, there exists a unique solution for
the problem (41).
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