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We introduce the triple hierarchical problem over the solution set of the variational inequality problem and the fixed point set of a
nonexpansive mapping. The strong convergence of the algorithm is proved under some mild conditions. Our results extend those
of Yao et al., Iiduka, Ceng et al., and other authors.

1. Introduction

Let 𝐶 be a closed convex subset of a real Hilbert space 𝐻

with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖. We denote weak
convergence and strong convergence by notations⇀ and → ,
respectively. Let 𝐴 be a nonlinear mapping. The Hartman-
Stampacchia variational inequality [1] is to find 𝑥 ∈ 𝐶 such
that ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. The set of solutions is denoted
by VI(𝐶, 𝐴). 𝑓 : 𝐶 → 𝐶 is said to be a 𝜌-contraction if there
exists a constant 𝜌 ∈ [0, 1) such that ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝜌‖𝑥 −

𝑦‖, ∀𝑥, 𝑦 ∈ 𝐶. Amapping𝐴 : 𝐻 → 𝐻 is said to bemonotone
if ⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐻. A mapping 𝐴 : 𝐻 → 𝐻

is said to be 𝛼- strongly monotone if there exists a positive real
number 𝛼 such that ⟨𝐴𝑥−𝐴𝑦, 𝑥−𝑦⟩ ≥ 𝛼‖𝑥 − 𝑦‖

2
, ∀𝑥, 𝑦 ∈ 𝐻.

A mapping 𝐴 : 𝐻 → 𝐻 is said to be 𝛽-inverse-strongly
monotone if there exists a positive real number 𝛽 such that
⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛽‖𝐴𝑥 − 𝐴𝑦‖

2
, ∀𝑥, 𝑦 ∈ 𝐻. A mapping

𝐴 : 𝐻 → 𝐻 is said to be 𝐿-Lipschitz continuous if there
exists a positive real number 𝐿 such that ‖𝐴𝑥 − 𝐴𝑦‖ ≤ 𝐿‖𝑥 −

𝑦‖, ∀𝑥, 𝑦 ∈ 𝐻. A linear bounded operator 𝐴 is said to be
strongly positive on𝐻 if there exists a constant 𝛾 > 0 with the
property ⟨𝐴𝑥, 𝑥⟩ ≥ 𝛾‖𝑥‖

2
, ∀𝑥 ∈ 𝐻. A mapping 𝑇 : 𝐶 → 𝐶 is

said to be nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐶.
A point 𝑥 ∈ 𝐶 is a fixed point of 𝑇 provided 𝑇𝑥 = 𝑥.

Denote by 𝐹(𝑇) the set of fixed points of 𝑇; that is, 𝐹(𝑇) =

{𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}. If 𝐶 is bounded closed convex and 𝑇 is a
nonexpansivemapping of𝐶 into itself, then𝐹(𝑇) is nonempty
(see [2]).

We discuss the following variational inequality problem
over the fixed point set of a nonexpansive mapping (see
[3–16]), which is said to be the hierarchical problem. Let
a monotone, continuous mapping 𝐴 : 𝐻 → 𝐻 and a
nonexpansive mapping 𝑇 : 𝐻 → 𝐻. Find 𝑥 ∈ VI(𝐹(𝑇), 𝐴) =
{𝑥 ∈ 𝐹(𝑇) : ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐹(𝑇)}, where 𝐹(𝑇) ̸= 0.
This solution set is denoted by Ξ.

We introduce the following variational inequality prob-
lem over the solution set of variational inequality problem
and the fixed point set of a nonexpansive mapping (see [17,
18]), which is said to be the triple hierarchical problem. Let
an inverse-strongly monotone 𝐴 : 𝐻 → 𝐻, a strongly
monotone and Lipschitz continuous 𝐵 : 𝐻 → 𝐻, and a
nonexpansive mapping 𝑇 : 𝐻 → 𝐻. Find 𝑥 ∈ VI(Ξ, 𝐵) =

{𝑥 ∈ Ξ : ⟨𝐵𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ Ξ}, where Ξ := VI(𝐹(𝑇), 𝐴) ̸=

0.
In 2009, Yao et al. [19] considered the following two-step

iterative algorithm with the initial guess 𝑥
0

∈ 𝐶 which is
chosen arbitrarily:

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑇𝑦
𝑛
,

𝑦
𝑛
= 𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
, ∀𝑛 ≥ 0,

(1)
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where 𝛼
𝑛
, 𝛽
𝑛
∈ (0, 1) satisfies certain assumptions. Let 𝑆, 𝑇

be two nonexpansive mappings and let 𝑓 : 𝐶 → 𝐶 be
a contraction mapping. Then, they proved that the above
iterative sequence {𝑥

𝑛
} converges strongly to fixed point.

Next, Iiduka [17] introduced a monotone variational
inequality with variational inequality constraint over the
fixed point set of a nonexpansive mapping; the sequence {𝑥

𝑛
}

defined by the iterative method below, with the initial guess
𝑥
1
∈ 𝐻, is chosen arbitrarily:

𝑦
𝑛
= 𝑇 (𝑥

𝑛
− 𝜆
𝑛
𝐴
1
𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝑦
𝑛
− 𝜇𝛼
𝑛
𝐴
2
𝑦
𝑛
, ∀𝑛 ≥ 0,

(2)

where 𝛼
𝑛
∈ (0, 1] and 𝜆

𝑛
∈ (0, 2𝛼] satisfy certain conditions,

𝐴
1

: 𝐻 → 𝐻 is an inverse-strongly monotone, 𝐴
2

:

𝐻 → 𝐻 is a strongly monotone and Lipschitz continuous,
and 𝑇 : 𝐻 → 𝐻 is a nonexpansive mapping; then the
strongly convergence analysis of the sequence generated by
(2) is proved under some appropriate conditions.

In 2011, Yao et al. [20] studied the hierarchical problem
over the fixed point set. Let the sequences {𝑥

𝑛
} be generated

by these two following algorithms:
implicit algorithm 𝑥

𝑡
= 𝑇𝑃
𝐶
[𝐼 − 𝑡(𝐴 − 𝛾𝑓)]𝑥

𝑡
, ∀𝑡 ∈

(0, 1)

explicit algorithm𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+(1−𝛽

𝑛
)𝑇𝑃
𝐶
[𝐼−𝛼
𝑛
(𝐴−

𝛾𝑓)]𝑥
𝑛
, ∀𝑛 ≥ 0.

