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Due to the complexity and uncertainty of microbial fermentation processes, data coming from the plants often contain some
outliers. However, these data may be treated as the normal support vectors, which always deteriorate the performance of soft sensor
modeling. Since the outliers also contaminate the correlation structure of the least square support vector machine (LS-SVM), the
fuzzy pruning method is provided to deal with the problem. Furthermore, by assigning different fuzzy membership scores to data
samples, the sensitivity of themodel to the outliers can be reduced greatly.The effectiveness and efficiency of the proposed approach
are demonstrated through two numerical examples as well as a simulator case of penicillin fermentation process.

1. Introduction

For the limitation of advanced measurement techniques,
some important process variables in biochemical industrial
processes, such as product composition, product concentra-
tion, and biomass concentration, are difficult or impossible to
measure online. However, these variables are very important
for the products quality and the result of the whole reaction
process. A soft sensor model is always needed to construct
between variables which are easy to measure online and one
which is difficult to measure. Then a value of an objective
variable can be inferred by this model. The approaches and
corresponding applications of soft sensors have been dis-
cussed in some literature [1–4]. For example, partial least
squares (PLS) and principal component analysis (PCA) [5, 6]
are the most popular projection based soft sensor modeling
methods for modeling and prediction. However, a drawback
of these models is their linear nature. If it is known that the
relation between the easy-to-measure and the difficult-to-
measure variables is nonlinear, then a nonlinear modeling
method should be used. In last decades, data-based soft
sensor modeling approaches have been intensively studied,
such as nonlinear partial least squares (NPLS), nonlinear
principal component analysis (NPCA), artificial neural net-
works (ANNs), and support vector machine (SVM) [7–
10]. Although the NPCA is a well-established and powerful

algorithm, it has several drawbacks. One of them is that the
principal components describe very well the input space but
do not reflect the relation between the input and the output
data space. A solution to this drawback is given by the NPLS
method. NPLS models are appropriate to study the behavior
of the process. Unfortunately, sometimes the algorithm of
NPLS is available only for specific nonlinear relationships.
To break through the limitation of NPLS, ANN is adopted to
solve the complexity andhighly nonlinear problem in the case
of the sample data tending to infinity. The disadvantage of
ANNs is that during their learning they are prone to get stuck
in localminima,which can result in suboptimal performance.
Meanwhile, SVM has been demonstrated to work very well
for a wide spectrumof applications under the limited training
data samples, so it is not surprising that it has also been
successfully applied as soft sensor.

Support vector machine (SVM) proposed by Vapnik [11,
12], which is based on statistical learning theory, obtains
the optimal classification of the sample data through a
quadratic programming. So it can balance the risk of learning
algorithm and promotion of the extension ability. As a
sophisticated soft sensor modeling method, SVM has a lot of
advantages in solving small sample data and nonlinear and
high dimensional pattern recognition and has been applied
to the fermentation process successfully [13, 14]. Least squares
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support vector machine (LS-SVM) proposed by Suykens and
Vandewalle [15] is an extension of the standard SVM. It can
solve linear equations with faster solution speed and figure
out the robustness, sparseness, and large-scale computing
problems. However, all training data are treated as the normal
support vector which loses the sparseness of SVM [16–19].
In this paper, the effective work addressed in Section 3 could
improve the performance of the standard LS-SVM effectively.

Penicillin fermentation process is a typical biochemi-
cal reaction process with the features of nonlinearity and
dynamic, which is caused by the factors such as genetic
variation of somatic cell, microbial sensitivity to environment
changing, and instability of rawmaterial and seed quality that
bring about serious nonlinearity and uncertainty [20]. For
this process, key variables are concentration of the biomass,
product, and substrate which are difficult to measure directly.
However, some other auxiliary variables are easy to measure.
So we choose aeration rate, dissolved oxygen concentration,
agitator power, and others as auxiliary variables and the con-
centration of penicillin as the quality variable in this process.
The next step is to construct the inferred model between the
auxiliary variables and the quality variable. Outliers are com-
monly encountered in penicillin fermentation process which
may be treated as the normal support vector and always
has a bad influence on the precision of the soft sensor
model. So applying the idea of fuzzy pruning for LS-SVM
algorithm to cut off these outliers and reduce the number of
support vectors will improve the sparseness and precision of
the original LS-SVM model. Also assigning different fuzzy
membership scores to sample data, the sensitivity to the
outliers is reduced and the accuracy of the model is further
improved as well. Finally, the LS-SVM and fuzzy pruning
based LS-SVMsoft sensormodels for the penicillin fermenta-
tion process are constructed based on the optimal parameters
obtained by using particle swarm optimization algorithm
[21, 22]. Thus a soft sensor model with higher prediction
precision and better generalization capability for penicillin
fermentation process is completed.

