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We discuss the extension of some fundamental results in nonlinear analysis to the setting of 0
𝜎
-complete metric-like spaces. Then,

we show that these extensions can be obtained via the corresponding results in standard metric spaces.

1. Introduction

It is well known that the Banach-Caccioppoli’s theorem [1, 2]
is the starting point for the development of metric fixed
point theory. Over the years, this theory has evolved by
receiving the support and interest of many mathematicians.
In fact, the fixed point theorems and constructive techniques
have been successfully applied in pure and applied analysis,
topology, and others. Consequently various generalizations
and extensions of the Banach-Caccioppoli’s theorem have
appeared in the literature; see for instance [3–10]. Precisely,
these contributes have investigated the basic problems of the
metric fixed point theory: existence and uniqueness under
different contractive conditions, convergence of successive
approximations, and well posedness of the fixed point prob-
lem.

In particular, Hitzler and Seda [11] presented the notion
of dislocated metric space and proposed their generalization
of the Banach-Caccioppoli’s theorem. Hitzler and Seda’s idea
is to apply this theorem in order to obtain a unique supported
model for acceptable logic programs. Also, many authors
developed the fixed point theory in the setting of dislocated
metric spaces; see for instance [12].

In 2012 Amini-Harandi rediscovered the notion of dis-
located metric space in [13], as a generalization of a partial
metric space [14].These spaces were called metric-like spaces

and used to introduce different notions of convergence and
Cauchy sequence.

Inspired by the ideas in [11, 15], we characterize those
metric-like spaces for which every Caristi’s mapping [16] has
a fixed point in the sense of the Romaguera’s characterization
of partial metric 0-completeness [17]. This will be done by
means of the notion of a 0

𝜎
-completemetric-like space which

is introduced in the sequel. Then, we present fixed point
theorems in this setting, by using known and new classes
of lower semicontinuous functions. Finally, as an application
of our technique, we deduce Ekeland’s variational principle
in a 0

𝜎
-complete metric-like space. The aim of this work

is to underline the strong relation between standard metric
spaces and their generalizations to better target the research
on this topic. Applying the approach followed in this paper,
for instance, the reader can obtain the extensions to a metric-
like space of many recent results in fixed point theory.

2. Metric-Like Spaces

In this section we collect first known notions and notations
and then auxiliary concepts and tools to develop our theory.
For a comprehensive discussion, we refer the reader to [13].

2.1. Preliminaries. We start by recalling some basic defini-
tions and properties of the setting which we will use.
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Definition 1 (see [13]). A metric-like on a nonempty set 𝑋 is
a function 𝜎 : 𝑋×𝑋 → [0, +∞) such that, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,

(𝜎
1
) 𝜎(𝑥, 𝑦) = 0 implies 𝑥 = 𝑦;

(𝜎
2
) 𝜎(𝑥, 𝑦) = 𝜎(𝑦, 𝑥);

(𝜎
3
) 𝜎(𝑥, 𝑦) ≤ 𝜎(𝑥, 𝑧) + 𝜎(𝑧, 𝑦).

A metric-like space is a pair (𝑋, 𝜎) such that𝑋 is a nonempty
set and 𝜎 is a metric-like on 𝑋.

Each metric-like 𝜎 on 𝑋 generates a topology 𝜏
𝜎
on 𝑋

whose base is the family of open 𝜎-balls {𝐵
𝜎
(𝑥, 𝜀) : 𝑥 ∈ 𝑋, 𝜀 >

0}, where

𝐵
𝜎
(𝑥, 𝜀) = {𝑦 ∈ 𝑋 :





𝜎 (𝑥, 𝑦) − 𝜎 (𝑥, 𝑥)





< 𝜀}

∀𝑥 ∈ 𝑋, 𝜀 > 0.

(1)

Then a sequence {𝑥
𝑛
} in the metric-like space (𝑋, 𝜎)

converges to a point 𝑥 ∈ 𝑋 if and only if lim
𝑛→+∞

𝜎(𝑥
𝑛
, 𝑥) =

𝜎(𝑥, 𝑥).
A sequence {𝑥

𝑛
} of elements of𝑋 is called 𝜎-Cauchy if the

limit lim
𝑚,𝑛→+∞

𝜎(𝑥
𝑚
, 𝑥
𝑛
) exists and is finite.Themetric-like

space (𝑋, 𝜎) is called complete if, for each 𝜎-Cauchy sequence
{𝑥
𝑛
}, there is some 𝑥 ∈ 𝑋 such that

𝜎 (𝑥, 𝑥) = lim
𝑛→+∞

𝜎 (𝑥
𝑛
, 𝑥) = lim

𝑛,𝑚→+∞

𝜎 (𝑥
𝑛
, 𝑥
𝑚
) . (2)

If lim
𝑛,𝑚→+∞

𝜎(𝑥
𝑛
, 𝑥
𝑚
) = 0, then {𝑥

𝑛
} is called a 0

𝜎
-Cauchy

sequence. If every 0
𝜎
-Cauchy sequence {𝑥

𝑛
} in 𝑋 converges,

with respect to 𝜏
𝜎
, to a point 𝑥 ∈ 𝑋 such that 𝜎(𝑥, 𝑥) = 0, then

(𝑋, 𝜎) is called 0
𝜎
-complete; see the paper of Romaguera [17]

for a comparative discussion with partial metric spaces. Here
we point out that every partial metric space is a metric-like
space; see [13]. Also we give some examples of a metric-like
space.

