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In the recent paper (B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for 𝛼-𝜓-contractive type mappings, Nonlinear Analysis.
Theory, Methods and Applications, 75 (2012), 2154-2165.), the authors introduced the concept of 𝛼-admissible maps on metric
spaces. Using this new concept, they presented some nice fixed point results. Also, they gave an existence theorem for integral
equation to show the usability of their result. Then, many authors focused on this new concept and obtained a lot of fixed point
results, which are used for existence theorems. In this paper, we not only extend some of the recent results about this direction but
also generalize them. Then, we give some examples to show our results are proper extensions. Furthermore, we use our results to
obtain the existence and uniqueness result for a solution of fourth order two-point boundary value problem.

1. Introduction and Preliminaries

Fixed point theory contains many different fields of mathe-
matics, such as nonlinear functional analysis, mathematical
analysis, operator theory, and general topology. Historically,
the study of fixed point theory has developed in two major
branches: the first is fixed point theory for contraction or
contraction type mappings on complete metric spaces and
the second is fixed point theory for continuous operators on
compact and convex subsets of a normed space. Recently,
there has been a lot of activities in the first branch and several
fundamental fixed point results have been extended and
generalized by many authors in different directions. In this
paper, we mention some important of them and give some
new fixed point results. Also, we support our results by giving
a lot of nontrivial examples. First, we give some notations,
whichwill be used in this paper. Let𝜓 : [0,∞) → [0,∞) be a
function. For convenience, we consider the following proper-
ties of this function:

(𝜓
1
) 𝜓 is nondecreasing,

(𝜓
2
) lim
𝑛→∞

𝜓
𝑛
(𝑡) = 0 for all 𝑡 ≥ 0,

(𝜓
3
) 𝜓(𝑡) < 𝑡 for 𝑡 > 0,

(𝜓
4
) 𝜓(0) = 0,

(𝜓
5
) 𝜓 is continuous,

(𝜓
6
) 𝜓 is upper semicontinuous from the right,

(𝜓
7
) ∑
∞

𝑛=1
𝜓
𝑛
(𝑡) < ∞ for any 𝑡 > 0.

In the light of the above properties, the following hold: if
𝜓
1
and 𝜓

2
satisfied, then 𝜓

3
holds. If 𝜓

1
and 𝜓

3
are satisfied,

then 𝜓
4
holds. If 𝜓

3
and 𝜓

5
are satisfied, then 𝜓

2
and 𝜓

4
hold.

Denoted by Ψ the family of functions 𝜓 : [0,∞) →

[0,∞) satisfying 𝜓
1
and 𝜓

2
, which is called comparison

functions in the literature (see [1]), by Φ the family of
functions𝜓 : [0,∞) → [0,∞) satisfying𝜓

1
and𝜓

7
, which is

called (𝑐)-comparison functions in the literature (see [1]), and
by Υ the family of functions 𝜓 : [0,∞) → [0,∞) satisfying
𝜓
3
and𝜓

6
. Now, we give some examples showing the relations

between the sets Φ,Ψ, and Υ. First, it is clear thatΦ ⊂ Ψ.

Example 1. Let𝜓 : [0,∞) → [0,∞) be defined by𝜓(𝑡) = 𝜆𝑡,
where 𝜆 ∈ [0, 1), and then 𝜓 ∈ Φ ∩ Υ.

Example 2. Let 𝜓 : [0,∞) → [0,∞) be defined by 𝜓(𝑡) =

𝑡/(1 + 𝑡), and then 𝜓 ∈ Ψ ∩ Υ, but 𝜓 ∉ Φ.
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Example 3. Let 𝜓 : [0,∞) → [0,∞) be defined by

𝜓 (𝑡) =

{
{
{

{
{
{

{

𝑡

3

, 0 ≤ 𝑡 ≤

2

3

𝑡

2

−

1

18

, 𝑡 >

2

3

,

(1)

and then 𝜓 ∈ Φ, but 𝜓 ∉ Υ.

Example 4. Let 𝜓 : [0,∞) → [0,∞) be defined by

𝜓 (𝑡) =

{
{
{

{
{
{

{

𝑡

1 + 𝑡

, 0 ≤ 𝑡 ≤ 1

2𝑡

3

, 𝑡 > 1,

(2)

and then 𝜓 ∈ Ψ, but 𝜓 ∉ Φ ∪ Υ.

Example 5. Let 𝜓 : [0,∞) → [0,∞) be defined by

𝜓 (𝑡) =

{
{
{

{
{
{

{

𝑡

1 + 𝑡

, 0 ≤ 𝑡 ≤ 1

1

2𝑡

, 𝑡 > 1,

(3)

and then 𝜓 ∈ Υ, but 𝜓 ∉ Ψ.

In their recent paper, Samet et al. [2] introduced the
notions of 𝛼-admissible and 𝛼-𝜓-contractive mappings and
then gave some fixed point results for such mappings. Their
results are closely related to some ordered fixed point results.
Then, using their idea, some authors presented fixed point
results for single and multivalued mappings (see, e.g., [2–6]).

Definition 6 (see [2]). Let (𝑋, 𝑑) be a metric space, let 𝑇 be
a self-map on 𝑋, 𝜓 ∈ Φ, and let 𝛼 : 𝑋 × 𝑋 → [0,∞) be a
function. Then 𝑇 is called 𝛼-𝜓-contractive whenever

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) (4)

for all 𝑥, 𝑦 ∈ 𝑋.

Note that every Banach contraction mapping is an 𝛼-𝜓-
contractive mapping with 𝛼(𝑥, 𝑦) = 1 and 𝜓(𝑡) = 𝜆𝑡 for some
𝜆 ∈ [0, 1).

Definition 7 (see [2]). 𝑇 is called 𝛼-admissible whenever
𝛼(𝑥, 𝑦) ≥ 1 implies 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1.

There exist some examples for 𝛼-admissible mappings in
[2]. For convenience, we mention here one of them. Let 𝑋 =

[0,∞). Define 𝑇 : 𝑋 → 𝑋 and 𝛼 : 𝑋 × 𝑋 → [0,∞) by
𝑇𝑥 = √𝑥 for all 𝑥 ∈ 𝑋 and 𝛼(𝑥, 𝑦) = 𝑒

𝑥−𝑦 for 𝑥 ≥ 𝑦 and
𝛼(𝑥, 𝑦) = 0 for 𝑥 < 𝑦. Then 𝑇 is 𝛼-admissible.

Theorem 8 (see [2]). Let (𝑋, 𝑑) be a complete metric space
and let 𝑇 : 𝑋 → 𝑋 be an 𝛼-admissible and 𝛼-𝜓-contractive
mapping. If there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and

𝑇 is continuous, then 𝑇 has a fixed point.