They illustrated that these two algorithms converge strongly
to the unique solution of the variational inequality which is
to find 𝑥

∗
∈ 𝐹(𝑇) such that

⟨(𝐴 − 𝛾𝑓) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇) , (3)

where 𝐴 : 𝐶 → 𝐻 is a strongly positive linear bounded
operator, 𝑓 : 𝐶 → 𝐻 is a 𝜌-contraction, and 𝑇 : 𝐶 → 𝐶

is a nonexpansive mapping satisfying some conditions.
Very recently, Ceng et al. [21] studied the following new

algorithms. For 𝑥
0
∈ 𝐶 is chosen arbitrarily, they defined a

sequence {𝑥
𝑛
} by

𝑥
𝑛+1

= 𝑃
𝐶
[𝜆
𝑛
𝛾 (𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑆𝑥
𝑛
) + (𝐼 − 𝜆

𝑛
𝜇𝐹)𝑇𝑥

𝑛
] ,

∀𝑛 ≥ 0,

(4)

where the mappings 𝑆, 𝑇 are nonexpansive mappings with
𝐹(𝑇) ̸= 0. Let 𝐹 : 𝐶 → 𝐻 be a Lipschitzian and
strongly monotone operator and let 𝑓 : 𝐶 → 𝐻 be a
contractionmapping satisfying some appropriate conditions.
They proved that the proposed algorithms strongly converge
to the minimum norm fixed point of 𝑇.

In this paper, we consider a new iterative algorithm for
solving the triple hierarchical problem over the solution set
of the variational inequality problem and the fixed point set
of a nonexpansive mapping which contain algorithms (1) and
(4) as follows:

𝑦
𝑛
= 𝑃
𝐶
[𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
] ,

𝑥
𝑛+1

= 𝛾𝜆
𝑛
𝜙 (𝑥
𝑛
) + (𝐼 − 𝜆

𝑛
𝜇𝐹)𝑇𝑦

𝑛
, ∀𝑛 ≥ 0,

(5)

where the mappings 𝑆, 𝑇 are nonexpansive mappings with
𝐹(𝑇) ̸= 0. Let 𝐹 : 𝐶 → 𝐻 be a Lipschitzian and strongly
monotone operator, and let 𝜙 : 𝐻 → 𝐻 be a contraction
mapping satisfying some mild conditions. Find a point 𝑥∗ ∈
𝐹(𝑇) such that

⟨(𝐼 − 𝑆) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇) . (6)

This solution set of (6) is denoted by Ω := 𝑉𝐼(𝐹(𝑇), 𝑆).
The strong convergence for the proposed algorithms to the
solution is solved under some appropriate assumptions. Our
results improve the results of Ceng et al. [21], Iiduka [17], Yao
et al. [19], Yao et al. [20], and some authors.

2. Preliminaries

Let 𝐶 be a nonempty closed convex subset of𝐻. There holds
the following inequality in an inner product space ‖𝑥 + 𝑦‖

2
≤

‖𝑥‖
2
+ 2⟨𝑦, 𝑥 + 𝑦⟩, ∀𝑥, 𝑦 ∈ 𝐻. For every point 𝑥 ∈ 𝐻, there

exists a unique nearest point in 𝐶, denoted by 𝑃
𝐶
𝑥, such that

󵄩󵄩󵄩󵄩𝑥 − 𝑃
𝐶
𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ∈ 𝐶. (7)

𝑃
𝐶
is called themetric projection of𝐻 onto𝐶. It is well known

that 𝑃
𝐶
is a nonexpansive mapping of𝐻 onto 𝐶 and satisfies

⟨𝑥 − 𝑦, 𝑃
𝐶
𝑥 − 𝑃
𝐶
𝑦⟩ ≥

󵄩󵄩󵄩󵄩𝑃𝐶𝑥 − 𝑃
𝐶
𝑦
󵄩󵄩󵄩󵄩

2

, (8)

for every 𝑥, 𝑦 ∈ 𝐻. Moreover, 𝑃
𝐶
𝑥 is characterized by the

following properties: 𝑃
𝐶
𝑥 ∈ 𝐶 and

⟨𝑥 − 𝑃
𝐶
𝑥, 𝑦 − 𝑃

𝐶
𝑥⟩ ≤ 0, (9)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

≥
󵄩󵄩󵄩󵄩𝑥 − 𝑃

𝐶
𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦 − 𝑃

𝐶
𝑥
󵄩󵄩󵄩󵄩

2

, (10)

for all 𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶. Let 𝐵 be a monotone mapping of 𝐶
into 𝐻. In the context of the variational inequality problem
the characterization of projection (9) implies the following:

𝑢 ∈ 𝑉𝐼 (𝐶, 𝐵) ⇐⇒ 𝑢 = 𝑃
𝐶
(𝑢 − 𝜆𝐵𝑢) , 𝜆 > 0. (11)

It is also known that𝐻 satisfies theOpial’s condition [22]; that
is, for any sequence {𝑥

𝑛
} ⊂ 𝐻 with 𝑥

𝑛
⇀ 𝑥, the inequality

lim inf
𝑛→∞

‖𝑥
𝑛
− 𝑥‖ < lim inf

𝑛→∞
‖𝑥
𝑛
− 𝑦‖ holds for every

𝑦 ∈ 𝐻 with 𝑥 ̸= 𝑦.

Lemma 1 (see [23]). Let 𝐶 be a closed convex subset of a real
Hilbert space 𝐻 and let 𝑇 : 𝐶 → 𝐶 be a nonexpansive
mapping. Then 𝐼 − 𝑇 is demiclosed at zero; that is, 𝑥

𝑛
⇀

𝑥 and 𝑥
𝑛
− 𝑇𝑥
𝑛
→ 0 imply 𝑥 = 𝑇𝑥.