Example 2. Let 𝑋 = [0, +∞) and 𝜎 : 𝑋 × 𝑋 → [0, +∞) be
defined by

𝜎 (𝑥, 𝑦) = {

2 if 𝑥 = 𝑦 = 0,

1 otherwise.
(3)

Then (𝑋, 𝜎) is a metric-like space, which is not a metric space
or a partial metric space.

Example 3. Let 𝑋 = [0, +∞) and 𝜎 : 𝑋 × 𝑋 → [0, +∞) be
defined by

𝜎 (𝑥, 𝑦) = 𝑥 + 𝑦, (4)

for all 𝑥, 𝑦 ∈ [0, +∞). Then (𝑋, 𝜎) is a complete metric-like
space, which is not a metric space or a partial metric space.

Example 4. Let𝑋 = [0, +∞) ∩Q and 𝜎 : 𝑋 × 𝑋 → [0, +∞)

be defined by

𝜎 (𝑥, 𝑦) = 𝑥 + 𝑦, (5)

for all 𝑥, 𝑦 ∈ [0, +∞) ∩ Q. Then (𝑋, 𝜎) is a 0
𝜎
-complete

metric-like space, which is not a complete metric-like space.

2.2. Metric Induced by a Metric-Like. We introduce useful
tools for developing our theory.

Let (𝑋, 𝜎) be a 0
𝜎
-complete metric-like space and let 𝑑 :

𝑋 × 𝑋 → [0, +∞) be defined by

𝑑 (𝑥, 𝑦) = {

𝜎 (𝑥, 𝑦) if 𝑥 ̸= 𝑦,

0 if 𝑥 = 𝑦.

(6)

Lemma 5. Let (𝑋, 𝜎) be a metric-like space and 𝑑 : 𝑋 ×𝑋 →

[0, +∞) the function defined by (6). Then (𝑋, 𝑑) is a metric
space. Moreover (𝑋, 𝑑) is a complete metric space if and only if
(𝑋, 𝜎) is a 0

𝜎
-complete metric-like space.

Proof. Clearly, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) and 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦.
Moreover, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, we have

𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦) (7)

if 𝑥 = 𝑦 or if 𝑥 ̸= 𝑦 and 𝑧 = 𝑥 or 𝑧 = 𝑦. Also, if 𝑥, 𝑦, 𝑧 are
distinct points, from

𝜎 (𝑥, 𝑦) ≤ 𝜎 (𝑥, 𝑧) + 𝜎 (𝑧, 𝑦) , (8)

we get

𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦) , (9)

and so the triangle inequality holds. Thus 𝑑 is a metric on 𝑋

and hence (𝑋, 𝑑) is a metric space.
Note that if {𝑥

𝑛
} ⊂ 𝑋 is such that 𝑥

𝑛
̸= 𝑥
𝑚

for all
𝑛 ̸= 𝑚, then lim

𝑚,𝑛→+∞
𝜎(𝑥
𝑛
, 𝑥
𝑚
) = 0 if and only if

lim
𝑚,𝑛→+∞

𝑑(𝑥
𝑛
, 𝑥
𝑚
) = 0.

Now, suppose that (𝑋, 𝜎) is a 0
𝜎
-complete metric-like

space and {𝑥
𝑛
} is a Cauchy sequence in (𝑋, 𝑑). If 𝑥

𝑛
= 𝑥
𝑚

for all 𝑛 ≥ 𝑚, then the sequence {𝑥
𝑛
} converges to 𝑥 =

𝑥
𝑚

∈ 𝑋. Then we can assume that 𝑥
𝑛

̸= 𝑥
𝑚
for all 𝑛 ̸= 𝑚.

In reason of the above observation, we get that {𝑥
𝑛
} is a 0

𝜎
-

Cauchy sequence in (𝑋, 𝜎). Using the fact that (𝑋, 𝜎) is a 0
𝜎
-

complete metric-like space, then there exists 𝑧 ∈ 𝑋 such that
lim
𝑛→+∞

𝜎(𝑥
𝑛
, 𝑧) = 𝜎(𝑧, 𝑧) = 0; that is, lim

𝑛→+∞
𝑑(𝑥
𝑛
, 𝑧) =

0. Thus (𝑋, 𝑑) is a complete metric space.
Now, suppose that (𝑋, 𝑑) is a complete metric space

and {𝑥
𝑛
} is a 0

𝜎
-Cauchy sequence in (𝑋, 𝜎). Without loss of

generality, assume that 𝑥
𝑛

̸= 𝑥
𝑚
for all 𝑛 ̸= 𝑚. Then

lim
𝑚,𝑛→+∞

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) = lim
𝑚,𝑛→+∞

𝜎 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (10)

Hence, {𝑥
𝑛
} is a Cauchy sequence in (𝑋, 𝑑). Since (𝑋, 𝑑) is

complete, there exists 𝑧 ∈ 𝑋 such that lim
𝑛→+∞

𝑑(𝑥
𝑛
, 𝑧) = 0.

