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An adaptive neural networks chaos synchronization control method is proposed for a four-dimensional energy resource demand-
supply system with input constraints. Assuming the response system contains unknown uncertain nonlinearities and unknown
stochastic disturbances, the neural networks and robust terms are used to identify the nonlinearities and overcome the stochastic
disturbances, respectively. Based on stochastic Lyapunov stability and robust adaptive theories, an adaptive neural networks
synchronization control method is developed. In the design process, an auxiliary design system is employed to address input
constraints. Simulation results, which fully coincide with theoretical results, are presented to demonstrate the obtained results.

1. Introduction

Energy resource system is a kind of complex nonlinear
system. Over the last two decades, much attention has been
paid to the chaos synchronization in this class system. Ref-
erence [1] established a three-dimensional energy resource
demand-supply system based on the real energy resources
demand-supply system in the East and theWest of China. By
adding a new variable to consider the renewable resources,
a four-dimensional energy resource system was proposed
in [2]. The dynamics behaviors of the four-dimensional
energy resource system have been analyzed by means of
the Lyapunov exponents and bifurcation diagrams. Also the
same as the above-mentioned power systems, this four-
dimensional energy resource system is with rich chaos behav-
iors. The problem of chaotic control for the energy resource
system was considered in [3]. Feedback control and adaptive
control methods were used to suppress chaos to unstable
equilibrium or unstable periodic orbits, where only three
of the system’s parameters were supposed to be unknown.
Reference [4] investigated the robust chaos synchronization
problem for the four-dimensional energy resource systems
based on the sliding mode control technique. The control
of energy resource chaotic system was investigated by time-
delayed feedback control method in [5]. Four linear control

schemes are proposed to a four-dimensional energy resource
system in [6]. Based on stability criterion of linear system
and Lyapunov stability theory, respectively, the chaos syn-
chronization problems for energy resource demand-supply
system were discussed using two novel different control
methods in [7].

In many practical dynamic systems (including the energy
resource demand-supply system), physical input saturation
on hardware dictates that the magnitude of the control signal
is always constrained. Saturation is a potential problem for
actuators of control systems. It often severely limits system
performance, giving rise to undesirable inaccuracy or leading
instability [8, 9]. The development of control schemes for
systems with input saturation has been a task of major
practical interest as well as theoretical significance. The
proposed approaches in [1–7] assume that all the components
of the considered energy resource demand-supply systems
are in good operating conditions and do not consider the
problem of saturation. Reference [10] proposed two differ-
ent chaos synchronization methods for a class of energy
resource demand-supply systems with input saturation, but
the response system in [10] did not contain unknown uncer-
tain nonlinearities and unknown stochastic disturbances. It
is well known that stochastic disturbances also often exist
in many practical systems. Their existence is a source of
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instability of the control systems; thus, the investigations
on stochastic control systems have received considerable
attention in recent years [11–22]. Since the emergence of the
stochastic stabilization theory in the 1960s, the progress has
been constructed by a fundamental technical Itô lemma, and
the control design for stochastic systems is more difficult
compared with deterministic systems.

Motivated by the above observations, an adaptive neural
networks chaos synchronization method is proposed for
a four-dimensional energy resource demand-supply system
with input constraints. Assume that the response system
contains unknown uncertain nonlinearities and unknown
stochastic disturbances. In the design, the neural networks
and robust terms are used to identify the nonlinearities and
overcome the stochastic disturbances, respectively. Based on
Lyapunov stability, an adaptive synchronization method is
developed in order to make the states of two chaotic sys-
tems asymptotically synchronized. The new auxiliary design
system is employed to address input constraints. Numerical
simulations are provided to illustrate the effectiveness of the
proposed approach.

Compared with the existing results, the main contribu-
tions of the proposedmethod are as follows: (i) the controlled
response system of this paper contains unknown nonlin-
earities, and the proposed method can solve the unknown
nonlinearity problem by neural networks, but the methods
of [1–8, 10] cannot solve this problem; (ii) the controlled
response system of this paper contains stochastic distur-
bances, and the proposed method can solve the stochastic
disturbances problem based on Itô’s lemma and stochastic
LaSalle’s theorem, but the methods of [1–8, 10] cannot solve
this problem; (iii) an auxiliary design system is employed to
address input constraints problem, and the methods of [1–8]
can solve this problem.