Lemma 2 (see [24]). Let {𝑥
𝑛
} and {𝑦

𝑛
} be bounded sequences

in a Banach space 𝑋 and let {𝛽
𝑛
} be a sequence in [0, 1] with

0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1. Suppose 𝑥

𝑛+1
=

(1−𝛽
𝑛
)𝑦
𝑛
+𝛽
𝑛
𝑥
𝑛
for all integers 𝑛 ≥ 0 and lim sup

𝑛→∞
(‖𝑦
𝑛+1

−

𝑦
𝑛
‖ − ‖𝑥

𝑛+1
− 𝑥
𝑛
‖) ≤ 0. Then, lim

𝑛→∞
‖𝑦
𝑛
− 𝑥
𝑛
‖ = 0.

Lemma 3 (see [10]). Let 𝐵 : 𝐻 → 𝐻 be 𝛽-strongly monotone
and 𝐿-Lipschitz continuous and let 𝜇 ∈ (0, 2𝛽/𝐿

2
). For 𝜆 ∈

[0, 1], define 𝑇
𝜆
: 𝐻 → 𝐻 by 𝑇

𝜆
(𝑥) := 𝑥 − 𝜆𝜇𝐵(𝑥) for all

𝑥 ∈ 𝐻.Then, for all𝑥, 𝑦 ∈ 𝐻, ‖𝑇
𝜆
(𝑥)−𝑇

𝜆
(𝑦)‖ ≤ (1−𝜆𝜏)‖𝑥−𝑦‖

hold, where 𝜏 := 1 − √1 − 𝜇(2𝛽 − 𝜇𝐿2) ∈ (0, 1].
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Lemma 4 (see [25]). Assume that {𝑎
𝑛
} is a sequence of

nonnegative real numbers such that

𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝛿
𝑛
, ∀𝑛 ≥ 0, (12)

where {𝛾
𝑛
} ⊂ (0, 1) and {𝛿

𝑛
} is a sequence inR such that

(i) ∑∞
𝑛=1

𝛾
𝑛
= ∞;

(ii) lim sup
𝑛→∞

(𝛿
𝑛
/𝛾
𝑛
) ≤ 0 or ∑∞

𝑛=1
|𝛿
𝑛
| < ∞.

Then lim
𝑛→∞

𝑎
𝑛
= 0.

3. Strong Convergence Theorem

In this section, we introduce an iterative algorithm of triple
hierarchical for solving monotone variational inequality
problems for 𝜅-Lipschitzian and 𝜂-strongly monotone oper-
ators over the solution set of variational inequality problems
and the fixed point set of a nonexpansive mapping.

Theorem 5. Let 𝐶 be a nonempty closed and convex subset
of a real Hilbert space 𝐻. Let 𝐹 : 𝐶 → 𝐶 be 𝜅-Lipschitzian
and 𝜂-strongly monotone operators with constant 𝜅 and 𝜂 > 0,
respectively, and let 𝜙 : 𝐶 → 𝐶 be a 𝜌-contraction with
coefficient 𝜌 ∈ [0, 1). Let 𝑇 : 𝐶 → 𝐶 be a nonexpansive
mappingwith𝐹(𝑇) ̸= 0, and let 𝑆 : 𝐻 → 𝐻 be a nonexpansive
mapping. Let 0 < 𝜇 < 2𝜂/𝜅

2 and 0 < 𝛾 < 𝜏, where
𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Suppose that {𝑥

𝑛
} is a sequence

generated by the following algorithm where 𝑥
0
∈ 𝐶 is chosen

arbitrarily:

𝑦
𝑛
= 𝑃
𝐶
[𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
] ,

𝑥
𝑛+1

= 𝛾𝜆
𝑛
𝜙 (𝑥
𝑛
) + (𝐼 − 𝜆

𝑛
𝜇𝐹)𝑇𝑦

𝑛
, ∀𝑛 ≥ 0,

(13)

where {𝛽
𝑛
}, {𝜆
𝑛
}, ⊂ (0, 1) satisfy the following conditions:

(C1): 𝛽
𝑛
≤ 𝑘𝜆
𝑛
;

(C2): lim
𝑛→∞

𝜆
𝑛

= 0, lim
𝑛→∞

((𝜆
𝑛
− 𝜆
𝑛−1

)/𝜆
𝑛
) = 0,

∑
∞

𝑛=0
𝜆
𝑛
= ∞;

(C3): lim
𝑛→∞

((𝛽
𝑛
− 𝛽
𝑛−1

)/𝛽
𝑛
) = 0.

Then {𝑥
𝑛
} converges strongly to 𝑥

∗
∈ Ω, which is the unique

solution of another variational inequality:

⟨(𝜇𝐹 − 𝛾𝜙) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω, (14)

whereΩ := 𝑉𝐼(𝐹(𝑇), 𝑆) ̸= 0.

Proof. We will divide the proof into four steps.

Step 1. We will show that {𝑥
𝑛
} is bounded. Indeed, for any

𝑥
∗
∈ 𝐹(𝑇), we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑃𝐶 [𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽

𝑛
) 𝑥
𝑛
] − 𝑃
𝐶
𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽

𝑛
) 𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑆𝑥𝑛 − 𝑆𝑥

∗
) + (1 − 𝛽

𝑛
) (𝑥
𝑛
− 𝑥
∗
) + 𝛽
𝑛
(𝑆𝑥
∗
− 𝑥
∗
)
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩 .

(15)

From (13), we deduce that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛾𝜆𝑛𝜙 (𝑥𝑛) + (𝐼 − 𝜆

𝑛
𝜇𝐹)𝑇𝑦

𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛾𝜆𝑛 (𝜙 (𝑥𝑛) − 𝜙 (𝑥

∗
)) + (𝐼 − 𝜆

𝑛
𝜇𝐹) (𝑇𝑦

𝑛
− 𝑥
∗
)

+𝜆
𝑛
(𝛾𝜙 (𝑥

∗
) − 𝜇𝐹𝑥

∗
)
󵄩󵄩󵄩󵄩

≤ 𝛾𝜆
𝑛

󵄩󵄩󵄩󵄩𝜙 (𝑥𝑛) − 𝜙 (𝑥
∗
)
󵄩󵄩󵄩󵄩 + (𝐼 − 𝜆

𝑛
𝜇𝐹)

󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝜆
𝑛

󵄩󵄩󵄩󵄩𝛾𝜙 (𝑥
∗
) − 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩

≤ 𝛾𝜌𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝜆

𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝜆
𝑛

󵄩󵄩󵄩󵄩𝛾𝜙 (𝑥
∗
) − 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩 .

(16)

Substituting (15) into (16), we obtain

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝛾𝜌𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ (1 − 𝜆
𝑛
𝜏) {

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝛽

𝑛

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩}

+ 𝜆
𝑛

󵄩󵄩󵄩󵄩𝛾𝜙 (𝑥
∗
) − 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩

≤ 𝛾𝜌𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝜆

𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩 + 𝜆

𝑛

󵄩󵄩󵄩󵄩𝛾𝜙 (𝑥
∗
) − 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩

≤ [1 − 𝜆
𝑛
(𝜏 − 𝛾𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝑘𝜆

𝑛

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝜆
𝑛

󵄩󵄩󵄩󵄩𝛾𝜙 (𝑥
∗
) − 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩

≤ [1 − 𝜆
𝑛
(𝜏 − 𝛾𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝜆
𝑛
(𝑘

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝛾𝜙 (𝑥
∗
) − 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩)

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 +

1

𝜏 − 𝛾𝜌

× (𝑘
󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝛾𝜙 (𝑥
∗
) − 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩) } .

(17)



4 Abstract and Applied Analysis

By induction, it follows that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ max{󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 +

1

𝜏 − 𝛾𝜌

× (𝑘
󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝛾𝜙 (𝑥
∗
) − 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩) } ,

𝑛 ≥ 0.

(18)

Therefore, {𝑥
𝑛
} is bounded and so are {𝑦

𝑛
}, {𝑇𝑦

𝑛
}, {𝑆𝑥

𝑛
},

{𝜙(𝑥
𝑛
)}, and {𝐹𝑇(𝑦

𝑛
)}.

Step 2. We will show that lim
𝑛→∞

‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0. Setting

V
𝑛
:= 𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
)𝑥
𝑛
, we obtain

󵄩󵄩󵄩󵄩V𝑛 − V
𝑛−1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽

𝑛
) 𝑥
𝑛
− 𝛽
𝑛−1

𝑆𝑥
𝑛−1

− (1 − 𝛽
𝑛−1

) 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩 𝛽𝑛 (𝑆𝑥𝑛 − 𝑆𝑥

𝑛−1
) + (𝛽

𝑛
− 𝛽
𝑛−1

) 𝑆𝑥
𝑛−1

+ (1 − 𝛽
𝑛
) (𝑥
𝑛
− 𝑥
𝑛−1

) + (𝛽
𝑛−1

− 𝛽
𝑛
) 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑆𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩)

+ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑆𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩) ,

(19)

which implies that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑃𝐶V𝑛 − 𝑃

𝐶
V
𝑛−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩V𝑛 − V

𝑛−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑆𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩) .

(20)

It follows from (13) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩 𝛾𝜆𝑛𝜙 (𝑥𝑛) + (𝐼 − 𝜆

𝑛
𝜇𝐹)𝑇𝑦

𝑛
− 𝛾𝜆
𝑛−1

𝜙 (𝑥
𝑛−1

)

− (𝐼 − 𝜆
𝑛−1

𝜇𝐹)𝑇𝑦
𝑛−1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛾𝜆𝑛 (𝜙 (𝑥𝑛) − 𝜙 (𝑥

𝑛−1
)) + (𝜆

𝑛
− 𝜆
𝑛−1

) 𝛾𝜙 (𝑥
𝑛−1

)

+ (𝐼 − 𝜆
𝑛
𝜇𝐹)𝑇𝑦

𝑛
− (𝐼 − 𝜆

𝑛−1
𝜇𝐹)𝑇𝑦

𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝛾𝜌𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆

𝑛−1

󵄨󵄨󵄨󵄨 𝛾
󵄩󵄩󵄩󵄩𝜙 (𝑥𝑛−1)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝐼 − 𝜆

𝑛
𝜇𝐹)𝑇𝑦

𝑛
− (𝐼 − 𝜆

𝑛
𝜇𝐹)𝑇𝑦

𝑛−1

+ (𝐼 − 𝜆
𝑛
𝜇𝐹)𝑇𝑦

𝑛−1
− (𝐼 − 𝜆

𝑛−1
𝜇𝐹)𝑇𝑦

𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝛾𝜌𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆

𝑛−1

󵄨󵄨󵄨󵄨 𝛾
󵄩󵄩󵄩󵄩𝜙 (𝑥𝑛−1)

󵄩󵄩󵄩󵄩

+ (1 − 𝜆
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆

𝑛−1

󵄨󵄨󵄨󵄨 𝜇
󵄩󵄩󵄩󵄩𝐹𝑇𝑦𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝛾𝜌𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆

𝑛−1

󵄨󵄨󵄨󵄨

× (𝛾
󵄩󵄩󵄩󵄩𝜙 (𝑥𝑛−1)

󵄩󵄩󵄩󵄩 + 𝜇
󵄩󵄩󵄩󵄩𝐹𝑇𝑦𝑛−1

󵄩󵄩󵄩󵄩)

+ (1 − 𝜆
𝑛
𝜏) {

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨

× (
󵄩󵄩󵄩󵄩𝑆𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩)}

≤ [1 − 𝜆
𝑛
(𝜏 − 𝛾𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆

𝑛−1

󵄨󵄨󵄨󵄨 (𝛾
󵄩󵄩󵄩󵄩𝜙 (𝑥𝑛−1)

󵄩󵄩󵄩󵄩 + 𝜇
󵄩󵄩󵄩󵄩𝐹𝑇𝑦𝑛−1

󵄩󵄩󵄩󵄩)

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑆𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩)

= [1 − 𝜆
𝑛
(𝜏 − 𝛾𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

+ (

󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆
𝑛−1

󵄨󵄨󵄨󵄨

𝜆
𝑛

+

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽
𝑛−1

󵄨󵄨󵄨󵄨

𝜆
𝑛

)𝜆
𝑛
𝑀
1

≤ [1 − 𝜆
𝑛
(𝜏 − 𝛾𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

+ (

󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆
𝑛−1

󵄨󵄨󵄨󵄨

𝜆
𝑛

+
𝑘
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨

𝛽
𝑛

)𝜆
𝑛
𝑀
1
,

(21)

where𝑀
1
is a constant such that

sup
𝑛≥0

{(𝛾
󵄩󵄩󵄩󵄩𝜙 (𝑥𝑛)