Thus, lim
𝑛→+∞

𝜎(𝑥
𝑛
, 𝑧) = 0 = 𝜎(𝑧, 𝑧) and so (𝑋, 𝜎) is 0

𝜎
-

complete.

Let 𝑋
0
:= {𝑥 ∈ 𝑋 : 𝜎(𝑥, 𝑥) = 0}; we have the following

proposition.

Proposition 6. Let (𝑋, 𝜎) be a metric-like space and 𝑑 : 𝑋 ×

𝑋 → [0, +∞) the metric defined by (6). Let 𝑥 be a point of𝑋
and let {𝑥

𝑛
} ⊆ 𝑋 be such that lim

𝑛→+∞
𝑑(𝑥
𝑛
, 𝑥) = 0. If 𝑥

𝑛
̸= 𝑥

for infinity values of 𝑛, then 𝑥 ∈ 𝑋
0
. Moreover 𝑋

0
is a closed

subset of (𝑋, 𝑑).
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Proof. From 𝜎(𝑥
𝑛
, 𝑥) = 𝑑(𝑥

𝑛
, 𝑥) for every 𝑛 ∈ N such that

𝑥
𝑛

̸= 𝑥 it follows that there exists a subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
}

such that lim
𝑘→+∞

𝜎(𝑥
𝑛𝑘
, 𝑥) = 0. This implies 𝜎(𝑥, 𝑥) = 0,

since 𝜎(𝑥, 𝑥) ≤ 2𝜎(𝑥
𝑛𝑘
, 𝑥) → 0, as 𝑘 → +∞ and so 𝑥 ∈ 𝑋

0
.

Then for each sequence {𝑥
𝑛
} ⊆ 𝑋

0
wehave𝜎(𝑥

𝑛
, 𝑥) = 𝑑(𝑥

𝑛
, 𝑥)

and so𝑋
0
is a closed subset of (𝑋, 𝑑).

Definition 7. Let (𝑋, 𝜎) be a metric-like space and 𝑇 : 𝑋 →

𝑋 a mapping. 𝑇 is called 0
𝜎
-continuous if, for all 𝑥 ∈ 𝑋

0
and

{𝑥
𝑛
} ⊆ 𝑋 with 𝑥

𝑛
→ 𝑥 as 𝑛 → +∞, we have 𝜎(𝑇𝑥

𝑛
, 𝑇𝑥) →

0.

Remark 8. Let (𝑋, 𝜎) be a metric-like space and 𝑇 : 𝑋 → 𝑋

a mapping. If 𝑇 is 0
𝜎
-continuous, then 𝑇(𝑋

0
) ⊆ 𝑋

0
. In fact,

if 𝑥 ∈ 𝑋
0
and {𝑥

𝑛
} ⊆ 𝑋 is a sequence such that 𝑥

𝑛
→ 𝑥 as

𝑛 → +∞, then 𝜎(𝑇𝑥
𝑛
, 𝑇𝑥) → 0 and so 𝜎(𝑇𝑥, 𝑇𝑥) = 0.

Proposition 9. Let (𝑋, 𝜎) be a metric-like space, 𝑑 : 𝑋×𝑋 →

[0, +∞) the metric defined in (6), and 𝑇 : 𝑋 → 𝑋 a mapping
such that 𝑇(𝑋

0
) ⊆ 𝑋

0
. Then 𝑇 is continuous in (𝑋, 𝑑) if and

only if 𝑇 is 0
𝜎
-continuous in (𝑋, 𝜎).

Proof. First, we assume that 𝑇 is 0
𝜎
-continuous in (𝑋, 𝜎) and

let {𝑥
𝑛
} ⊆ 𝑋 be a sequence convergent to a point 𝑥 ∈ 𝑋 in

(𝑋, 𝑑). Clearly, lim
𝑛→+∞

𝑑(𝑇𝑥
𝑛
, 𝑇𝑥) = 0 if 𝑇𝑥

𝑛
= 𝑇𝑥 for all

𝑛 ≥ 𝑚 ∈ N. Then, without loss of generality, we assume that
𝑇𝑥
𝑛

̸= 𝑇𝑥 for all 𝑛 ∈ N. This implies that 𝑥
𝑛

̸= 𝑥 for all 𝑛 ∈ N

and hence 𝜎(𝑥
𝑛
, 𝑥) = 𝑑(𝑥

𝑛
, 𝑥) → 0. By Proposition 6, we get

that 𝑥 ∈ 𝑋
0
. Then 𝑑(𝑇𝑥

𝑛
, 𝑇𝑥) = 𝜎(𝑇𝑥

𝑛
, 𝑇𝑥) → 0 and 𝑇 is

continuous in (𝑋, 𝑑).
Now, we assume that𝑇 is continuous in (𝑋, 𝑑),𝑥 is a given

point in 𝑋
0
, and {𝑥

𝑛
} ⊆ 𝑋 is a sequence convergent to 𝑥.

Without loss of generality, we assume that 𝑇𝑥
𝑛

̸= 𝑇𝑥 for all
𝑛 ̸= 𝑚. From 𝜎(𝑇𝑥

𝑛
, 𝑇𝑥) = 𝑑(𝑇𝑥

𝑛
, 𝑇𝑥) → 0 as 𝑛 → +∞, it

follows that 𝑇 is 0
𝜎
-continuous in (𝑋, 𝜎).