Thefollowingtheoremsare a generalization ofTheorem 8.

Theorem9 (see [3]). Let (𝑋, 𝑑) be a completemetric space and
let 𝑇 : 𝑋 → 𝑋 be an 𝛼-admissible mapping satisfying

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) (5)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Φ and

𝑀(𝑥, 𝑦)

= max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} .

(6)

If there exists 𝑥
0

∈ 𝑋 such that 𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1 and 𝑇 is

continuous, then 𝑇 has a fixed point.

Theorem 10 (see [4]). Let (𝑋, 𝑑) be a complete metric space
and let 𝑇 : 𝑋 → 𝑋 be an 𝛼-admissible mapping satisfying.
Assume that

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜓 (𝑚 (𝑥, 𝑦)) ,

(7)

where 𝜓 ∈ Φ and

𝑚(𝑥, 𝑦)

= max{𝑑 (𝑥, 𝑦) ,

𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} .

(8)

If there exists 𝑥
0

∈ 𝑋 such that 𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1 and 𝑇 is

continuous or 𝑋 is regular, then 𝑇 has a fixed point.

For the sake of brevity, we will say that 𝑋 is regular
whenever, for any sequence {𝑥

𝑛
} in𝑋with 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1 for
all 𝑛 ∈ N ∪ {0} and 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞, we have 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛 ∈ N ∪ {0}.
The aim of this paper is to extend and generalize the

above results. Note that, in these theorems, the function 𝜓

belongs to the class Φ; that is, 𝜓 is (𝑐)-comparison function.
Also, in Theorem 10, the contractive condition is used with
𝑚(𝑥, 𝑦). In this paper, we give three existence results. In the
first result, the contractive condition (7) will be generalized
to almost contraction case. Here we take 𝜓 ∈ Φ, but we use
𝑀(𝑥, 𝑦) instead of𝑚(𝑥, 𝑦). In the second result, we take 𝜓 in
Ψ, which is a wider class ofΦ. And in the third result, we take
𝜓 in Υ, which is a different class of Φ. Also, we present some
uniqueness theorems and some supporting examples.

2. Existence Results

Our first result is almost contraction version of fixed points
of 𝛼-admissible mapping. We can find detailed information
about almost contractions in [7–12].
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Theorem 11. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be an 𝛼-admissible mapping. Assume that

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦))

+ 𝐿min {𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑦)}

(9)

holds for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Φ, 𝐿 ≥ 0, and 𝑀(𝑥, 𝑦) as in
Theorem 9. Also, suppose 𝑇 is continuous or 𝑋 is regular and
there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1. Then 𝑇 has a

fixed point.

Proof. Let𝑥
0
∈ 𝑋 such that𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1. Define a sequence

{𝑥
𝑛
} in𝑋 by

𝑥
𝑛
= 𝑇
𝑛
𝑥
0
= 𝑇𝑥
𝑛−1 (10)

for all 𝑛 ∈ N. If 𝑥
𝑛

= 𝑥
𝑛+1

for some 𝑛 ∈ N, then 𝑥
𝑛
is a

fixed point for 𝑇 and result is proved. So, we suppose that
𝑥
𝑛

̸= 𝑥
𝑛+1

for all 𝑛 ∈ N. Since 𝑇 is 𝛼-admissible mapping
and 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1, we deduce that 𝛼(𝑥

1
, 𝑥
2
) = 𝛼(𝑇𝑥

0
, 𝑇
2
𝑥
0
).

Continuing this process, we get 𝛼(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 for all 𝑛 ∈

N ∪ {0}. Now by (9) with 𝑥 = 𝑥
𝑛
, 𝑦 = 𝑥

𝑛+1
, we get

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) = 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)

≤ 𝜓 (𝑀(𝑥
𝑛
, 𝑥
𝑛+1

))

+ 𝐿min {𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛+1

)}

= 𝜓 (𝑀(𝑥
𝑛
, 𝑥
𝑛+1

))

+ 𝐿min {𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛+1

)}

= 𝜓 (𝑀(𝑥
𝑛
, 𝑥
𝑛+1

)) ,

(11)

where

𝑀(𝑥
𝑛
, 𝑥
𝑛+1

)

= max{𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛+1
, 𝑇𝑥
𝑛+1

) ,

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛
)

2

}

= max{𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) ,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

)

2

}

= max {𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)} .

(12)

If 𝑑(𝑥
𝑛+1

, 𝑥
𝑛+2

) ≥ 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) for some 𝑛 ∈ N∪ {0}, then from
(11), we have

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) ≤ 𝜓 (𝑀 (𝑥
𝑛
, 𝑥
𝑛+1

))

= 𝜓 (max {𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)})

= 𝜓 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

))

< 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) ,

(13)

which is a contradiction.Thus 𝑑(𝑥
𝑛+1

, 𝑥
𝑛+2

) < 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) for
all 𝑛 ∈ N ∪ {0} and so from (11), we have

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) ≤ 𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) . (14)

By induction, we have

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) ≤ 𝜓
𝑛+1

(𝑑 (𝑥
0
, 𝑥
1
)) (15)

for all 𝑛 ∈ N ∪ {0}. Now, for each𝑚, 𝑛 ∈ N,𝑚 > 𝑛, we have

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) ≤

𝑚−1

∑

𝑘=𝑛

𝑑 (𝑥
𝑘
, 𝑥
𝑘+1

) ≤

𝑚−1

∑

𝑘=𝑛

𝜓
𝑘
(𝑑 (𝑥
0
, 𝑥
1
)) . (16)

Therefore, {𝑥
𝑛
} is a Cauchy sequence in 𝑋. Since 𝑋 is

complete, there exists 𝑧 ∈ 𝑋 such that lim
𝑛→∞

𝑥
𝑛
= 𝑧. If 𝑇 is

continuous, then we have

𝑇𝑧 = lim
𝑛→∞

𝑇𝑥
𝑛
= lim
𝑛→∞

𝑥
𝑛+1

= 𝑧. (17)

So, 𝑧 is a fixed point of 𝑇. Now, suppose𝑋 is regular. Since

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 (18)

for all 𝑛 ∈ N ∪ {0} and 𝑥
𝑛

→ 𝑧 as 𝑛 → ∞, then we have

𝛼 (𝑥
𝑛
, 𝑧) ≥ 1 (19)

for all 𝑛 ∈ N ∪ {0}. From (9) we have

𝑑 (𝑥
𝑛+1

, 𝑇𝑧) = 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑧)

≤ 𝜓 (𝑀(𝑥
𝑛
, 𝑧))