󵄩󵄩󵄩󵄩 + 𝜇
󵄩󵄩󵄩󵄩𝐹𝑇𝑦𝑛

󵄩󵄩󵄩󵄩) , (
󵄩󵄩󵄩󵄩𝑆𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩)} ≤ 𝑀
1
. (22)

Hence, conditions (C2) and (C3) allow us to apply Lemma 4;
then we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (23)

By (21), we get
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

𝜆
𝑛

≤ [1 − 𝜆
𝑛
(𝜏 − 𝛾𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

𝜆
𝑛

+

󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆
𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨

𝜆
𝑛

𝑀
1

= [1 − 𝜆
𝑛
(𝜏 − 𝛾𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

𝜆
𝑛−1

+ [1 − 𝜆
𝑛
(𝜏 − 𝛾𝜌)] (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

𝜆
𝑛

−

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

𝜆
𝑛−1

)

+

󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆
𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨

𝜆
𝑛

𝑀
1

≤ [1 − 𝜆
𝑛
(𝜏 − 𝛾𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

𝜆
𝑛−1

+ 𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

1

𝜆
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝜆
𝑛

−
1

𝜆
𝑛−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑀
1
𝜆
𝑛

󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆
𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨

𝜆2
𝑛

.

(24)
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Using the conditions (C2) and (C3), we can apply Lemma 4
to conclude that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

𝜆
𝑛

= 0. (25)

By (13), we compute
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇𝑦

𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝛾𝜆𝑛𝜙 (𝑥𝑛) + (𝐼 − 𝜆

𝑛
𝜇𝐹)𝑇𝑦

𝑛
− 𝑇𝑦
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛾𝜆𝑛𝜙 (𝑥𝑛) + 𝑇𝑦

𝑛
− 𝜆
𝑛
𝜇𝐹𝑇𝑦
𝑛
− 𝑇𝑦
𝑛

󵄩󵄩󵄩󵄩

≤ 𝜆
𝑛

󵄩󵄩󵄩󵄩𝛾𝜙 (𝑥𝑛) − 𝜇𝐹𝑇𝑦
𝑛

󵄩󵄩󵄩󵄩 .

(26)

From the condition (C2), we note that lim
𝑛→∞

‖𝑥
𝑛+1

−𝑇𝑦
𝑛
‖ =

0. At the same time, from (13), we also have
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑃𝐶 [𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽

𝑛
) 𝑥
𝑛
] − 𝑃
𝐶
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽

𝑛
) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 .

(27)

By the conditions (C1) and (C2), we note that lim
𝑛→∞

‖𝑦
𝑛
−

𝑥
𝑛
‖ = 0. Consider

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇𝑦

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0.

(28)

From (23), (26), and (27), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0. (29)

We set V
𝑛
= 𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
)𝑥
𝑛
; then we get

󵄩󵄩󵄩󵄩𝑦𝑛 − V
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑃𝐶V𝑛 − V

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩V𝑛 − V

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞.

(30)

From (13), we have
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑇𝑥

𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑇𝑃𝐶 [𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽

𝑛
) 𝑥
𝑛
] − 𝑇𝑃

𝐶
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽

𝑛
) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 .

(31)

By the conditions (C1) and (C2) again, we note that
lim
𝑛→∞

‖𝑇𝑦
𝑛
− 𝑇𝑥
𝑛
‖ = 0. Consider

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑇𝑥

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0.

(32)

From (29), lim
𝑛→∞

‖𝑥
𝑛
−𝑦
𝑛
‖ = 0, and lim

𝑛→∞
‖𝑇𝑦
𝑛
−𝑇𝑥
𝑛
‖ =

0, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (33)

Step 3. We will show that lim sup
𝑛→∞

⟨𝜇𝐹𝑥
∗
− 𝛾𝜙(𝑥

∗
), 𝑥
𝑛
−

𝑥
∗
⟩ ≤ 0. Rewrite (13) as

𝑥
𝑛+1

= 𝛾𝜆
𝑛
𝜙 (𝑥
𝑛
) + (𝐼 − 𝜇𝜆

𝑛
𝐹)𝑇𝑦
𝑛

− V
𝑛
+ 𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
.

(34)

We observe that

𝑥
𝑛
− 𝑥
𝑛+1

= 𝑥
𝑛
− 𝛾𝜆
𝑛
𝜙 (𝑥
𝑛
)

− (𝐼 − 𝜇𝜆
𝑛
𝐹)𝑇𝑦
𝑛
+ V
𝑛
− 𝛽
𝑛
𝑆𝑥
𝑛
− 𝑥
𝑛
+ 𝛽
𝑛
𝑥
𝑛

= 𝜆
𝑛
(𝜇𝐹 − 𝛾𝜙) 𝑥

𝑛

− 𝜆
𝑛
𝜇𝐹𝑥
𝑛
− (𝐼 − 𝜇𝜆

𝑛
𝐹)𝑇𝑦
𝑛
+ (𝐼 − 𝜇𝜆

𝑛
𝐹) 𝑦
𝑛

− (𝐼 − 𝜇𝜆
𝑛
𝐹) 𝑦
𝑛
+ V
𝑛
+ 𝛽
𝑛
(𝐼 − 𝑆) 𝑥

𝑛

= 𝜆
𝑛
(𝜇𝐹 − 𝛾𝜙) 𝑥

𝑛
+ 𝜆
𝑛
𝜇 (𝐹𝑦
𝑛
− 𝐹𝑥
𝑛
) + (𝑦

𝑛
− 𝑇𝑦
𝑛
)

− 𝜇𝜆
𝑛
𝐹 (𝑦
𝑛
− 𝑇𝑦
𝑛
) + (V

𝑛
− 𝑦
𝑛
) + 𝛽
𝑛
(𝐼 − 𝑆) 𝑥

𝑛

= 𝜆
𝑛
(𝜇𝐹 − 𝛾𝜙) 𝑥

𝑛
+ 𝜆
𝑛
𝜇 (𝐹𝑦
𝑛
− 𝐹𝑥
𝑛
) + (𝑦

𝑛
− 𝑇𝑦
𝑛
)