Definition 10. Let (𝑋, 𝜎) be a metric-like space. A mapping
𝑇 : 𝑋 → 𝑋 is a contraction if there exists 𝑘 ∈ [0, 1) such that

𝜎 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝜎 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (11)

Remark 11. Let (𝑋, 𝜎) be a metric-like space. Every contrac-
tion 𝑇 : 𝑋 → 𝑋 is a 0

𝜎
-continuous mapping. In fact, for

all 𝑥 ∈ 𝑋
0
and all sequences {𝑥

𝑛
} ⊆ 𝑋 with 𝑥

𝑛
→ 𝑥 as

𝑛 → +∞, we get 𝜎(𝑇𝑥
𝑛
, 𝑇𝑥) ≤ 𝑘𝜎(𝑥

𝑛
, 𝑥) → 0.

Finally, we introduce the notion of 0
𝜎
-lower semicontin-

uous function.

Definition 12. Let (𝑋, 𝜎) be a metric-like space and 𝑑 : 𝑋 ×

𝑋 → [0, +∞) the metric defined by (6). Assume that
𝑋
0

̸= 0. A function 𝜙 : 𝑋 → [0, +∞) is called 0
𝜎
-lower

semicontinuous if, for all 𝑥 ∈ 𝑋
0
and every sequence {𝑥

𝑛
} ⊆

𝑋 with lim
𝑛→+∞

𝜎(𝑥
𝑛
, 𝑥) = 0, we have

𝜙 (𝑥) ≤ lim inf
𝑛→+∞

𝜙 (𝑥
𝑛
) . (12)

Lemma 13. Let (𝑋, 𝜎) be a metric-like space with 𝑋
0

̸= 0 and
𝑑 : 𝑋 × 𝑋 → [0, +∞) the metric defined by (6). Then a
function 𝜙 : 𝑋 → [0, +∞) is lower semicontinuous in (𝑋, 𝑑)

if and only if 𝜙 is 0
𝜎
-lower semicontinuous in (𝑋, 𝜎).

Proof. First, we assume that the function 𝜙 is 0
𝜎
-lower

semicontinuous in (𝑋, 𝜎) and let {𝑥
𝑛
} ⊆ 𝑋 be a sequence

convergent to 𝑥 ∈ 𝑋 in (𝑋, 𝑑). If 𝑥
𝑛
= 𝑥
𝑚
for all 𝑛 ∈ N with

𝑛 ≥ 𝑚, then (12) holds since 𝑥 = 𝑥
𝑚
. Then we can assume

that 𝑥
𝑛

̸= 𝑥
𝑚
for all 𝑛 ̸= 𝑚 and also that 𝑥 ̸= 𝑥

𝑛
for all 𝑛 ∈ N.

This implies 𝜎(𝑥
𝑛
, 𝑥) = 𝑑(𝑥

𝑛
, 𝑥) → 0 as 𝑛 → +∞ and hence

(12) holds, since 𝜙 is 0
𝜎
-lower semicontinuous in (𝑋, 𝜎) and

hence 𝜙 is lower semicontinuous in (𝑋, 𝑑).
Now, we assume that the function𝜙 is lower semicontinu-

ous in (𝑋, 𝑑) and let {𝑥
𝑛
} ⊆ 𝑋 be a sequence convergent to 𝑥 ∈

𝑋
0
in (𝑋, 𝜎). This implies 𝑑(𝑥

𝑛
, 𝑥) = 𝜎(𝑥

𝑛
, 𝑥) → 0 as 𝑛 →

+∞ and hence (12) holds, since 𝜙 is lower semicontinuous in
(𝑋, 𝑑) and so 𝜙 is 0

𝜎
-lower semicontinuous in (𝑋, 𝜎).

3. Fixed Point Theorems

The significance of the results given in the previous section
will become clear as we proceed with the following applica-
tions of fixed points.

3.1. Caristi Type Fixed Point Theorems. The following the-
orem is an extension of the result of Caristi [16, Theorem
(2.1)
] in the setting of metric-like spaces. First, we say that

a mapping 𝑓 : 𝑋 → 𝑋 satisfying the condition

𝜎 (𝑥, 𝑓𝑥) ≤ 𝜙 (𝑥) − 𝜙 (𝑓𝑥) , for each 𝑥 ∈ 𝑋, (13)

where 𝜙 : 𝑋 → [0, +∞) is a 0
𝜎
-lower semicontinuous

function, is a Caristi’s mapping on (𝑋, 𝜎). Also, a point 𝑧 ∈ 𝑋

such that 𝑧 = 𝑓𝑧 is called a fixed point of 𝑓.

Theorem 14. Let (𝑋, 𝜎) be a 0
𝜎
-complete metric-like space.

Then any Caristi’s mapping on (𝑋, 𝜎) has a fixed point 𝑧 in 𝑋

with 𝜎(𝑧, 𝑧) = 0.