+ 𝐿min {𝑑 (𝑧, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑧)}

= 𝜓 (𝑀(𝑥
𝑛
, 𝑧))

+ 𝐿min {𝑑 (𝑧, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛
, 𝑇𝑧)} ,

(20)

where

𝑀(𝑥
𝑛
, 𝑧) = max {𝑑 (𝑥

𝑛
, 𝑧) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑧, 𝑇𝑧) ,

1

2

[𝑑 (𝑥
𝑛
, 𝑇𝑧) + 𝑑 (𝑧, 𝑇𝑥

𝑛
)]}

= max {𝑑 (𝑥
𝑛
, 𝑧) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑧, 𝑇𝑧) ,

1

2

[𝑑 (𝑥
𝑛
, 𝑇𝑧) + 𝑑 (𝑧, 𝑥

𝑛+1
)]}

≤ max {𝑑 (𝑥
𝑛
, 𝑧) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑧, 𝑇𝑧) ,

1

2

[𝑑 (𝑥
𝑛
, 𝑧) + 𝑑 (𝑧, 𝑇𝑧) + 𝑑 (𝑧, 𝑥

𝑛+1
)]} .

(21)

Now, suppose 𝑑(𝑧, 𝑇𝑧) > 0. Taking into account (15) and
lim
𝑛→∞

𝑥
𝑛

= 𝑧, there exists 𝑛
0

∈ N such that 𝑑(𝑥
𝑛
, 𝑧) <
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𝑑(𝑧, 𝑇𝑧)/2 and 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) < 𝑑(𝑧, 𝑇𝑧)/2 for all 𝑛 ≥ 𝑛
0
.

Therefore we have

𝑀(𝑥
𝑛
, 𝑧) ≤ max {𝑑 (𝑥

𝑛
, 𝑧) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑧, 𝑇𝑧) ,

1

2

[𝑑 (𝑥
𝑛
, 𝑧) + 𝑑 (𝑧, 𝑇𝑧) + 𝑑 (𝑧, 𝑥

𝑛+1
)]}

≤ 𝑑 (𝑧, 𝑇𝑧)

(22)

for all 𝑛 ≥ 𝑛
0
. Now, from (20), we obtain

𝑑 (𝑥
𝑛+1

, 𝑇𝑧) ≤ 𝜓 (𝑑 (𝑧, 𝑇𝑧))

+ 𝐿min {𝑑 (𝑧, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛
, 𝑇𝑧)}

(23)

for all 𝑛 ≥ 𝑛
0
. Letting 𝑛 → ∞ in the last equality, we get that

𝑑 (𝑧, 𝑇𝑧) ≤ 𝜓 (𝑑 (𝑧, 𝑇𝑧)) < 𝑑 (𝑧, 𝑇𝑧) , (24)

which is a contradiction.Therefore 𝑑(𝑧, 𝑇𝑧) = 0 and so 𝑇 has
a fixed point.

Remark 12. In Theorem 11, if we take 𝐿 = 0, then we obtain
an extension of Theorem 10. Even if 𝐿 = 0, we can extend
Theorem 10 by taking the function 𝜓 from Ψ and taking
𝑀(𝑥, 𝑦) instead of𝑚(𝑥, 𝑦) as follows.

Theorem 13. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be an 𝛼-admissible mapping. Assume that

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) (25)

holds for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Ψ and 𝑀(𝑥, 𝑦) as in
Theorem 11. Also, suppose 𝑇 is continuous or 𝑋 is regular and
there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1. Then 𝑇 has a

fixed point.

Proof. Let 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1. As in the proof of

Theorem 11, we can construct a sequence {𝑥
𝑛
} in𝑋 andwe can

obtain (15) if the consecutive terms are different (otherwise,
𝑇 has a fixed point). Now we show that {𝑥

𝑛
} is a Cauchy

sequence. Let 𝜀 > 0. Taking into account (15), there exists
𝑛
0
∈ N, such that 𝑑(𝑥

𝑛0
, 𝑥
𝑛0+1

) < 𝜀 − 𝜓(𝜀). Therefore we have

𝑀(𝑥
𝑛0
, 𝑥
𝑛0+1

) = max {𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

) , 𝑑 (𝑥
𝑛0
, 𝑇𝑥
𝑛0
) ,

𝑑 (𝑥
𝑛0+1

, 𝑇𝑥
𝑛0+1

) ,

1

2

[𝑑 (𝑥
𝑛0
, 𝑇𝑥
𝑛0+1

)

+𝑑 (𝑥
𝑛0+1

, 𝑇𝑥
𝑛0
)]}

= max {𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

) , 𝑑 (𝑥
𝑛0+1

, 𝑥
𝑛0+2

)}

< max {𝜀 − 𝜓 (𝜀) , 𝜓 (𝜀 − 𝜓 (𝜀))}

= 𝜀 − 𝜓 (𝜀)

(26)

and so from (25)

𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+2

) ≤ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

) + 𝑑 (𝑥
𝑛0+1

, 𝑥
𝑛0+2

)

< 𝜀 − 𝜓 (𝜀) + 𝑑 (𝑇𝑥
𝑛0
, 𝑇𝑥
𝑛0+1

)

≤ 𝜀 − 𝜓 (𝜀) + 𝜓 (𝑀(𝑥
𝑛0
, 𝑥
𝑛0+1

))

≤ 𝜀 − 𝜓 (𝜀) + 𝜓 (𝜀 − 𝜓 (𝜀))

≤ 𝜀 − 𝜓 (𝜀) + 𝜓 (𝜀) = 𝜀.

(27)

Again using (25) we have

𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+3

) ≤ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

) + 𝑑 (𝑥
𝑛0+1

, 𝑥
𝑛0+3

)

< 𝜀 − 𝜓 (𝜀) + 𝑑 (𝑇𝑥
𝑛0
, 𝑇𝑥
𝑛0+2

)

≤ 𝜀 − 𝜓 (𝜀) + 𝜓 (𝑀(𝑥
𝑛0
, 𝑥
𝑛0+2

)) ,

(28)

where

𝑀(𝑥
𝑛0
, 𝑥
𝑛0+2

) = max {𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+2

) , 𝑑 (𝑥
𝑛0
, 𝑇𝑥
𝑛0
) ,

𝑑 (𝑥
𝑛0+2

, 𝑇𝑥
𝑛0+2

) ,

1

2

[𝑑 (𝑥
𝑛0
, 𝑇𝑥
𝑛0+2

)

+ 𝑑 (𝑥
𝑛0+2

, 𝑇𝑥
𝑛0
)]}

= max {𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+2

) , 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

) ,

𝑑 (𝑥
𝑛0+2

, 𝑥
𝑛0+3

) ,

1

2

[𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+3

)

+ 𝑑 (𝑥
𝑛0+2

, 𝑥
𝑛0+1

)]}

≤ max {𝜀, 𝜀 − 𝜓 (𝜀) , 𝜓
2
(𝜀 − 𝜓 (𝜀)) ,

1

2

[𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+3

)

+ 𝜓 (𝜀 − 𝜓 (𝜀))]}

≤ max {𝜀, 1
2

[𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+3

) + 𝜓 (𝜀)]} .

