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The purpose of this paper is to prove some fixed point results for mapping without continuity condition on Takahashi convex metric
space as an application of synthetic approaches to fixed point problems of Angrisani and Clavelli. Our results are generalizations
in Banach space of fixed point results proved by Kirk and Saliga, 2000; Ahmed and Zeyada, 2010.

1. Introduction and Preliminaries

It is well-known that continuity is an ideal property, while
in some applications the mapping under consideration may
not be continuous, yet at the same time it may be “not very
discontinuous”

In [1] Angrisani and Clavelli introduced regular-global-
inf functions. Such functions satisfy a condition weaker
than continuity, yet in many circumstances it is precisely
the condition needed to assure either the uniqueness or
compactness of the set of solutions in fixed point problems.

Definition 1. Function F : M — R, defined on topological
space M, is regular-global-inf (r.gi) in x € M if F(x) >
inf,;(F) implies that there exist an ¢ > 0 such thate < F(x) —
inf,;(F) and a neighbourhood N, such that F(y) > F(x) — ¢
for each y € N.. If this condition holds for each x € M, then
F is said to be an r.g.i. on M.

An equivalent condition to be r.g.i. on metric space for
inf,; f # — oo is proved by Kirk and Saliga.

Proposition 2 (see [2]). Let M be a metric space and F :
M — R. Then F is an r.gi. on M if and only if, for any

sequence {x,} C M, the conditions
Jim F (x,) = i}\l/[f (F), Jim x, = x )

imply F(x) = inf(F).

One of the basic results in [1] is the following one.
(Here we use y to denote the usual Kuratowski measure of
noncompactness on metric space (M,d) and L, := {x € M |
F(x)<clforF: M — R,ceR.)

Theorem 3 (see [1]). Let F: M — R be an r.g.i. defined on a
complete metric space M. Iflim_ _, ¢ g+ t(L.) = 0, then the
set of global minimum points of F is nonempty and compact.

Remark 4. The last theorem assures that if T' is a mapping
of compact metric space into itself with inf,,(F) = 0, and
if F(x) = d(x,Tx),x € M, is an r.g.i. on M, then the
fixed point set of T' is nonempty and compact even when T
is discontinuous.

Example 5. Let (X, d) be a complete metric space and T' :
X — X amappingsuch that, forsomeq > landallx, y € X,

d(Tx,Ty) < q max{d(x,y),d (x,Tx),d (y,Ty),
d(x,Ty),d (y, Tx)}

(Ciri¢ quasi-contraction). Then T is discontinuous and
F(x) =d(x,Tx), x € X, is r.g.i. (see [1]).

Let A be a bounded subset of metric space M. The
Kuratowski measure of noncompactness y(A) means the inf
of numbers ¢ such that A can be covered by a finite number
of sets with a diameter less than or equal to e. With S(A) we
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are going to denote the Hausdor{f measure of noncompactness,
where B(A) is the infimum of numbers ¢ such that A can be
covered by a finite number of balls of radii smaller than «.

It is easy to prove that for « € {y, 8} and bounded subsets
A,BC M

(1) a(A) = 0 & A s totally bounded;
(2) a(A) = a(A);

(3) Ac B= «a(A) < a(B);

(4) a(A U B) = max{a(A), a(B)}.

Moreover, these two measures of noncompactness are equiv-
alent in the sense that S(A) < u(A) < 2f(A) so lim,u(A,) =
0 if and only if lim,3(A,) = 0 (for any sequence {A,}
of bounded subsets of M). The last property indicates that
fixed point results are independent of choice of measure of
noncompactness.

In Banach spaces this function has some additional
properties connected with the linear structure. One of these
is

a(convA) =a(A) (3)

(conv A is a convex hull of A—the intersection of all convex
sets in X containing A).

This property has a great importance in fixed point
theory. In locally convex spaces this is always true, but when
topological vector space is not locally convex it need not be
true (see [3]).

In the absence of linear structure the concept of convexity
can be introduced in an abstract form. In metric spaces at
first it was done by Menger in 1928. In 1970 Takahashi [4]
introduced a new concept of convexity in metric space.

Definition 6 (see [4]). Let (X,d) be a metric space and I a
closed unit interval. A mapping W: X x X x I — X is said
to be convex structure on X if for all x, y,u € X,A € I,

d(wuW(x, 3,A) <A Ww,x)+(1-A1)d(u,y). (4)

X together with a convex structure is called a (Takahashi)
convex metric space (X, d, W) or abbreviated TCS.

Any convex subset of a normed space is a convex metric
space with W(x, y,A) = Ax + (1 = A)y.

Definition 7 (see [4]). Let (X,d, W) be a TCS. A nonempty
subset K of X is said to be convex ifand only if W(x, y,A) € K
whenever x, y € Kand A € I.