Proof. Let 𝑑 : 𝑋×𝑋 → [0, +∞) be themetric defined by (6).
Then, by Lemma 5, (𝑋, 𝑑) is a complete metric space. From
𝑑(𝑥, 𝑓𝑥) ≤ 𝜎(𝑥, 𝑓𝑥) for all 𝑥 ∈ 𝑋 and (13), we get

𝑑 (𝑥, 𝑓𝑥) ≤ 𝜙 (𝑥) − 𝜙 (𝑓𝑥) , for each 𝑥 ∈ 𝑋. (14)

Since 𝜙 is lower semicontinuous in (𝑋, 𝑑) by Lemma 13, then
by Caristi’s theorem 𝑓 has a fixed point 𝑧. Finally, by (13), we
get 𝜎(𝑧, 𝑧) = 0.

Example 15. Let 𝑋 = {−2, −1} ∪ [0, +∞) and 𝜎 : 𝑋 × 𝑋 →

[0, +∞) be defined by 𝜎(𝑥, 𝑦) = |𝑥 − 𝑦| if 𝑥 ̸= 𝑦 and

𝜎 (𝑥, 𝑥) = {

1 if 𝑥 ∈ {−2, −1} ,

0 if 𝑥 ∈ [0, +∞) .

(15)

Clearly, (𝑋, 𝜎) is a 0
𝜎
-completemetric-like space. Also, notice

that 𝑋
0
:= {𝑥 ∈ 𝑋 : 𝜎(𝑥, 𝑥) = 0} = [0, +∞). Consider the

mapping 𝑓 : 𝑋 → 𝑋 defined by

𝑓𝑥 = {

0 if 𝑥 ∉ [1, 2] ,

1 if 𝑥 ∈ [1, 2] .

(16)

Then, we get

𝜎 (𝑥, 𝑓𝑥) = {

|𝑥| if 𝑥 ∉ [1, 2] ,

𝑥 − 1 if 𝑥 ∈ [1, 2] .

(17)
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It is easy to show that the function 𝜙 : 𝑋 → [0, +∞), defined
by 𝜙(𝑥) = |𝑥| for all 𝑥 ∈ 𝑋, is a 0

𝜎
-lower semicontinuous

function. Also we get 𝜎(𝑥, 𝑓𝑥) = 𝜙(𝑥) − 𝜙(𝑓𝑥) and so 𝑓 is a
Caristi’s mapping.ThusTheorem 14 ensures that𝑓 has a fixed
point; here 0 and 1 are fixed points of 𝑓.

The following results are some consequences of
Theorem 14. In particular, the next theorem is the metric-like
counterpart of Theorem 2.1 in [16].

Theorem 16. Let (𝑋, 𝜎) be a 0
𝜎
-completemetric-like space and

𝑇 : 𝑋 → 𝑋 a 0
𝜎
-continuous mapping with Fix(𝑇) ⊆ 𝑋

0
.

Suppose that 𝑓 : 𝑋 → 𝑋 is a mapping and there exists a
negative real number 𝑟 such that

𝜎 (𝑓𝑥, 𝑇𝑓𝑥) ≤ 𝜎 (𝑥, 𝑇𝑥) + 𝑟𝜎 (𝑥, 𝑓𝑥) , 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑋.

(18)

Then 𝑓 has a fixed point 𝑧 in𝑋 with 𝜎(𝑧, 𝑧) = 0.

Proof. Let 𝑑 : 𝑋 × 𝑋 → [0, +∞) be the metric defined
by (6). Then, by Proposition 9, the mapping 𝑇 is continuous
in (𝑋, 𝑑). This implies that the function 𝜙 : 𝑋 → [0, +∞)

defined by

𝜙 (𝑦) =

−1

𝑟

𝑑 (𝑦, 𝑇𝑦) =

−1

𝑟

𝜎 (𝑦, 𝑇𝑦) (19)

is lower semicontinuous in (𝑋, 𝑑) and hence is a 0
𝜎
-lower

semicontinuous function in (𝑋, 𝜎). From (18), we get

𝜎 (𝑥, 𝑓𝑥) ≤ 𝜙 (𝑥) − 𝜙 (𝑓𝑥) , for each 𝑥 ∈ 𝑋. (20)

The existence of a fixed point follows by an application of
Theorem 14.

Theorem 17. Let (𝑋, 𝜎) be a 0
𝜎
-completemetric-like space and

𝑓 : 𝑋 → 𝑋 amapping. Assume that there exists 𝑘 ∈ [0, 1) such
that

𝜎 (𝑓𝑥, 𝑓
2

𝑥) ≤ 𝑘𝜎 (𝑥, 𝑓𝑥) , ∀𝑥 ∈ 𝑋. (21)

If one of the following conditions holds, then𝑓 has a fixed point
𝑧 in𝑋 with 𝜎(𝑧, 𝑧) = 0:

(i) the function ℎ : 𝑋 → [0, +∞) defined by ℎ(𝑥) =

𝜎(𝑥, 𝑓𝑥) is 0
𝜎
-lower semicontinuous;

(ii) the mapping 𝑓 is 0
𝜎
-continuous.