(29)

If 𝜀 ≤ (1/2)[𝑑(𝑥
𝑛0
, 𝑥
𝑛0+3

) + 𝜓(𝜀)], then, from (28), we have

𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+3

) < 𝜀 − 𝜓 (𝜀) + 𝜓(

1

2

[𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+3

) + 𝜓 (𝜀)])

< 𝜀 − 𝜓 (𝜀) +

1

2

[𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+3

) + 𝜓 (𝜀)]

(30)
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and so

1

2

𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+3

) < 𝜀 −

𝜓 (𝜀)

2

. (31)

Therefore, we have

1

2

[𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+3

) + 𝜓 (𝜀)] < 𝜀, (32)

which is a contradiction.Thus, 𝜀 > (1/2)[𝑑(𝑥
𝑛0
, 𝑥
𝑛0+3

)+𝜓(𝜀)]

and so, from (28), we have

𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+3

) < 𝜀. (33)

By continuing this way, we can obtain

𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+𝑘

) < 𝜀 (34)

for all 𝑘 ∈ N. Now let𝑚, 𝑛 ∈ N with𝑚 > 𝑛 ≥ 𝑛
0
, and then

𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑚
, 𝑥
𝑛0
) + 𝑑 (𝑥

𝑛0
, 𝑥
𝑛
) < 2𝜀; (35)

that is, {𝑥
𝑛
} is a Cauchy sequence in 𝑋. The rest of the proof

can be made as in the proof of Theorem 11.

In the following theorem we take the function 𝜓 from Υ

instead of Ψ.

Theorem 14. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be an 𝛼-admissible mapping. Assume that

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) (36)

holds for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Υ, and 𝑀(𝑥, 𝑦) as in
Theorem 11. Also, suppose 𝑇 is continuous or 𝑋 is regular and
there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1. Then 𝑇 has a

fixed point.

Proof. Let 𝑥
0

∈ 𝑋 such that 𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1. As in

the proof of Theorem 11, we can construct a sequence
{𝑥
𝑛
} in 𝑋 and we may assume that 𝑥

𝑛
̸= 𝑥
𝑛+1

for all 𝑛 ∈ N. For the sake of brevity we put
𝑑
𝑛

= 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

). Since 𝑇 is an 𝛼-admissible mapping,
we can obtain as in the proof of Theorem 11 that

𝑑
𝑛+1

= 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)

= 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)

≤ 𝜓 (𝑀(𝑥
𝑛
, 𝑥
𝑛+1

))

= 𝜓 (max {𝑑
𝑛
, 𝑑
𝑛+1

}) .

(37)

Therefore, it should be 𝑑
𝑛+1

< 𝑑
𝑛
for all integer 𝑛 ≥ 0 and so,

from (37), we have

𝑑
𝑛+1

≤ 𝜓 (𝑑
𝑛
) < 𝑑
𝑛
. (38)

Consequently, the sequence {𝑑
𝑛
} of positive numbers is

decreasing and bounded below. So, there exists 𝜆 ≥ 0 such
that lim

𝑛→∞
𝑑
𝑛

= 𝜆. We claim that 𝜆 = 0. Suppose to the

contrary that 𝜆 > 0. Using the fact that 𝜓 is upper semi-
continuous from the right function, we get from (38)

𝜆 = lim sup
𝑛→∞

𝑑
𝑛+1

≤ lim sup
𝑛→∞

𝜓 (𝑑
𝑛
) ≤ 𝜓 (𝜆) < 𝜆, (39)

which is a contradiction. Hence, we conclude that 𝜆 = 0; that
is,

lim
𝑛→∞

𝑑
𝑛
= lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (40)

Now, we prove that the sequence {𝑥
𝑛
} is Cauchy in 𝑋.

Suppose, to the contrary, there exists 𝜀 > 0 such that

𝑑 (𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
) ≥ 𝜀, (41)

where {𝑥
𝑚𝑘

} and {𝑥
𝑛𝑘
} are subsequences of {𝑥

𝑛
} with 𝑚

𝑘
>

𝑛
𝑘
≥ 𝑘 for all 𝑘 ∈ N. Moreover, 𝑚

𝑘
is chosen as the smallest

integer satisfying (41). Thus, we have

𝑑 (𝑥
𝑚𝑘−1

, 𝑥
𝑛𝑘
) < 𝜀. (42)

By the triangle inequality, we get

𝜀 ≤ 𝑑 (𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
)

≤ 𝑑 (𝑥
𝑚𝑘

, 𝑥
𝑚𝑘−1

) + 𝑑 (𝑥
𝑚𝑘−1

, 𝑥
𝑛𝑘
) < 𝑑
𝑚𝑘

+ 𝜀.

(43)

Letting 𝑘 → ∞ in above inequality and using (40), we get
that

lim
𝑘→∞

𝑑 (𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
) = 𝜀. (44)

Now let 𝑘
0
∈ N be such that 𝑑

𝑛𝑘
< 𝜀 and 𝑑

𝑚𝑘
< 𝜀 for all 𝑘 ≥ 𝑘

0
.

Then

𝑑 (𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
) ≤ 𝑀(𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
)

≤ 𝑑 (𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
) +

1

2

(𝑑
𝑛𝑘

+ 𝑑
𝑚𝑘

)

(45)

for all 𝑘 ≥ 𝑘
0
. Using (40) and (44) and letting 𝑘 → ∞ in

(45), we get

lim
𝑘→∞

𝑀(𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
) = 𝜀. (46)

Since 𝑀(𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
) ≥ 𝜀 for all 𝑘 ∈ N and 𝜓 is upper

semicontinuous from the right function, we deduce that

lim sup
𝑛→∞

𝜓 (𝑀(𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
)) ≤ 𝜓 (𝜀) . (47)

On the other hand, for each 𝑘 ∈ N, we have

𝜀 ≤ 𝑑 (𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
)

≤ 𝑑 (𝑥
𝑚𝑘

, 𝑥
𝑚𝑘+1

) + 𝑑 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘+1

)

+ 𝑑 (𝑥
𝑛𝑘+1

, 𝑥
𝑛𝑘
)

= 𝑑
𝑚𝑘

+ 𝑑 (𝑇𝑥
𝑚𝑘

, 𝑇𝑥
𝑛𝑘
) + 𝑑
𝑛𝑘

≤ 𝑑
𝑚𝑘

+ 𝜓 (𝑀(𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
)) + 𝑑

𝑛𝑘
,

(48)



6 Abstract and Applied Analysis

so

𝜀 ≤ lim sup
𝑛→∞

𝜓 (𝑀(𝑥
𝑚𝑘

, 𝑥
𝑛𝑘
)) ≤ 𝜓 (𝜀) < 𝜀, (49)

which is a contradiction.Thus {𝑥
𝑛
} is a Cauchy sequence in𝑋.