The remainder of this paper is organized as follows.
Section 2 begins with the revisit of LS-SVM algorithm and
lays out themathematical formulations.Detailed descriptions
of improved LS-SVM based on fuzzy pruning algorithm are
provided in Section 3. Two numerical simulation examples
are illustrated in Section 4 which aims to demonstrate the
effectiveness of the proposed method in developing soft sen-
sors.Thereafter, a soft sensor application for the penicillin fer-
mentation process using the proposed approach is presented
in Section 5. Section 6 draws conclusions based on the results
obtained in this paper.

2. The LS-SVM Revisit

Given the training data {𝑇 = (𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, 2, 3, . . . , 𝑙}, 𝑥

𝑖
∈

𝑅
𝑛 and 𝑦

𝑖
∈ 𝑅 denote the input patterns and one-dimension

output data, respectively. Similar to the standard SVM,
LS-SVMnonlinear regression is mapping the data to a higher
dimension space 𝐹 by using a nonlinear function 𝜙(𝑥) and

constructing an optimal linear regression function in the
higher dimension space:

𝑦 (𝑥) = 𝜔
𝑇
⋅ 𝜙 (𝑥) + 𝑏. (1)

Here 𝜔 is the weight value and 𝑏 is the threshold.
The main difference between LS-SVM and SVM is that

LS-SVM adopts the equality constraints instead of inequal-
ity constraints, and empirical risk is the deviation of the
quadratic rather than one square deviation. By introducing
the Kernel function 𝜎 and the penalty factor𝐶, one considers
the following optimization problem:

min
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(2)

To solve the optimization problem, the constrained opti-
mization problem should be converted to unconstrained
optimization problem first. By introducing Lagrange multi-
plier 𝛼

𝑖
, we obtain the following Lagrange function as follows:

𝐿 (𝜔, 𝑏, 𝑒, 𝛼) = 𝐽 (𝜔, 𝑒) −

𝑙
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𝑖
} . (3)

Then according to theMercer condition, the specific form
of the nonlinear mapping does not need to be known a
priori. Suppose the kernel function takes the form 𝑘(𝑥

𝑖
, 𝑥
𝑗
) =

𝜙(𝑥
𝑖
) ⋅ 𝜙(𝑥

𝑗
); this optimization problem could be changed

into several linear equations. Based on the conditions of
Karush-Kuhn-Tucker, calculating the partial derivative of
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) with respect to 𝜔, 𝑏, 𝑒
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, and 𝛼
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, respectively, and

setting to zero yield
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(4)

To simplify the equations, we can get a compressed matrix
equation:

(
0 𝑒
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𝑒 𝑄 +
1

𝐶
𝐼
)(
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0
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where 𝑄
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= 𝜙(𝑥
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)
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denotes the penalty factor, and 𝐼 denotes the identity matrix.
Solving the matrix equation (5), eventually the function of
least squares vector machines is estimated as

𝑦 (𝑥) =

𝑙

∑
𝑖=1

𝛼
𝑖
𝑘 (𝑥, 𝑥

𝑖
) + 𝑏. (6)
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3. Improved LS-SVM with Fuzzy
Pruning Algorithm

3.1. The Idea of Fuzzy Pruning Algorithm. Compared with
SVM, the computational load of LS-SVM is reduced greatly.
However, LS-SVM loses its sparseness because all training
data are treated as support vectors even the outliers which
always have a bad influence on the precision of the soft sensor
model. In this paper, aiming tominimize effects of the outliers
as well as the antidisturbance ability of sampling data [23, 24],
fuzzy pruning approach is employed to handle the problem.
Thenumber of the support vectors is reducedwhich improves
the sparseness of LS-SVM and model accuracy as well.
Furthermore, the sensitivity to outliers of the proposed algo-
rithm can be reduced through the fuzzy membership score
assigned to the data samples.

The absolute value of Lagrange multiplier determines the
importance of data in the training process which means the
higher the absolute value, the greater the influence degree.
The absolute value of Lagrange multiplier of outliers is often
higher than that of the normal data. Based on this situation,
the data which have the higher absolute value of Lagrange
multiplier will be cut off according to certain proportion (e.g.,
5%). When these data are cut off, the impact of outlier data
is minimized, and the model sparseness and accuracy are
improved simultaneously.