Proof. Note that (ii) implies (i). In fact, let 𝑥 ∈ 𝑋
0
and {𝑥

𝑛
} ⊆

𝑋 such that 𝑥
𝑛
→ 𝑥 as 𝑛 → +∞ and assume that 𝑓 is 0

𝜎
-

continuous. From

ℎ (𝑥) = 𝜎 (𝑥, 𝑓𝑥) ≤ 𝜎 (𝑥, 𝑥
𝑛
)

+ 𝜎 (𝑥
𝑛
, 𝑓𝑥
𝑛
) + 𝜎 (𝑓𝑥

𝑛
, 𝑓𝑥)

= 𝜎 (𝑥, 𝑥
𝑛
) + ℎ (𝑥

𝑛
) + 𝜎 (𝑓𝑥

𝑛
, 𝑓𝑥) ,

(22)

we get

ℎ (𝑥) ≤ lim inf
𝑛→+∞

ℎ (𝑥
𝑛
) . (23)

This ensures that the function ℎ is 0
𝜎
-lower semicontinuous.

Now, we prove that 𝑓 has a fixed point in 𝑋 if (i) holds.
By (21), we have

𝜎 (𝑥, 𝑓𝑥) − 𝑘𝜎 (𝑥, 𝑓𝑥) ≤ 𝜎 (𝑥, 𝑓𝑥) − 𝜎 (𝑓𝑥, 𝑓
2

𝑥) ,

∀𝑥 ∈ 𝑋.

(24)

This implies

𝜎 (𝑥, 𝑓𝑥) ≤ 𝜙 (𝑥) − 𝜙 (𝑓𝑥) , ∀𝑥 ∈ 𝑋, (25)

where 𝜙 : 𝑋 → [0, +∞) is defined by 𝜙(𝑡) = (1 − 𝑘)
−1

𝜎(𝑡,

𝑓𝑡), for all 𝑡 ∈ 𝑋.
Now, by (i), the function 𝜙 is 0

𝜎
-lower semicontinuous.

Thus, the existence of a fixed point follows by an application
of Theorem 14.

3.2. Banach-Caccioppoli, Ćirić, and Khamsi Type Results.
First, we deduce the Banach-Caccioppoli’s theorem in the
setting of a metric-like space byTheorem 17.

Theorem 18. Let (𝑋, 𝜎) be a 0
𝜎
-completemetric-like space and

let 𝑓 : 𝑋 → 𝑋 be a contraction. Then 𝑓 has a unique fixed
point 𝑧 in 𝑋 with 𝜎(𝑧, 𝑧) = 0.

Proof. Let 𝑘 ∈ [0, 1) such that (11) holds true. Then
𝜎(𝑓𝑥, 𝑓

2

𝑥) ≤ 𝑘𝜎(𝑥, 𝑓𝑥) for all 𝑥 ∈ 𝑋; that is (21) holds
true. Since, by Remark 11, the mapping 𝑓 is 0

𝜎
-continuous,

then the existence of a fixed point follows by an application
of Theorem 17. In view of the fact that 𝑓 is a contraction, the
uniqueness of the fixed point 𝑧, with 𝜎(𝑧, 𝑧) = 0, is an easy
consequence of (11).

The proof of the following Ćirić type theorem (see [4])
proceeds on the same lines of the proof ofTheorem 18 and so
we omit it.

Theorem 19. Let (𝑋, 𝜎) be a 0
𝜎
-completemetric-like space and

let 𝑓 : 𝑋 → 𝑋 be a mapping. Assume that there exists 𝑘 ∈

[0, 1) such that

𝜎 (𝑓𝑥, 𝑓𝑦) ≤ 𝑘max {𝜎 (𝑥, 𝑦) , 𝜎 (𝑥, 𝑓𝑥) , 𝜎 (𝑦, 𝑓𝑦) ,

1

2

𝜎 (𝑥, 𝑓𝑦) ,

1

2

𝜎 (𝑦, 𝑓𝑥)} ,

(26)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑓 has a unique fixed point in𝑋 if one of
the following conditions holds:

(i) the function ℎ : 𝑋 → [0, +∞) defined by ℎ(𝑥) =

𝜎(𝑥, 𝑓𝑥) is 0
𝜎
-lower semicontinuous;

(ii) the mapping 𝑓 is 0
𝜎
-continuous.

If the mapping 𝑓 satisfies condition (26) and 𝑥 ∈ Fix(𝑓), then
𝜎(𝑥, 𝑥) = 0.

In what follows we denote byΘ the family of all functions
𝜃 : [0, +∞) → [0, +∞) nondecreasing, continuous at 𝑡 = 0

with 𝜃(0) = 0, such that there exist 𝑐 > 0 and 𝛿 > 0

satisfying the condition 𝜃(𝑡) ≥ 𝑐𝑡, for each 𝑡 ∈ [0, 𝛿]. Since
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𝜃 is continuous at 𝑡 = 0, then there exists 𝜀
0
> 0 such that

𝜃
−1

([0, 𝜀
0
]) ⊆ [0, 𝛿].

We recall the following result due to Khamsi; see [18].

Theorem 20 (see [18, Theorem 2]). Let (𝑋, 𝑑) be a complete
metric space. Define the relation ⪯ by

𝑥 ⪯ 𝑦 𝑖𝑓𝑓 𝜃 (𝑑 (𝑥, 𝑦)) ≤ 𝜙 (𝑦) − 𝜙 (𝑥) , (27)

where 𝜃 ∈ Θ and 𝜙 : 𝑋 → [0, +∞) is a lower semicontinuous
function. Then (𝑋, ⪯) has a minimal element 𝑥∗; that is, if 𝑥 ⪯

𝑥
∗, then we must have 𝑥 = 𝑥

∗.