Proposition 8 (see [4]). Let (X,d,W) bea TCS. If x,y € X
and A € I, then

(@ W(x, y,1) = xand W(x, y,0) = y;

(b) W(x,x,A) = x;

(0) d(x, W(x, y,1)) = (1 = Md(x,y) and d(y, W(x, y,
A) = Ad(x, y);

(d) balls (either open or closed) in X are convex;

(e) intersections of convex subsets of X are convex.
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For fixed x, y € X let [x, y] = {W(x, y,A) | A € I}.

Definition 9. A TCS (X, d, W) has property (P) if for every
XpXy Y Yy € XA €

d (W (x1> X2 /\) W ()’1’ Y2 /\))

(5)
<M (xpp1) + (1= 1) d (x, 3,) -

Obviously in a normed space the last inequality is always
satisfied.

Example 10 (see [4]). Let (X, d) be a linear metric space with
the following properties:

(1) d(x, ) =d(x - y,0), forall x, y € X;

(2) d(Ax+ (1 -1)y,0) < Ad(x,0) + (1 - A)d(y,0), for all
x,y€XandA €L

For W(x, y,A) =Ax+(1-AN)y,x,ye X, € [,(X,d,W)isa
TCS with property (P).

Remark 11. Property (P) implies that convex structure W is
continuous at least in first two variables which gives that the
closure of convex set is convex.

Definition 12. A TCS (X, d, W) has property (Q) if for any
finite subset A € X conv A is a compact set.

Example 13 (see [4]). Let K be a compact convex subset
of Banach space and let X be the set of all nonexpansive
mappings on K into itself. Define a metric on X by d(A, B) =
sup,xllAx — Bx[, A,B € Xand W: X x X xI — X by
W(A,B,A)(x) = AAx + (1 — A)Bx, for x € K and A € I. Then
(X,d, W) is a compact TCS, so X is with property (Q). The
property (P) is also satisfied.

Talman in [5] introduced a new notion of convex
structure for metric space based on Takahashi notion—the
so called strong convex structure (SCS for short). In SCS
condition (Q) is always satisfied so it seems to be “natural”

Any TCS satisfying (P) and (Q) has the next important

property.

Proposition 14 (see [5]). Let (X,d, W) be a TCS with proper-
ties (P) and (Q). Then for any bounded subset A € X

a(convA) =a(A). (6)

Some, among the many studies concerning the fixed point
theory in convex metric spaces, can be found in [6-13].

2. Main Results

Measures of noncompactness which arise in the study of fixed
point theory usually involve the study of either condensing
mappings or k-set contractions. Continuity is always implicit
in the definitions of these classes of mappings. Kirk and Saliga
[2] show that in many instances it suffices to replace the
continuity assumption with the weaker r.g.i. condition. We
are going to follow this idea in frame of TCS.
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Theorem 15. Let (X, d, W) be a complete TCS with properties
(P) and (Q), K a closed convex bounded subset of X, and T :
K — K a mapping satisfying the following:

(i) info(F) = 0 for any nonempty closed convex T-
invariant subset C of K, where F(x) = d(x,Tx),x €
K;
(ii) a(T(A)) < a(A) for all A € K for which a(A) > 0;
(iii) F is rng.i. on K.
Then the fixed point set fix (T) of T is nonempty and compact.

Proof. Choose a point m € K. Let o denote the family of all
closed convex subsets A of K for whichm € Aand T(A) € A.
Since K € 0,0 #0. Let

B:= ﬂA,

A€o

C := conv{T (B) U {m}}. 7)

Convex structure W has property (P) so C is a convex set as
a closure of convex set. We are going to prove that B = C.
Since B is a closed convex set containing T(B) and
{m},C < B. This implies that T(C) < T(B) < CsoC € ¢
and hence B € C. The last two statements clearly force B = C.
Properties (1)-(4) of measure « and Proposition 14 imply
that

« (B) = a(conv{T (B) U {m}}) = (T (B)), (8)

so in view of (ii) B must be compact.

Now, Proposition 2 ensures that T has a fixed point on
B so fix(T') is nonempty. Condition (ii) implies that fix(T')
is totally bounded. Since F is r.g.i. fix(T) has to be closed.
Finally, we conclude that fix(T') is compact. O

The assumption infi(F) = 0 is strong, especially in
the absence of conditions which at the same time imply
continuity. So we are going to give some sufficient conditions
which are easier to check and more suitable for application.