Since Lagrange multiplier plays an important role in
constructing model, a fuzzy membership score is introduced
to adjust the weight of data for modeling. Fuzzy membership
value is defined as

𝑠
𝑖
= (1 − 𝛿)

󵄨󵄨󵄨󵄨𝛼𝑖
󵄨󵄨󵄨󵄨 − |𝛼|min

|𝛼|max − |𝛼|min
, 0 ≤ 𝛿 < 1, (7)

where 𝑠
𝑖
is the fuzzymembership score and 𝛼

𝑖
is the Lagrange

multiplier of the 𝑖th sample data. Meanwhile, 𝛿 need to be
given an appropriate value between 0 and 1.

It is noticed that the fuzzy membership score is near
to zero when Lagrange multiplier is very small. So the cor-
responding sampling data may play no role in modeling,
whichmeans a part of sample data can be cut off according to
the absolute value of Lagrangemultiplier that is very small. As
a result, the sparseness of the proposed LS-SVM algorithm is
further improved.

3.2. Description of Fuzzy Pruning Based LS-SVM Algorithm.
Adding fuzzy membership score 𝑠

𝑖
to error 𝑒

𝑖
, the new

quadratic programming problem is expressed as follows:
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(8)
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Figure 1: Lagrange multiplier value.
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Figure 2: Prediction output of one-dimension function.

Since the direct optimization is not tractable, Lagrange
method is introduced to convert it to become an uncon-
strained optimization problem.Therefore, the Lagrange func-
tion can be obtained as

𝐿 (𝜔, 𝑏, 𝑒, 𝛼) = 𝐽 (𝜔, 𝑒) −

𝑙

∑
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𝛼
𝑖
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𝜙 (𝑥
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𝑖
− 𝑦
𝑖
} . (9)

The optimization requires the computation of the deriva-
tive of 𝐿(⋅) with respect to 𝜔, 𝑏, 𝑒

𝑖
, and 𝛼

𝑖
, respectively.

Thereafter, a set of linear equations are obtained and can be
simplified as
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1
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}, and 𝐶 > 0 denotes the penalty factor.

Eventually, the fuzzy pruning based LS-SVM function
takes the form as follows:

𝑦 (𝑥) =

𝑙

∑
𝑖=1

𝛼
∗

𝑖
𝑘 (𝑥, 𝑥

𝑖
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∗
. (11)
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3.3. The Modeling Steps Based on Fuzzy Pruning LS-SVM.
The proposed LS-SVM algorithm based on fuzzy pruning
technique can be summarized as follows.

(1) Based on the training data set {𝑥
𝑖
, 𝑦
𝑖
}
𝑙

𝑖=1
, we can

calculate the Lagrange multiplier 𝛼
𝑖
.

(2) Choose a suitable 𝛿; the fuzzy membership scores 𝑠
𝑖

of training data are obtained from (7).

(3) Build a new data set {𝑥
𝑖
, 𝑦
𝑖
, 𝑠
𝑖
}
𝑙

𝑖=1
, and train the new

data set under the scheme of fuzzy pruning LS-SVM
algorithm again; then we can get the new 𝛼

∗

𝑖
.

(4) Sort the Lagrange multiplier 𝛼
𝑖
, and cut off the data

taking larger Lagrangemultiplier according to certain
proportion (e.g., 5%).

(5) Then the fuzzy pruning based LS-SVM algorithm is
applied to train the current data set. If the fitting per-
formance degrades, the training procedure is done.
Otherwise, switch to (4).

4. Two Numerical Simulations

4.1. One-Dimension Function. The effectiveness and effi-
ciency of handing the outliers through the proposed
approach are evaluated through two numerical functions. All
the simulation experiments are run on a 2.8GH CPU with
1024MB RAM PC using Matlab 7.11.

Consider one-dimension function defined as follows:

𝑦 =
sin𝑥
𝑥

, −15 < 𝑥 < 15. (12)

100 data are generated in [−15, 15] randomly as the training
data set. To test the performance of detecting outliers, 30%
disturbance is added to the 20th, 40th, 60th, 80th, and 100th
data sample, respectively. And another 100 data are collected
for evaluation.

It can be seen from Figure 1 that the outliers have the
higher value of Lagrange multiplier as mentioned above.
Using PSO algorithm (𝑤 keeps linear decline from 1.2 to 0.4,
population size is 20, and maximum number of iterations of
the population is 200) to optimize kernel parameter 𝜎 and
the penalty factor 𝐶, then the LS-SVM and fuzzy pruning
LS-SVM models are constructed to predict and compare
(Figures 2 and 3). Figure 3 is the 45-degree line comparison
between different measurements. If two measurements agree
with the true outputs, then all data points will fall into the
black 45-degree line. The blue circles denote the LS-SVM
measurements and the pink asterisks denote the model
predictions of fuzzy pruning LS-SVM. We can see that the
estimation with the fuzzy pruning LS-SVM fits the black line
better and thus provides a superior performance compared to
the LS-SVM observation.