From this theorem, Khamsi deduced some generaliza-
tions of Caristi’s fixed point theorem.

Theorem 21 (see [18, Theorem 3]). Let (𝑋, 𝑑) be a complete
metric space. Let 𝑓 : 𝑋 → 𝑋 be a mapping such that for all
𝑥 ∈ 𝑋

𝜃 (𝑑 (𝑥, 𝑓𝑥)) ≤ 𝜙 (𝑥) − 𝜙 (𝑓𝑥) , (28)

where the function 𝜃 ∈ Θ and 𝜙 : 𝑋 → [0, +∞) is a lower
semicontinuous function. Then 𝑓 has a fixed point.

Theorem 22 (see [18, Theorem 4]). Let (𝑋, 𝑑) be a complete
metric space. Let 𝐹 : 𝑋 → 2

𝑋 be a multivalued mapping such
that 𝐹𝑥 is nonempty. Assume that for all 𝑥 ∈ 𝑋 there exists
𝑦 ∈ 𝐹𝑥 such that

𝜃 (𝑑 (𝑥, 𝑦)) ≤ 𝜙 (𝑥) − 𝜙 (𝑦) , (29)

where the function 𝜃 ∈ Θ and 𝜙 : 𝑋 → [0, +∞) is a lower
semicontinuous function.Then𝐹 has a fixed point; that is, there
exists 𝑧 ∈ 𝑋 such that 𝑧 ∈ 𝐹𝑧.

Now, in the setting of a 0
𝜎
-complete metric-like space, we

deduce the following results.

Theorem23. Let (𝑋, 𝜎) be a 0
𝜎
-completemetric-like space. Let

𝑓 : 𝑋 → 𝑋 be a mapping such that for all 𝑥 ∈ 𝑋

𝜃 (𝜎 (𝑥, 𝑓𝑥)) ≤ 𝜙 (𝑥) − 𝜙 (𝑓𝑥) , (30)

where the function 𝜃 ∈ Θ and 𝜙 : 𝑋 → [0, +∞) is a 0
𝜎
-lower

semicontinuous function. Then 𝑓 has a fixed point.

Proof. Let 𝑑 : 𝑋 × 𝑋 → [0, +∞) be the metric on𝑋 defined
by (6). By Lemma 13, (𝑋, 𝑑) is a complete metric space and,
by Lemma 5, 𝜙 is a lower semicontinuous function in (𝑋, 𝑑).
Next, from 𝑑(𝑥, 𝑦) ≤ 𝜎(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋, we get

𝜃 (𝑑 (𝑥, 𝑓𝑥)) ≤ 𝜙 (𝑥) − 𝜙 (𝑓𝑥) , (31)

for all 𝑥, 𝑦 ∈ 𝑋. By an application of Theorem 21, we obtain
that 𝑓 has a fixed point.

Theorem 24. Let (𝑋, 𝜎) be a 0
𝜎
-complete metric-like space.

Let 𝐹 : 𝑋 → 2
𝑋 be a multivalued mapping such that 𝐹𝑥 is

nonempty. Assume that for all 𝑥 ∈ 𝑋 there exists 𝑦 ∈ 𝐹𝑥 such
that

𝜃 (𝜎 (𝑥, 𝑦)) ≤ 𝜙 (𝑥) − 𝜙 (𝑦) , (32)

where the function 𝜃 ∈ Θ and 𝜙 : 𝑋 → [0, +∞) is a 0
𝜎
-lower

semicontinuous function. Then 𝐹 has a fixed point.

Proof. The multivalued mapping 𝐹 has a selection 𝑓 that
satisfies the condition (30). Then by Theorem 23, the multi-
valued mapping 𝐹 has a fixed point.

Example 25. Let again 𝑋 = {−2, −1} ∪ [0, +∞) and 𝜎 : 𝑋 ×

𝑋 → [0, +∞) be defined by 𝜎(𝑥, 𝑦) = |𝑥 − 𝑦| if 𝑥 ̸= 𝑦 and

𝜎 (𝑥, 𝑥) =

{

{

{

1 if 𝑥 ∈ {−2, −1} ,

0 if 𝑥 ∈ [0, +∞) ,

(33)

so that (𝑋, 𝜎) is a 0
𝜎
-complete metric-like space and 𝑋

0
:=

{𝑥 ∈ 𝑋 : 𝜎(𝑥, 𝑥) = 0} = [0, +∞). Then, consider the
multivalued mapping 𝐹 : 𝑋 → 2

𝑋 defined by

𝐹𝑥 =

{
{
{
{
{
{

{
{
{
{
{
{

{

{0} if 𝑥 ∈ {−2, −1} ,

[

𝑥

4

,

𝑥

2

] if 𝑥 ∉ {−2, −1} ∪ [1, 2] ,

[

𝑥

2

, 1] if 𝑥 ∈ [1, 2] .

(34)

Clearly, for all 𝑥 ∈ 𝑋, 𝐹𝑥 ̸= 0 and there exists 𝑦 ∈ 𝐹𝑥 given by

𝑦 =

{
{
{

{
{
{

{

0 if 𝑥 ∈ {−2, −1} ,

𝑥

4

if 𝑥 ∉ {−2, −1} ∪ [1, 2] ,

1 if 𝑥 ∈ [1, 2] ,

(35)

such that

𝜎 (𝑥, 𝑓𝑥) =

{
{
{

{
{
{

{

|𝑥| if 𝑥 ∈ {−2, −1} ,

3

4

𝑥 if 𝑥 ∉ {−2, −1} ∪ [1, 2] ,

𝑥 − 1 if 𝑥 ∈ [1, 2] .