− 𝜇𝜆
𝑛
𝐹 (𝑦
𝑛
− 𝑇𝑦
𝑛
) + 𝜆
𝑛
(𝑦
𝑛
− 𝑇𝑦
𝑛
)

− 𝜆
𝑛
(𝑦
𝑛
− 𝑇𝑦
𝑛
) + (V

𝑛
− 𝑦
𝑛
) + 𝛽
𝑛
(𝐼 − 𝑆) 𝑥

𝑛

= 𝜆
𝑛
(𝜇𝐹 − 𝛾𝜙) 𝑥

𝑛
+ 𝜆
𝑛
𝜇 (𝐹𝑦
𝑛
− 𝐹𝑥
𝑛
)

+ 𝜆
𝑛
(𝐼 − 𝜇𝐹) (𝑦

𝑛
− 𝑇𝑦
𝑛
) + (1 − 𝜆

𝑛
) (𝑦
𝑛
− 𝑇𝑦
𝑛
)

+ (V
𝑛
− 𝑦
𝑛
) + 𝛽
𝑛
(𝐼 − 𝑆) 𝑥

𝑛
.

(35)

Set

𝑧
𝑛
=
𝑥
𝑛
− 𝑥
𝑛+1

𝜆
𝑛

, ∀𝑛 ≥ 0. (36)

We note from (35) that

𝑧
𝑛
= (𝜇𝐹 − 𝛾𝜙) 𝑥

𝑛
+ 𝜇 (𝐹𝑦

𝑛
− 𝐹𝑥
𝑛
) + (𝐼 − 𝜇𝐹) (𝑦

𝑛
− 𝑇𝑦
𝑛
)

+
1 − 𝜆
𝑛

𝜆
𝑛

(𝑦
𝑛
− 𝑇𝑦
𝑛
)

+
1

𝜆
𝑛

(V
𝑛
− 𝑦
𝑛
) +

𝛽
𝑛

𝜆
𝑛

(𝐼 − 𝑆) 𝑥
𝑛
.

(37)

This yields that, for each 𝑥
∗
∈ 𝐹(𝑇),

⟨𝑧
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

= ⟨(𝜇𝐹 − 𝛾𝜙) 𝑥
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩ + 𝜇⟨(𝐹𝑦

𝑛
− 𝐹𝑥
𝑛
) , 𝑥
𝑛
− 𝑥
∗
⟩

+ ⟨(𝐼 − 𝜇𝐹) 𝑦
𝑛
− (𝐼 − 𝜇𝐹)𝑇𝑦

𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

+
1 − 𝜆
𝑛

𝜆
𝑛

⟨𝑦
𝑛
− 𝑇𝑦
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

+
1

𝜆
𝑛

⟨V
𝑛
− 𝑦
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩ +

𝛽
𝑛

𝜆
𝑛

⟨(𝐼 − 𝑆) 𝑥
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩
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= ⟨(𝜇𝐹 − 𝛾𝜙) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

+ ⟨(𝜇𝐹 − 𝛾𝜙) 𝑥
𝑛
− (𝜇𝐹 − 𝛾𝜙) 𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩

+ 𝜇⟨(𝐹𝑦
𝑛
− 𝐹𝑥
𝑛
) , 𝑥
𝑛
− 𝑥
∗
⟩

+ ⟨(𝐼 − 𝜇𝐹) 𝑦
𝑛
− (𝐼 − 𝜇𝐹) 𝑇𝑦

𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

+
1 − 𝜆
𝑛

𝜆
𝑛

⟨𝑦
𝑛
− 𝑇𝑦
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩ +

1

𝜆
𝑛

⟨V
𝑛
− 𝑦
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

+
𝛽
𝑛

𝜆
𝑛

⟨(𝐼 − 𝑆) 𝑥
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩.

(38)

In view of (38), ⟨(𝜇𝐹 − 𝛾𝜙)𝑥
𝑛
− (𝜇𝐹 − 𝛾𝜙)𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩ is

nonnegative due to the monotonicity of 𝜇𝐹 − 𝛾𝜙. From (38),
we derive that

⟨𝑧
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩ ≥ ⟨(𝜇𝐹 − 𝛾𝜙) 𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩

+ 𝜇⟨(𝐹𝑦
𝑛
− 𝐹𝑥
𝑛
) , 𝑥
𝑛
− 𝑥
∗
⟩

+ ⟨(𝐼 − 𝜇𝐹) 𝑦
𝑛
− (𝐼 − 𝜇𝐹)𝑇𝑦

𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

+
1 − 𝜆
𝑛

𝜆
𝑛

⟨𝑦
𝑛
− 𝑇𝑦
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

+
1

𝜆
𝑛

⟨V
𝑛
− 𝑦
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

+
𝛽
𝑛

𝜆
𝑛

⟨(𝐼 − 𝑆) 𝑥
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩.

(39)

Since (29) implies ‖(𝐼−𝜇𝐹)𝑦
𝑛
−(𝐼−𝜇𝐹)𝑇𝑦

𝑛
‖ → 0, as 𝑛 → ∞,

from (25), then we get 𝑧
𝑛
→ 0. Using (C1) and (30), ‖𝑦

𝑛
−

𝑥
𝑛
‖ → 0, as 𝑛 → ∞ and {𝑥

𝑛
} is bounded. We obtain from

(39) that

lim sup
𝑛→∞

⟨(𝜇𝐹 − 𝛾𝜙) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩ ≤ 0, ∀𝑥

∗
∈ 𝐹 (𝑇) . (40)

Since the sequence {𝑥
𝑛
} is bounded, we can take a subse-

quence {𝑥
𝑛𝑗
} of {𝑥

𝑛
} such that

lim sup
𝑛→∞

⟨(𝜇𝐹 − 𝛾𝜙) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

= lim sup
𝑗→∞

⟨(𝜇𝐹 − 𝛾𝜙) 𝑥
∗
, 𝑥
𝑛𝑗
− 𝑥
∗
⟩

(41)

and 𝑥
𝑛𝑗

⇀ 𝑥. From (33), by the demiclosed principle of the
nonexpansive mapping, it follows that 𝑥 ∈ 𝐹(𝑇). Then

lim sup
𝑗→∞

⟨(𝜇𝐹 − 𝛾𝜙) 𝑥
∗
, 𝑥
𝑛𝑗
− 𝑥
∗
⟩

= ⟨(𝜇𝐹 − 𝛾𝜙) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≤ 0.