Let us recall some well-known definitions. A mapping T :
K — K is called nonexpansive it d(Tx,Ty) < d(x, y), for
all x, y € K, and directionally nonexpansive if d(Tx,Ty) <
d(x, y) for each x € K and y € [x,Tx]. If there exists « €
(0, 1) such that this inequality holds for y = W(Tx;, x, «), then
we say that T' is uniformly locally directionally nonexpansive.

Proposition 16. Let (X, d, W) be a complete TCS with prop-
erty (P), K a closed convex bounded subset of X, and T :
K — K a uniformly locally directionally nonexpansive. Let
T, x = W(Tx, x,«). For the fixed x, € K, sequences {x,} and
{y,} are defined as follows:

X1 = ToX,s Vv, =Tx,, n=0,1,2,.... 9)

Then for eachi,n € N

d (Vi X:) 2 (1= )" (d (Vi Xi1n) = d (¥ %))

(10)
+ (1 +na)d(y,x;),
Jim d (x,, Tx,) = 0. (1)

Proof. We prove (10) by induction on n. For n = 0 inequality
(10) is trivial. Assume that (10) holds for given n and all i.

In order to prove that (10) holds for n + 1, we proceed as
follows: replacing i with i + 1 in (10) yields

d (yi+n+1>xi+l) 2 (1 - “)_n (d (yi+n+1’ xi+n+1) -d (yi+1> xi+1))

+ (1 +na)d (Y1, %) -

(12)
Also
d (yi+n+1’xi+1)
< d (yi+n+1> w (yi+n+1’ Xi> “))
+d (W (yi+n+1’ X “) > w (Txi’ Xi> “))
< (1 _“)d(yimﬂ’xi) +ad (yi+n+1’Txi) (13)

n
< (1 - ‘X) d (yi+n+1’ xi) + “Zd (Txi+k+1’ Txi+k)
k=0

n
<(1-a)d (yi+n+1’xi) + “Zd (xi+k+1’ xi+k)
k=0

since X;,1,; = W(TX; 0 Xipo «) and T is uniformly locally
directionally nonexpansive. Combining (12) and (13)

d ()’i+n+1>xi)

2 (1 - “)7(%1) (d (yi+n+1)xi+n+1) -d (yi+1>xi+1))

+(1—a) " (1 +n0)d (y405 Xi11) (14)
—a(l-a)” id (Xeriz 1> Xperi) -
k=0
By Proposition 8 (c),
d (xk+i+1’ xk+i) =d (W (Txk+i> Xe+i> 0‘) > xk+i) (15)

= ad (yk+i’ xk+i) >

SO

d (yi+n+1’xi)
2 (1 - “)—(n+1) (d (yi+n+1’ xi+n+1) -d ()/i+1>xi+1))

+ (1= (L4 na)d (31, Xiy1) (16)

o’ (1= 0™ d (Peri» Xpeai) -

M-



On the other hand,
d (¥ x,) = d(Tx,, W (Tx,, 1, X, )
<d(Tx,, Tx,_,) +d(Tx,_;, W (Tx,_1, x,_, &)
<d(xpx,1)+ (1 —a)d(Tx, 1, %,_;)
= ad (Y1 Xpg) + (1 =) d (Y1, X1)

=d (yn—l’ xn—l)
17)

for any n € N, meaning that {d(y,,x,)} is a decreasing
sequence.

Now, using inequality (1 + ner) — (1 — «)
that

™ <0, we have

d (Yisnsr i)

> (1= )" (d imers Xisne1) = 4 (Vi1 Xis1)
+(1-a) ' (1 +n0)d (Y Xit1)
—d(1-a) " (n+1)d(y,x)

= (1= )™ (d Yimers Xiamer) = (75 X,))
+((1-0)" (1 +na) - (1-a) ") d (41, x,1)
+((1-0) ™ -1 - (n+1))d (y,x,)

2 (1= )" (d (Yimers Kisner) = d (9 %,))
+((1-0) " A +n) —(1-a) ") d (y,x,)
+((1-0) " -1 - (n+1))d (3, x,)

= (1 - “)7(%1) (d (yi+n+1> xi+n+1) -d (yi>xi))

+(1+m+Da)d(y,x;)-
(18)

Thus (10) holds for n + 1, completing the proof of inequality.

Further, the sequence {d(y,,x,)} is decreasing, so there
exists lim,, , . d(y,,x,) = r = 0. Let us suppose that r > 0.
Select positive integer 1, > d/(r - «),d = diam K, and € > 0,
satisfying e(1 — &) ™ < r. Now choose positive integer k such
that

0 <d (3o %) = d (Vonys Xin, ) < & (19)
Using (10), we obtain

d+r<r(any+1) < (any+1)d (v x¢)
(20)
< d(}’k+no’xk) +e(l-a)™ <d+r.