Since𝑋 is complete, there exists 𝑧 ∈ 𝑋 such that lim
𝑛→∞

𝑥
𝑛
=

𝑧. If 𝑇 is continuous, then we have

𝑇𝑧 = lim
𝑛→∞

𝑇𝑥
𝑛
= lim
𝑛→∞

𝑥
𝑛+1

= 𝑧. (50)

So 𝑧 is a fixed point of 𝑇. Now, suppose 𝑋 is regular and
𝑑(𝑧, 𝑇𝑧) > 0. We first note that

𝑑 (𝑧, 𝑇𝑧) ≤ 𝑀(𝑥
𝑛
, 𝑧) ,

lim
𝑛→∞

𝑀(𝑥
𝑛
, 𝑧) = 𝑑 (𝑧, 𝑇𝑧) ;

(51)

hence by the upper semicontinuity of 𝜓, we get

lim sup
𝑛→∞

𝜓 (𝑀(𝑥
𝑛
, 𝑧)) ≤ 𝜓 (𝑑 (𝑧, 𝑇𝑧)) . (52)

On the other hand, since𝑋 is regular,

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 (53)

for all integer 𝑛 ≥ 0 and 𝑥
𝑛

→ 𝑧 as 𝑛 → ∞, then we have

𝛼 (𝑥
𝑛
, 𝑧) ≥ 1 (54)

for all integer 𝑛 ≥ 0. Thus, from (36), we have

𝑑 (𝑥
𝑛+1

, 𝑇𝑧) = 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑧) ≤ 𝜓 (𝑀(𝑥

𝑛
, 𝑧)) , (55)

and taking limit supremum, we get

𝑑 (𝑧, 𝑇𝑧) ≤ lim sup
𝑛→∞

𝜓 (𝑀(𝑥
𝑛−1

, 𝑧))

≤ 𝜓 (𝑑 (𝑧, 𝑇𝑧))

< 𝑑 (𝑧, 𝑇𝑧) ,

(56)

which is a contradiction.Therefore 𝑑(𝑧, 𝑇𝑧) = 0 and so 𝑇 has
a fixed point.

3. Uniqueness Results

In this section, we consider some properties to obtain the
uniqueness of the fixed point in the above theorems. For this,
we denote the set of fixed points of 𝑇 by Fix(𝑇).

Theorem 15. Assume that all hypotheses of Theorem 13 hold.
Also suppose

∀𝑥, 𝑦 ∈ 𝐹𝑖𝑥 (𝑇) , 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑢 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝛼 (𝑥, 𝑢) ≥ 1, 𝛼 (𝑦, 𝑢) ≥ 1,

(57)

holds, then the fixed point of 𝑇 is unique.

Proof. Suppose 𝑧 and 𝑤 are two fixed points of 𝑇, and then
there exists 𝑢 ∈ 𝑋 such that 𝛼(𝑧, 𝑢) ≥ 1 and 𝛼(𝑤, 𝑢) ≥ 1.
Since 𝑇 is an 𝛼-admissible mapping, then

𝛼 (𝑧, 𝑇
𝑛
𝑢) ≥ 1, 𝛼 (𝑤, 𝑇

𝑛
𝑢) ≥ 1 (58)

for all 𝑛 ∈ N. Therefore

𝑑 (𝑧, 𝑇
𝑛+1

𝑢) = 𝑑 (𝑇𝑧, 𝑇
𝑛+1

𝑢)

≤ 𝜓 (𝑀(𝑧, 𝑇
𝑛
𝑢))

≤ 𝜓 (max {𝑑 (𝑧, 𝑇
𝑛
𝑢) , 𝑑 (𝑧, 𝑇

𝑛+1
𝑢)}) .

(59)

Without loss of generality, we can assume𝑑(𝑧, 𝑇𝑛𝑢) > 0 for all
𝑛. Therefore from (59) we have (note it should be 𝑑(𝑧, 𝑇𝑛𝑢) >

𝑑(𝑧, 𝑇
𝑛+1

𝑢). Otherwise we obtain a contradiction from (59))

𝑑 (𝑧, 𝑇
𝑛+1

𝑢) ≤ 𝜓 (𝑑 (𝑧, 𝑇
𝑛
𝑢)) ≤ ⋅ ⋅ ⋅ ≤ 𝜓

𝑛
(𝑑 (𝑧, 𝑢)) . (60)

Letting 𝑛 → ∞ in the above inequality, we have 𝑇
𝑛
𝑢 → 𝑧.

Similarly, we can obtain 𝑇
𝑛
𝑢 → 𝑤 and so 𝑧 = 𝑤.

Remark 16. The condition (57) is not sufficient to obtain the
uniqueness of the fixed point inTheorem 11.

Example 17. Let 𝑋 = [0, 1] with the usual metric. Define 𝑇 :

𝑋 → 𝑋 and 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝑇𝑥 =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

𝑥
2
, 𝑥 ∈ [0,

1

4

)

0, 𝑥 ∈ [

1

4

,

1

3

)

1, 𝑥 ∈ [

1

3

, 1] ,

(61)

and 𝛼(𝑥, 𝑦) = 1. Then, it is clear that 𝑇 is 𝛼-admissible
mapping and𝑋 is regular. Also, there exists 𝑥

0
∈ 𝑋 such that

𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1. Now, we show that (9) is satisfied with 𝜓(𝑡) =

𝑡/2 and 𝐿 = 10. For this, we consider the following cases.

Case 1. If 𝑥, 𝑦 ∈ [0, 1/4), then

𝑑 (𝑇𝑥, 𝑇𝑦) =

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
2
− 𝑦
2󵄨󵄨
󵄨
󵄨
󵄨

≤

1

2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

≤ 𝜓 (𝑀 (𝑥, 𝑦)) + 𝐿min {𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑦)} .

(62)

Case 2. If 𝑥, 𝑦 ∈ [1/4, 1/3), then 𝑑(𝑇𝑥, 𝑇𝑦) = 0.

Case 3. If 𝑥, 𝑦 ∈ [1/3, 1], then 𝑑(𝑇𝑥, 𝑇𝑦) = 0.