(42)

Step 4. Finally, we will prove 𝑥
𝑛+1

→ 𝑥
∗. From (13), we note

that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑃𝐶[𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽

𝑛
)𝑥
𝑛
] − 𝑃
𝐶
𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩[𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽

𝑛
)𝑥
𝑛
] − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑆𝑥𝑛 − 𝑆𝑥

∗
) + (1 − 𝛽

𝑛
) (𝑥
𝑛
− 𝑥
∗
)

+𝛽
𝑛
(𝑆𝑥
∗
− 𝑥
∗
)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑆𝑥𝑛 − 𝑆𝑥

∗
) + (1 − 𝛽

𝑛
) (𝑥
𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛
⟨𝑆𝑥
∗
− 𝑥
∗
, 𝑦
𝑛
− 𝑥
∗
⟩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛
⟨𝑆𝑥
∗
− 𝑥
∗
, 𝑦
𝑛
− 𝑥
∗
⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(43)

Using (43), we compute

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛾𝜆𝑛𝜙(𝑥𝑛) + (𝐼 − 𝜆

𝑛
𝜇𝐹)𝑇𝑦

𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛾𝜆𝑛 (𝜙 (𝑥𝑛) − 𝜙 (𝑥

∗
))

+ (𝐼 − 𝜆
𝑛
𝜇𝐹)𝑇𝑦

𝑛
− (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

∗

+ (𝐼 − 𝜆
𝑛
𝜇𝐹) 𝑥

∗
− 𝑥
∗
+ 𝛾𝜆
𝑛
𝜙 (𝑥
∗
)
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛾𝜆𝑛 (𝜙 (𝑥𝑛) − 𝜙 (𝑥

∗
)) + (𝐼 − 𝜆

𝑛
𝜇𝐹) (𝑇𝑦

𝑛
− 𝑥
∗
)

+𝜆
𝑛
(𝛾𝜙 (𝑥

∗
) − 𝜇𝐹𝑥

∗
)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛾𝜆𝑛(𝜙(𝑥𝑛) − 𝜙(𝑥

∗
)) + (𝐼 − 𝜆

𝑛
𝜇𝐹)(𝑇𝑦

𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
⟨𝛾𝜙 (𝑥

∗
) − 𝜇𝐹𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ 𝛾
2
𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝜙(𝑥𝑛) − 𝜙(𝑥
∗
)
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜆
𝑛
𝜏)
2󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
⟨𝛾𝜙 (𝑥

∗
) − 𝜇𝐹𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 2⟨𝛾𝜆
𝑛
(𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

∗
)) , (𝐼 − 𝜇𝜆

𝑛
𝐹) (𝑇𝑦

𝑛
− 𝑥
∗
)⟩

≤ 𝛾
2
𝜌
2
𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 2𝜆
𝑛
𝜏 + 𝜆
2

𝑛
𝜏
2
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
⟨𝛾𝜙 (𝑥

∗
) − 𝜇𝐹𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 2𝛾𝜆
𝑛
⟨𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

∗
) , (𝐼 − 𝜇𝜆

𝑛
𝐹)𝑇𝑦
𝑛
− (𝐼 − 𝜇𝜆

𝑛
𝐹) 𝑥
∗
⟩

= 𝛾
2
𝜌
2
𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 2𝜆
𝑛
𝜏 + 𝜆
2

𝑛
𝜏
2
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
⟨𝛾𝜙 (𝑥

∗
) − 𝜇𝐹𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 2𝛾𝜆
𝑛
⟨𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

∗
) , (𝑇𝑦

𝑛
− 𝑥
∗
) − 𝜇𝜆

𝑛
𝐹 (𝑇𝑦
𝑛
− 𝑥
∗
)⟩
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= 𝛾
2
𝜌
2
𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 2𝜆
𝑛
𝜏 + 𝜆
2

𝑛
𝜏
2
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
⟨𝛾𝜙 (𝑥

∗
) − 𝜇𝐹𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 2𝛾𝜆
𝑛
⟨𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

∗
) , 𝑇𝑦
𝑛
− 𝑥
∗
⟩

− 2𝛾𝜆
𝑛
⟨𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

∗
) , 𝜇𝜆
𝑛
𝐹 (𝑇𝑦
𝑛
− 𝑥
∗
)⟩

≤ 𝛾
2
𝜌
2
𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 2𝜆
𝑛
𝜏 + 𝜆
2

𝑛
𝜏
2
)

× {
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩}

+ 2𝜆
𝑛
⟨𝛾𝜙 (𝑥

∗
) − 𝜇𝐹𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 2𝛾𝜌𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

− 2𝛾𝜌𝜇𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹 (𝑇𝑦
𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩

≤ [1 − 𝜆
𝑛
(2𝜏 − 𝜆

𝑛
𝜏
2
− 𝜆
𝑛
𝛾
2
𝜌
2
)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
𝜆
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 2𝜆
𝑛
⟨𝛾𝜙 (𝑥

∗
) − 𝜇𝐹𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 2𝛾𝜌𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

− 2𝛾𝜌𝜇𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹 (𝑇𝑦
𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩 .

(44)

Since {𝑥
𝑛
}, {𝑇𝑦
𝑛
}, and {𝐹𝑇𝑦

𝑛
} are all bounded, we can choose

a constant𝑀
2
> 0 such that

sup
𝑛≥0

1

2𝜏 − 𝜆
𝑛
𝜏2 − 𝜆

𝑛
𝛾2𝜌2

× {2𝛾𝜌𝜇
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑦

𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩} ≤ 𝑀

2
.