By the last contradiction we conclude that r = 0 and
lim, , d(y,,x,) = lim,_, d(Tx,,x,) = 0 what we had to
prove. O
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Remark 17. This statement is a generalization of Lemma 9.4
from [14].

Combining the last result with Theorem 15 we have the
following consequence.

Corollary 18. Let K be a bounded closed convex subset of
complete TCS (X, d, W) with properties (P) and (Q) and let
T : K — K satisfy the following:

(i) T is uniformly locally directionally nonexpansive on K;
(ii) a(T'(A)) < a(A), for all A € K for which a(A) > 0;
(iii) F is rng.i. on K.
Then the fixed point set fix (T) of T is nonempty and compact.

Moreover, using Proposition 16 we also get generaliza-
tions of some other Kirk and Saliga [2] fixed point results.

Corollary 19. Let K be a bounded closed convex subset of a
complete TCS (X, d, W) with properties (P) and (Q) and let
T : K — K satisfy the following:

(i) T is uniformly locally directionally nonexpansive on K;

(i) d(Tx, Ty) < O(max{d(x,Tx),d(y,Ty)}), where 0 :
R™ — R" isany function for which lim, _, ,+6(t) = 0.

Then T has a unique fixed point x, € K if and only if F is an
r.g.i. on K.

Proof. Proposition 16 gives inf i (F) = 0 and as in [2] one can
prove thatlim_ _, o+ diam(L,) = 0. By Theorem 1.2 [1], T has a
unique fixed point if and only if F is r.g.i. on K. O

Theorem 20. Let K be a bounded closed convex subset of
a complete TCS (X,d, W) with properties (P) and (Q) and
suppose T : K — K satisfies the following:

(i) T is directionally nonexpansive on K;
(ii) w(T(L,)) < k- u(L,), for somek < 1 and all ¢ > 0;
(iii) F is an r.g.i. on K.

Then the fixed point set fix (T') of T is nonempty and compact.
Moreover, if {x,} < K satisfies lim,, _,  d(x,,Tx,) = 0, then
lim,, _, . d(x,, fix(T)) =0.

Proof. By Proposition 16, inf i (F) = 0. Since (i) implies that
d(Tx,T’x) <d (x,Tx), VxeK, (21)

the conclusion follows immediately from Theorem 2.3
[2]. O

We established that lim, , ., d(x,,Tx,) = 0 for every
sequence {x,} defined by x,, = T, x,_;, n € N, where x, € K
and « € (0, 1). Therefore lim,, , . d(x,, fix(T)) = 0 meaning
that {x,} converges to the set fix(T), but the convergence to
the specific point from fix(T) is not provided. Putting some
additional assumption, we could arrange that the sequence
{x,} converges to a fixed point of the mapping T

Next, we recall the concept of weakly quasi-nonexpansive
mappings with respect to sequence introduced by Ahmed and
Zeyada in [15].



Abstract and Applied Analysis

Definition 21 (see [15]). Let (X, d) be a metric space and let
{x,} be a sequence in D € X. Assume that T : D — X is
a mapping with fix(T') # @ satisfying lim,, _, . d(x,,, ix(T)) =
0. Thus, for a given € > 0 there exists #,(¢) € N such that
d(x,, ix(T)) < e for all n > n,(¢). Mapping T is called weakly
quasi-nonexpansive with respect to {x,,} € D iffor eache > 0
there exists p(e) € fix(T) such that, for all n € N with n >
n,(e),d(x,, p(e)) < e.

The next result is improvement of Theorem 20 and also a
generalisation of Theorem 2.24 from [15].

Theorem 22. Let K be a bounded closed convex subset of a
complete TCS (X, d, W) with properties (P) and (Q) and let
T : K — K satisfy the following:
(i) T is directionally nonexpansive on K;

(if) «(T(L,)) < ka(L,) for some k < 1 and all ¢ > 0;

(iii) F is rn.gi. on K;

(iv) {x,} € K satisfies limlim,,_,  d(x,,Tx,) = 0and T is

weakly quasi-nonexpansive with respect to {x,,}.

Then {x,,} converges to a point in fix(T).

Proof. Our assertion is a consequence of Theorem 20 and
Theorem 2.5(b) from [15]. O

Using Proposition 16, the next corollary holds.

Corollary 23. Let K be a bounded closed convex subset of a
complete TCS (X, d, W) with properties (P) and (Q) and let
T : K — K satisfy the following:
(i) T is directionally nonexpansive on K;

(if) «(T(L,)) < ka(L,) for some k < 1 and all ¢ > 0;

(iii) F is rn.gi. on K;

(iv) T is weakly quasi-nonexpansive with respect to

sequence x,, = Tyxg,n € N,x, € K, € (0,1).

Then {x,,} converges to a point in fix(T).
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