Case 4. If 𝑥 ∈ [0, 1/4) and 𝑦 ∈ [1/4, 1/3), then

𝑑 (𝑇𝑥, 𝑇𝑦) = 𝑥
2

≤ min {𝑥, 𝑦 − 𝑥
2
}

≤ 𝜓 (𝑀(𝑥, 𝑦)) + 𝐿min {𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑦)} .

(63)



Abstract and Applied Analysis 7

Case 5. If 𝑥 ∈ [0, 1/4) and 𝑦 ∈ [1/3, 1], then

𝑑 (𝑇𝑥, 𝑇𝑦) = 1 − 𝑥
2

≤

1

2

(𝑦 − 𝑥) + 10 min {1 − 𝑥, 𝑦 − 𝑥
2
}

≤ 𝜓 (𝑀(𝑥, 𝑦)) + 𝐿min {𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑦)} .

(64)

Case 6. If 𝑥 ∈ [1/4, 1/3) and 𝑦 ∈ [1/3, 1], then

𝑑 (𝑇𝑥, 𝑇𝑦) = 1

≤

1

2

(𝑦 − 𝑥) + 10 min {1 − 𝑥, 𝑦}

≤ 𝜓 (𝑀(𝑥, 𝑦)) + 𝐿min {𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑦)} .

(65)

Therefore, all conditions of Theorem 11 are satisfied and so 𝑇

has a fixed point. Although the condition (57) of Theorem 15
is satisfied, the fixed point of 𝑇 is not unique.

In the following, we give a uniqueness theorem by adding
some conditions inTheorem 11.

Theorem 18. Assume that all hypotheses of Theorem 11 hold.
Also suppose for all 𝑥, 𝑦 ∈ Fix(𝑇), there exists 𝑢 ∈ 𝑋 such that
𝛼(𝑥, 𝑢) ≥ 1 and 𝛼(𝑦, 𝑢) ≥ 1 and

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜓
1
(𝑀 (𝑥, 𝑦)) + 𝐿

1
min {𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦)}

(66)

holds for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓
1
∈ Ψ and 𝐿

1
≥ 0, then the fixed

point of 𝑇 is unique.

Proof. Suppose 𝑧 and 𝑤 are two fixed points of 𝑇, and then
there exists 𝑢 ∈ 𝑋 such that 𝛼(𝑧, 𝑢) ≥ 1 and 𝛼(𝑤, 𝑢) ≥ 1.
Since 𝑇 is an 𝛼-admissible mapping, then

𝛼 (𝑧, 𝑇
𝑛
𝑢) ≥ 1, 𝛼 (𝑤, 𝑇

𝑛
𝑢) ≥ 1 (67)

for all 𝑛 ∈ N. Therefore from (66)

𝑑 (𝑧, 𝑇
𝑛+1

𝑢) = 𝑑 (𝑇𝑧, 𝑇
𝑛+1

𝑢)

≤ 𝜓
1
(𝑀 (𝑧, 𝑇

𝑛
𝑢))

+ 𝐿
1
min {𝑑 (𝑧, 𝑇𝑧) , 𝑑 (𝑇

𝑛
𝑢, 𝑇
𝑛+1

𝑢)}

≤ 𝜓
1
(max {𝑑 (𝑧, 𝑇

𝑛
𝑢) , 𝑑 (𝑧, 𝑇

𝑛+1
𝑢)}) .

(68)

Without loss of generality, we can assume 𝑑(𝑧, 𝑇
𝑛
𝑢) > 0 for

all 𝑛. Therefore we have

𝑑 (𝑧, 𝑇
𝑛+1

𝑢) ≤ 𝜓
1
(𝑑 (𝑧, 𝑇

𝑛
𝑢)) ≤ ⋅ ⋅ ⋅ ≤ 𝜓

𝑛

1
(𝑑 (𝑧, 𝑢)) . (69)

Letting 𝑛 → ∞ in the above inequality, we have 𝑇
𝑛
𝑢 → 𝑧.

Similarly, we can obtain 𝑇
𝑛
𝑢 → 𝑤 and so 𝑧 = 𝑤.

4. Some Corollaries and Example

Corollary 19. Let (𝑋, 𝑑) be a complete metric space and 𝑇 :

𝑋 → 𝑋 be 𝛼-admissible. Assume that
𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜓 (𝑑 (𝑥, 𝑦)) + 𝐿min {𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑦)}

(70)

holds for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Φ and 𝐿 ≥ 0. Also, suppose 𝑇
is continuous and there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1.

Then 𝑇 has a fixed point.

Corollary 20. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be self-map of 𝑋. Assume that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) + 𝐿min {𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑦)}

(71)

holds for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Φ, 𝐿 ≥ 0, and 𝑀(𝑥, 𝑦) as in
Theorem 9. Then 𝑇 has a fixed point.

Corollary 21. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be self-map of 𝑋. Assume that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) + 𝐿min {𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑦)}

(72)

holds for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Φ and 𝐿 ≥ 0. Then 𝑇 has a
fixed point.

Corollary 22. Let (𝑋, 𝑑) be a complete metric space and let
𝑇 : 𝑋 → 𝑋 be 𝛼-admissible. Assume that

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) (73)
holds for all 𝑥, 𝑦 ∈ 𝑋, where𝜓 ∈ Ψ (or𝜓 ∈ Υ). Also, suppose𝑇
is continuous and there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1.

Then 𝑇 has a fixed point.

Corollary 23. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a self-map of 𝑋. Assume that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) (74)
holds for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Ψ (or 𝜓 ∈ Υ), and 𝑀(𝑥, 𝑦)

as in Theorem 9. Then 𝑇 has a unique fixed point.

Corollary 24. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a self-map of 𝑋. Assume that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) (75)
holds for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Ψ (or 𝜓 ∈ Υ). Then 𝑇 has a
unique fixed point.

Example 25. Let 𝑋 = [0, 1] with the usual metric. Define 𝑇 :

𝑋 → 𝑋 and 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝑇𝑥 =

{
{
{

{
{
{

{

𝑥
2
, 𝑥 ∈ [0,

1

4

]

5𝑥 − 1

4

, 𝑥 ∈ (

1

4

, 1] ,

𝛼 (𝑥, 𝑦) =

{

{

{

1, 𝑥, 𝑦 ∈ [0,

1

4

] ∪ {1}

0, otherwise

(76)
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for all 𝑥, 𝑦 ∈ 𝑋. Then, it is clear that 𝑇 is 𝛼-admissible
mapping and 𝑇 is continuous. Also, 𝛼(1, 𝑇1) ≥ 1. But,
although 𝛼(1, 1/4) ≥ 1, we cannot find any 𝜓 ∈ Φ satisfying

𝑑 (𝑇1, 𝑇

1

4

) =

15

16

≤ 𝜓(

27

32

) = 𝜓 (𝑚 (𝑥, 𝑦)) = 𝜓 (𝑀(𝑥, 𝑦)) .