(45)

It follows that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ [1 − 𝜆
𝑛
(2𝜏 − 𝜆

𝑛
𝜏
2
− 𝜆
𝑛
𝛾
2
𝜌
2
)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝜆
𝑛
(2𝜏 − 𝜆

𝑛
𝜏
2
− 𝜆
𝑛
𝛾
2
𝜌
2
) 𝛿
𝑛
,

(46)

where

𝛿
𝑛
=

2𝜀
𝑛

2𝜏 − 𝜆
𝑛
𝜏2 − 𝜆

𝑛
𝛾2𝜌2

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+
2

2𝜏 − 𝜆
𝑛
𝜏2 − 𝜆

𝑛
𝛾2𝜌2

⟨𝛾𝜙 (𝑥
∗
) − 𝜇𝐹𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+
2

2𝜏 − 𝜆
𝑛
𝜏2 − 𝜆

𝑛
𝛾2𝜌2

𝛾𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

− 𝜆
𝑛
𝑀
2
.

(47)

Now, applying Lemma 4 and (35), we conclude that 𝑥
𝑛

→

𝑥
∗. This completes the proof.

Corollary 6. Let 𝐶 be a nonempty closed and convex subset
of a real Hilbert space 𝐻. Let 𝐹 : 𝐶 → 𝐶 be 𝜅-Lipschitzian

and 𝜂-strongly monotone operators with constant 𝜅 and 𝜂 > 0,
respectively. Let 𝑇 : 𝐶 → 𝐶 be a nonexpansive mapping with
𝐹(𝑇) ̸= 0, and let 𝑆 : 𝐻 → 𝐻 be a nonexpansive mapping. Let
0 < 𝜇 < 2𝜂/𝜅

2 and 0 < 𝛾 < 𝜏, where 𝜏 = 1−√1 − 𝜇(2𝜂 − 𝜇𝜅2).
Suppose {𝑥

𝑛
} is a sequence generated by the following algorithm

𝑥
0
∈ 𝐶 arbitrarily:

𝑥
𝑛+1

= (𝐼 − 𝜆
𝑛
𝜇𝐹)𝑇𝑃

𝐶
[𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
] , ∀𝑛 ≥ 0,

(48)

where {𝛽
𝑛
}, {𝜆
𝑛
} ⊂ (0, 1) satisfy the following conditions (C1)–

(C3). Then {𝑥
𝑛
} converges strongly to 𝑥

∗
∈ Ω, which is the

unique solution of variational inequality:

⟨(𝐼 − 𝜇𝐹) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω, (49)

whereΩ := 𝑉𝐼(𝐹(𝑇), 𝑆) ̸= 0.

Proof. Putting 𝜙 ≡ 0 inTheorem 5, we can obtain the desired
conclusion immediately.

Corollary 7. Let 𝐶 be a nonempty closed and convex subset of
a real Hilbert space𝐻. Let𝜙 : 𝐻 → 𝐻 be a 𝜌-contraction with
coefficient 𝜌 ∈ [0, 1), and let 𝑇 : 𝐶 → 𝐶 be a nonexpansive
mapping with 𝐹(𝑇) ̸= 0 and 𝑆 : 𝐻 → 𝐻 a nonexpansive
mapping. Suppose {𝑥

𝑛
} is a sequence generated by the following

algorithm, 𝑥
0
∈ 𝐶, arbitrarily:

𝑦
𝑛
= 𝑃
𝐶
[𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
] ,

𝑥
𝑛+1

= 𝜆
𝑛
𝜙 (𝑥
𝑛
) + (1 − 𝜆

𝑛
) 𝑇𝑦
𝑛
, ∀𝑛 ≥ 0,

(50)

where {𝛽
𝑛
}, {𝜆
𝑛
} ⊂ (0, 1) satisfy the following conditions (C1)–

(C3). Then {𝑥
𝑛
} converges strongly to 𝑥

∗
∈ Ω, which is the

unique solution of variational inequality:

⟨(𝐼 − 𝜙) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω, (51)

whereΩ := 𝑉𝐼(𝐹(𝑇), 𝑆) ̸= 0.

Proof. Putting 𝛾 = 1, 𝜇 = 2, and 𝐹 ≡ 𝐼/2 in Theorem 5, we
can obtain the desired conclusion immediately.

Corollary 8. Let 𝐶 be a nonempty closed and convex subset
of a real Hilbert space 𝐻. Let 𝑇 : 𝐶 → 𝐶 be a nonexpansive
mapping with 𝐹(𝑇) ̸= 0 and let 𝑆 : 𝐻 → 𝐻 be a nonexpansive
mapping. Suppose {𝑥

𝑛
} is a sequence generated by the following

algorithm, 𝑥
0
∈ 𝐶, arbitrarily:

𝑥
𝑛+1

= (1 − 𝜆
𝑛
) 𝑇𝑃
𝐶
[𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
] , ∀𝑛 ≥ 0, (52)

where {𝛽
𝑛
}, {𝜆
𝑛
} ⊂ (0, 1) satisfy the following conditions (C1)–

(C3). Then {𝑥
𝑛
} converges strongly to 𝑥∗ ∈ 𝐹(𝑇), which is the

unique solution of variational inequality:

⟨(𝐼 − 𝑆) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇) . (53)

Proof. Putting 𝜙 ≡ 0 in Corollary 7, we can obtain the desired
conclusion immediately.
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Corollary 9. Let 𝐶 be a nonempty closed and convex subset of
a real Hilbert space𝐻. Let 𝜙 : 𝐻 → 𝐻 be a 𝜌-contractionwith
coefficient 𝜌 ∈ [0, 1), and let 𝑇 : 𝐶 → 𝐶 be a nonexpansive
mapping with 𝐹(𝑇) ̸= 0 and 𝑆 : 𝐶 → 𝐶 a nonexpansive
mapping. Suppose {𝑥

𝑛
} is a sequence generated by the following

algorithm, 𝑥
0
∈ 𝐶, arbitrarily:

𝑥
𝑛+1

= 𝜆
𝑛
𝑥
𝑛
+ (1 − 𝜆

𝑛
) 𝑇 [𝛽

𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
] ,

∀𝑛 ≥ 0,

(54)

where {𝛽
𝑛
}, {𝜆
𝑛
} ⊂ (0, 1) satisfy the following conditions (C1)–

(C3). Then {𝑥
𝑛
} converges strongly to 𝑥∗ ∈ 𝐹(𝑇), which is the

unique solution of variational inequality:

⟨(𝐼 − 𝑆) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇) . (55)

Proof. Putting 𝑃
𝐶

≡ 𝐼 in Corollary 7, we can obtain the
desired conclusion immediately.
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