(36)

ThusTheorem 24 is applicable in this case with 𝜙(𝑥) = |𝑥| for
all 𝑥 ∈ 𝑋 and 𝜃(𝑡) = 𝑡 for all 𝑡 ∈ [0, +∞).

4. Ekeland’s Variational Principle

As an application of our technique, we prove Ekeland’s
variational principle in the setting of metric-like spaces. For
a comparative study, see also [19].

Theorem 26 (Ekeland’s variational principle). Let (𝑋, 𝜎) be
a 0
𝜎
-complete metric-like space with 𝑋

0
̸= 0 and consider a

function 𝜙 : 𝑋 → (−∞, +∞] that is 0
𝜎
-lower semicontinu-

ous, bounded from below, and not identical to +∞. Let 𝜀 > 0

be given and let 𝑥 ∈ 𝑋 be such that 𝜙(𝑥) ≤ inf
𝑡∈𝑋

𝜙(𝑡)+𝜀.Then
there exists 𝑦 ∈ 𝑋 such that

(i) 𝜙(𝑦) ≤ 𝜙(𝑥);
(ii) 𝜎(𝑥, 𝑦) ≤ max{1, 𝜎(𝑥, 𝑥)};
(iii) for all 𝑤 ̸= 𝑦 in𝑋, 𝜙(𝑤) > 𝜙(𝑦) − 𝜀𝜎(𝑦, 𝑤).

Proof. Let 𝑑 : 𝑋×𝑋 → [0, +∞) be themetric defined by (6);
then, by Lemma 5, we deduce that (𝑋, 𝑑) is a complete metric
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space. Further, by Lemma 13 we deduce that the function 𝜙 is
lower semicontinuous in (𝑋, 𝑑). By the Ekeland’s variational
principle in metric space there exists 𝑦 ∈ 𝑋 such that

(j) 𝜙(𝑦) ≤ 𝜙(𝑥);
(jj) 𝑑(𝑥, 𝑦) ≤ 1;
(jjj) for all 𝑤 ̸= 𝑦 in𝑋, 𝜙(𝑤) > 𝜙(𝑦) − 𝜀𝑑(𝑦, 𝑤).

This implies that (i)–(iii) hold. In fact (i) reduces to (j).
Next, if 𝑦 ̸= 𝑥, then 𝜎(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) ≤ 1 and so (ii) holds.
Finally, (iii) holds since𝑤 ̸= 𝑦 implies 𝜎(𝑦, 𝑤) = 𝑑(𝑦, 𝑤).

Building onTheorem 26, we present the second theorem
of this section.

Theorem27. Let (𝑋, 𝜎) be a 0
𝜎
-completemetric-like space and

𝜙 : 𝑋 → [0, +∞) a 0
𝜎
-lower semicontinuous function. Given

𝜀 > 0, then there exists 𝑦 ∈ 𝑋 such that

𝜙 (𝑦) ≤ inf
𝑡∈𝑋

𝜙 (𝑡) + 𝜀,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑤 ∈ 𝑋, 𝜙 (𝑤) ≥ 𝜙 (𝑦) − 𝜀𝜎 (𝑦, 𝑤) .

(37)

Proof. To conclude, we recall that there exists at least a point𝑥
such that 𝜙(𝑥) ≤ inf

𝑡∈𝑋
𝜙(𝑡) + 𝜀. This implies that (37) follows

from (i) and (iii) of Theorem 26, respectively.

Remark 28. By comparingTheorems 26 and 27, it is clear that
the first is stronger than the second. In fact, the condition (ii)
of Theorem 26, which gives the whereabouts of point 𝑥 in𝑋,
does not have a counterpart in Theorem 27.

In view of Theorem 27, we can provide the following
alternative proof of Theorem 14 described in this paper.

Proof. By an application of Theorem 27 with 𝜀 = 1/2, we get
that there exists some point 𝑦 ∈ 𝑋 such that

for each 𝑡 ∈ 𝑋, 𝜙 (𝑡) ≥ 𝜙 (𝑦) −

1

2

𝜎 (𝑦, 𝑡) , (38)

where we assume that the function 𝜙 satisfies (13). The above
inequality also holds for 𝑡 = 𝑓𝑦; therefore

𝜙 (𝑦) − 𝜙 (𝑓𝑦) ≤

1

2

𝜎 (𝑦, 𝑓𝑦) . (39)

Next, putting 𝑥 = 𝑦 in (13), we obtain

𝜎 (𝑦, 𝑓𝑦) ≤ 𝜙 (𝑦) − 𝜙 (𝑓𝑦) . (40)

Combining together the above inequalities, we get

𝜎 (𝑦, 𝑓𝑦) ≤

1

2

𝜎 (𝑦, 𝑓𝑦) . (41)

This holds true unless 𝜎(𝑦, 𝑓𝑦) = 0 and therefore we deduce
that𝑓𝑦 = 𝑦.Then, the existence of a fixed point is proved.
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