(77)

Therefore, Theorems 10 and 9 cannot be applied to this
example. Now, we show that (9) is satisfied with 𝜓(𝑡) = 𝑡/2

and 𝐿 = 4/3. Let 𝛼(𝑥, 𝑦) ≥ 1, and then 𝑥, 𝑦 ∈ [0, 1/4] ∪ {1}.
We have to consider the following cases.

Case 1. If 𝑥, 𝑦 ∈ [0, 1/4], then

𝑑 (𝑇𝑥, 𝑇𝑦) =

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
2
− 𝑦
2󵄨󵄨
󵄨
󵄨
󵄨
≤

1

2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

≤ 𝜓 (𝑀 (𝑥, 𝑦)) + 𝐿min {𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑥)} .

(78)

Case 2. If 𝑥 ∈ [0, 1/4] and 𝑦 = 1, then

𝑑 (𝑇𝑥, 𝑇𝑦) = 1 − 𝑥
2
≤

1

2

(1 − 𝑥) + 1

≤ 𝜓 (𝑀(𝑥, 𝑦)) + 𝐿min {𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑥)} .

(79)

Therefore, all conditions of Theorem 11 are satisfied and so 𝑇

has a fixed point in𝑋.

5. Applications

In this section, we apply Corollary 22 to the following fourth
order two-point boundary value problem:

𝑦
(4)

(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑦 (0) = 𝑦 (1) = 𝑦
󸀠
(0) = 𝑦

󸀠
(1) = 0,

(80)

which describes the bending of an elastic beam clamped
at both endpoints. In [13], using an ordered version of
Geraghty’s fixed point result, an existence theorem for a non-
negative solution of (80) is given. The boundary value pro-
blem can be written as the integral equation (see [14])

𝑦 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 for 𝑡 ∈ [0, 1] , (81)

where 𝐺(𝑡, 𝑠) is the Green’s function given by

𝐺 (𝑡, 𝑠) =

1

6

{

𝑡
2
(1 − 𝑠)

2
[(𝑠 − 𝑡) + 2 (1 − 𝑡) 𝑠] , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝑠
2
(1 − 𝑡)

2
[(𝑡 − 𝑠) + 2 (1 − 𝑠) 𝑡] , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(82)

Then it is clear that, 𝐺(𝑡, 𝑠) is continuous on [0, 1] × [0, 1],
𝐺(0, 𝑠) = 𝐺(1, 𝑠) = 0, and 𝐺(𝑡, 𝑠) ≥ 0 for 𝑡, 𝑠 ∈ [0, 1] and
sup
𝑡∈[0,1]

∫

1

0
𝐺(𝑡, 𝑠)𝑑𝑠 = 1/384.

Here we will consider 𝐶[0, 1] with the uniform metric,
that is, for 𝑥, 𝑦 ∈ 𝐶[0, 1] 𝑑

∞
(𝑥, 𝑦) = sup

𝑡∈[0,1]
|𝑥(𝑡) − 𝑦(𝑡)|.

Then (𝐶[0, 1], 𝑑
∞
) is a Banach space. For the convenience we

consider the operator 𝑇 defined on 𝐶[0, 1] by

𝑇𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 for 𝑡 ∈ [0, 1] . (83)

Theorem 26. Under the following assumptions, Problem (80)
has a solution.

(A) 𝑓 : [0, 1] ×R → R is bounded,

(B) there exist 𝜓 ∈ Ψ and 𝜃 : 𝐶[0, 1] × 𝐶[0, 1] → R such
that if 𝜃(𝑥, 𝑦) ≥ 0 for 𝑥, 𝑦 ∈ 𝐶[0, 1], then for 𝑠 ∈ [0, 1]

we have

0 ≤ 𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠)) ≤ 384𝜓 (
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨
) , (84)

(C) if 𝜃(𝑥, 𝑦) ≥ 0, then 𝜃(𝑇𝑥, 𝑇𝑦) ≥ 0,

(D) there exists 𝑥
0
∈ 𝐶[0, 1] such that 𝜃(𝑥

0
, 𝑇𝑥
0
) ≥ 0,

(E) if {𝑥
𝑛
} is a sequence in𝐶[0, 1] such that 𝜃(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 0

for all 𝑛 ∈ N ∪ {0} and 𝑥
𝑛

→ 𝑥, then 𝜃(𝑥
𝑛
, 𝑥) ≥ 0 for

all 𝑛 ∈ N ∪ {0}.

Proof. Let 𝑋 = 𝐶[0, 1] with the metric 𝑑
∞
. First, we show

that 𝑇 : 𝑋 → 𝑋. Let 𝑥 ∈ 𝑋 and 𝑡, 𝑡
󸀠
∈ [0, 1], and then, by the

continuity of 𝐺 and the boundedness of 𝑓, we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇𝑥 (𝑡) − 𝑇𝑥 (𝑡

󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 − ∫

1

0

𝐺(𝑡
󸀠
, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

1

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺 (𝑡, 𝑠) − 𝐺 (𝑡

󸀠
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ sup
𝑠∈[0,1]

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺 (𝑡, 𝑠) − 𝐺 (𝑡

󸀠
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
∫

1

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ 𝑀 sup
𝑠∈[0,1]

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺 (𝑡, 𝑠) − 𝐺 (𝑡

󸀠
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󳨀→ 0 for 󵄨

󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑡
󸀠󵄨󵄨
󵄨
󵄨
󵄨
󳨀→ 0,

(85)

where𝑀 > 0 such that sup
𝑠∈[0,1]

|𝑓(𝑠, 𝑥(𝑠))| ≤ 𝑀.
Now, define 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

1, 𝜃 (𝑥, 𝑦) ≥ 0

0, otherwise.
(86)
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Then, it is clear that 𝑇 is 𝛼-admissible. Also, for all 𝑥, 𝑦 ∈ 𝑋

with 𝛼(𝑥, 𝑦) ≥ 1, we have
󵄨
󵄨
󵄨
󵄨
𝑇𝑥 (𝑡) − 𝑇𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

1

0

𝐺 (𝑡, 𝑠)
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ ∫

1

0

𝐺 (𝑡, 𝑠) 384𝜓 (
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠

≤ 384𝜓 (𝑑
∞

(𝑥, 𝑦)) ∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠

≤ 𝜓 (𝑑
∞

(𝑥, 𝑦))

(87)

for all 𝑡 ∈ [0, 1]. Therefore

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑑
∞

(𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑
∞

(𝑥, 𝑦)) (88)

hold. Finally, by the condition (E), 𝑋 is regular. Therefore all
hypotheses of Corollary 22 are satisfied and so 𝑇 has a fixed
point in 𝑋. Thus, the problem (80) has a solution in 𝐶[0, 1].