The detailed results such as the maximum absolute error
(Max EE), themean absolute error (Mean EE), and rootmean
square error (RMSE) are calculated and listed in Table 1. The
RMSE decreased from 1.21% to 0.052%, which indicates the
fuzzy pruning LS-SVM has higher prediction performance
and better antidisturbance.
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4.2. Two-Dimension Function. A two-dimension function is
described as

𝑧 = sin𝑥 cos𝑦, 𝑥 ≥ −𝜋, 𝑦 ≤ 𝜋. (13)

100 data are generated randomly in the range of [−𝜋, 𝜋],
whichmakes up a training data set.Then the 20th, 40th, 60th,
80th, and 100th data points are added with 30% disturbance
separately and the performance is tested by using another
different 100 data. As is shown in Figure 4, Lagrange multi-
plier value of data points that corrupted by some disturbance
always has the higher value. Compared results are shown in
Figure 5. From Table 2, prediction accuracy of fuzzy pruning
LS-SVM is much higher than LS-SVM, which indicates the
five outliers have been detected and cut off effectively using
the proposed method.

5. An Experiment Simulation

The Pensim simulator provides a simulation of a fed-batch
fermentation process for penicillin production. The main
component of the process is a fermenter, where the biological
reaction takes place. It fully considers the most factors
influencing the penicillin fermentation process, such as
PH, aeration rate, substrate feed rate, carbon dioxide, and
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Table 1: One-dimension function predicted results.

Model 𝐶 𝜎 MaxEE Mean EE RMSE
LS-SVM 4616.2 1.5118 0.0640 0.0079 0.0121
Fuzzy pruning LS-SVM 4616.2 1.5118 0.0028 0.0002 5.2456𝑒 (−4)
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Figure 5: Prediction error of two-dimension function.
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Figure 6: Lagrange multiplier value.

penicillin production. The practicability and validity of the
platform have been fully verified [25–27] and it has been a
benchmark problem for modeling and diagnosis detection.

In this paper Pensim simulation platform is used to gen-
erate the original 100 training data. Then 30% disturbance is
added to the 20th, 30th, 40th, 60th, and 85th, respectively, and
another 100 data are used as test data to verify the constructed
model. The simulation results are shown in Figures 7 and 8.

To further exhibit the difference of the two methods, the
indexes of Max EE, Mean EE, and RMSE of each method are
also calculated and listed in Table 3.

Compared to LS-SVM, the proposed approach makes
RMSE decrease from 2.44% to 0.97%, which indicates the
fuzzy pruning LS-SVM has better prediction performance.
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Figure 7: Penicillin concentration prediction.

Lagrange multiplier values according to each data point
are shown in Figure 6, and we can easily find out the outliers
obviously have much bigger Lagrange multiplier. Figure 8
is the 45-degree line comparison between two different soft
sensors. Clearly, the fuzzy pruning based LS-SVM exhibits
the better capability of approximating the true process. It has
effectively handled the disturbance of the outliers so that their
impact on modeling is minimized to lowest.
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Table 2: Two-dimension function predicted results.

Model 𝐶 𝜎 MaxEE Mean EE RMSE
LS-SVM 9528.2 1.4557 0.0475 0.0146 0.0207
Pruning fuzzy LS-SVM 9528.2 1.4557 0.0415 0.0029 0.0066

Table 3: The predicted concentration of penicillin.

Model 𝐶 𝜎 MaxEE Mean EE RMSE
LS-SVM 2131.3 2.5448 0.0678 0.0191 0.0244
Pruning fuzzy LS-SVM 2131.3 2.5448 0.0261 0.0075 0.0097
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Figure 8: 45-degree comparison of the two soft sensors.

6. Conclusions

A novel LS-SVM method based on fuzzy pruning technique
is investigated in this paper. Pruning algorithm is applied to
cut off the outliers. Therefore the number of support vectors
is reducedwhich improves the sparseness and accuracy of LS-
SVM algorithm. On the other hand, assigning different fuzzy
membership score to each of the sample data makes those
sample data that play a small role in soft sensor modeling not
participate in the construction of the model. Furthermore,
the sensitivity to the outliers of the proposed algorithm can
be reduced through the fuzzy membership score. The simu-
lation examples demonstrated that the proposed method can
effectively handle the outliers and achieved satisfied perfor-
mance of modeling and prediction.
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