In the following, we also give an existence and uniqueness
theorem for (80) under slight different conditions.

Theorem 27. Under the following assumptions, problem (80)
has a unique solution.

(F) 𝑓 : [0, 1] × R → R is bounded, nondecreasing with
respect to second variable and 𝑓(𝑡, 0) ≥ 0 for all 𝑡 ∈

[0, 1],
(G) there exists 𝜓 ∈ Ψ such that, for 𝑥, 𝑦 ∈ 𝐶[0, 1] with

𝑥 ⪯ 𝑦 and 𝑠 ∈ [0, 1], we have

𝑓 (𝑠, 𝑦 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠)) ≤ 384𝜓 (
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨
) , (89)

where 𝑥 ⪯ 𝑦 ⇔ 𝑥(𝑡) ≤ 𝑦(𝑡) for all 𝑡 ∈ [0, 1].

Proof. As in the proof of Theorem 26, we can show that 𝑇 :

𝑋 → 𝑋. Now define 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

1, 𝑥 ⪯ 𝑦

0, otherwise.
(90)

Therefore, if 𝛼(𝑥, 𝑦) ≥ 1, then 𝑥 ⪯ 𝑦 and 𝑥(𝑡) ≤ 𝑦(𝑡) for all
𝑡 ∈ [0, 1]. Since 𝑓 is nondecreasing with respect to second
variable, we have

𝑇𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

≤ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

= 𝑇𝑦 (𝑡)

(91)

for all 𝑡 ∈ [0, 1].Thus, we have𝑇𝑥 ⪯ 𝑇𝑦 and so 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1.
It shows that 𝑇 is 𝛼-admissible. Also, for all 𝑥, 𝑦 ∈ 𝑋 with
𝛼(𝑥, 𝑦) ≥ 1, we have

󵄨
󵄨
󵄨
󵄨
𝑇𝑥 (𝑡) − 𝑇𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

1

0

𝐺 (𝑡, 𝑠)
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

= ∫

1

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑦 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠

≤ ∫

1

0

𝐺 (𝑡, 𝑠) 384𝜓 (
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠

≤ 384𝜓 (𝑑
∞

(𝑥, 𝑦)) ∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠

≤ 𝜓 (𝑑
∞

(𝑥, 𝑦))

(92)

for all 𝑡 ∈ [0, 1]. Therefore

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑑
∞

(𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑
∞

(𝑥, 𝑦)) (93)

hold. Also, since𝑓(𝑠, 0) ≥ 0, we have 0 ≤ ∫

1

0
𝐺(𝑡, 𝑠)𝑓(𝑠, 0)𝑑𝑠 =

𝑇0 and so 𝛼(0, 𝑇0) ≥ 1. Now, let 𝛼(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 for all 𝑛 ∈

N ∪ {0} and 𝑥
𝑛

→ 𝑥 in 𝑋. Then, we have 𝑥
𝑛

⪯ 𝑥
𝑛+1

and
so 𝑥
𝑛
(𝑡) ≤ 𝑥

𝑛+1
(𝑡) for all 𝑡 ∈ [0, 1]. Therefore, 𝑥

𝑛
(𝑡) ≤ 𝑥(𝑡)

for all 𝑡 ∈ [0, 1] and 𝑛 ∈ N ∪ {0}. That is, 𝑥
𝑛

⪯ 𝑥 for all
𝑛 ∈ N∪{0} and so 𝛼(𝑥

𝑛
, 𝑥) ≥ 1. Hence𝑋 is regular.Therefore

all existence hypotheses of Corollary 22 are satisfied and so 𝑇

has a fixed point in 𝑋. Thus, the problem (80) has a solution
in 𝐶[0, 1]. Finally, let 𝑥 and 𝑦 be two solutions of (80), and
then 𝑢 = max{𝑥, 𝑦} ∈ 𝐶[0, 1] and 𝑥 ⪯ 𝑢 and 𝑦 ⪯ 𝑢. Thus,
𝛼(𝑥, 𝑢) ≥ 1 and 𝛼(𝑦, 𝑢) ≥ 1. Therefore, by Corollary 22 the
solution is unique.

Example 28. Consider the nonlinear fourth order two point
boundary value problem

𝑦
(4)

(𝑡) = 𝛾𝑡 + (1 + 𝑡
2
) arc tan (𝛽𝑦 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑦 (0) = 𝑦 (1) = 𝑦
󸀠
(0) = 𝑦

󸀠
(1) = 0,

(94)

where 𝛾 ≥ 0, 0 ≤ 𝛽 ≤ 191. In this case, 𝑓(𝑡, 𝑦) = 𝛾𝑡 + (1 +

𝑡
2
)arc tan(𝛽𝑦). It is easy to see that 𝑓 : [0, 1] × R → R

is bounded and nondecreasing with respect to the second
variable. Also, 𝑓(𝑡, 0) = 𝛾𝑡 ≥ 0 for all 𝑡 ∈ [0, 1]. Now let
𝑥, 𝑦 ∈ 𝐶[0, 1] with 𝑥 ⪯ 𝑦 then, for all 𝑠 ∈ [0, 1],

𝑓 (𝑠, 𝑦 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠))

= (1 + 𝑠
2
) [arc tan (𝛽𝑦 (𝑠)) − arc tan (𝛽𝑥 (𝑠))]
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≤ (1 + 𝑠
2
) arc tan (𝛽 [𝑦 (𝑠) − 𝑥 (𝑠)])

≤ (1 + 𝑠
2
) 𝛽 [𝑦 (𝑠) − 𝑥 (𝑠)]

≤ 2𝛽 [𝑦 (𝑠) − 𝑥 (𝑠)]

≤ 382 [𝑦 (𝑠) − 𝑥 (𝑠)]

= 384𝜓 (
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠) − 𝑥 (𝑠)

󵄨
󵄨
󵄨
󵄨
) ,

(95)

where 𝜓(𝑡) = 191𝑡/192. Therefore, the conditions (F) and
(G) of Theorem 27 are satisfied and so the boundary value
problem (94) has a unique solution.
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Ćirić-type almost contractions in metric spaces,” Carpathian
Journal of Mathematics, vol. 24, no. 2, pp. 10–19, 2008.

[10] V. Berinde, “Some remarks on a fixed point theorem for Ćirić-
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