2. Energy Resource Chaotic System

The four-dimensional energy resource system can be ex-
pressed as follows (see [2, 4, 6]):
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where 𝑥(𝑡) is the energy resource shortage in A region, 𝑦(𝑡)

is the energy resource supply increment in B region, and
𝑧(𝑡) and 𝑤(𝑡) are energy resource import in A region and
renewable energy resource in A region, respectively; 𝑀, 𝑁,
𝑎
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𝑗
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𝑗
, and 𝑑
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(𝑖 = 1, 2, 𝑗 = 1, 2, 3) are parameters that

are all positive real. The dynamics of this system has been
extensively studied in [2, 4, 6].

When the system parameters are taken as the following
values, this system exhibits chaotic behavior: 𝑀 = 1.8, 𝑁 =

1, 𝑎

1
= 0.1, 𝑎

2
= 0.15, 𝑏

1
= 0.06, 𝑏

2
= 0.082, 𝑏

3
= 0.07,

𝑐

1
= 0.2, 𝑐

2
= 0.5, 𝑐

3
= 0.4, 𝑑

1
= 0.1, 𝑑

2
= 0.06, and 𝑑

3
= 0.07.

−4
−2

0
2

4
6

−15

−10
−5

0

5
0

5

10

15

x
y

z

Figure 1: Three-dimensional view 𝑥 − 𝑦 − 𝑧.

Without the particular statement, these values are adopted in
this whole paper. Figures 1, 2, and 3 show the phase portraits
with initial conditions of 𝑥(0) = 0.82, 𝑦(0) = 0.29, 𝑧(0) =

0.48, and 𝑤(0) = 0.1.

3. Synchronization of the Energy
Resource System

In this section, a controller will be designed in order to make
the response system track the drive system. The drive system
with subscript 1 is written as
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Assume that the controlled response system with subscript 2
contained uncertain nonlinearities (unknown smooth non-
linear functions) and unknown external stochastic distur-
bance, and it can be expressed as the following dynamics:
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where V
𝑖
is the actual controller to be designed and

𝑢

𝑖
(V
𝑖
(𝑡)) (𝑖 = 1, 2, 3, 4) is the plant input subject to saturation
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Figure 2: Three-dimensional view 𝑦 − 𝑥 − 𝑤.
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Figure 3: Three-dimensional view 𝑤 − 𝑧 − 𝑥.

type nonlinearly. 𝑝

𝑖
(𝑒

𝑖
), 𝑖 = 1, 2, 3, 4, are uncertain functions,

and 𝑊 ∈ 𝑅

𝑛 is an independent standard Brownian motion
defined on a complete probability space, with the incremental
covariance 𝐸{𝑑𝑊 ⋅ 𝑑𝑊

𝑇
} = 𝜎(𝑡)𝜎(𝑡)

𝑇
𝑑𝑡.

Remark 1. If no input saturation, uncertain nonlinearities,
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where 𝑢

𝑖𝑀
is a known bound of 𝑢

𝑖
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𝑖
(𝑡)).

To design an adaptive controller, the following basic
assumption is made for the system (3).
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To establish stochastic stability as a preliminary, consider
a stochastic nonlinear system:
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Lemma 3 (see [16, 17] (stochastic LaSalle’s theorem)). Con-
sider (5) and suppose that there exists a twice continu-
ously differentiable function 𝑉(𝑥, 𝑡), which is positive definite,
decrescent, and radially unbounded, and another nonnegative
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where Tr denotes the matrix trace.Then, the equilibrium 𝑥 = 0
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In order to solve the unknown nonlinear 𝑓

𝑖
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3, 4), the following radial basis function neural networks
(RBFNNs) [23] are used to identify them similar to fuzzy logic
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𝑇 is the center of the receptive field
and 𝜂 is the width of the Gaussian function.

According to the literatures [23], the neural network
(8) can approximate any continuous function ℎ(𝑋) over a
compact set 𝐷 ⊂ 𝑅
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4. Adaptive Synchronization of the Energy
Resource System

For different initial conditions of systems (2) and (3), the two
coupled systems can achieve synchronization by designing
an appropriate control input 𝑢
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(𝑡). First, we define the

synchronization error vector between systems (2) and (3) as
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3
(V
3

(𝑡))]𝑑𝑡+𝑝

3
(𝑒

3
) 𝑑𝑊,

𝑑𝑒

4
= [−

̇

ℎ

4
+ 𝑑

1
𝑒

1
− 𝑑

2
𝑒

4
+ 𝑑

1
ℎ

1
− 𝑑

2
ℎ

4
+ 𝑊

∗𝑇

4
𝜑

4
(𝑤

2
)

+ 𝜀

4
(𝑤

2
) + 𝑢

4
(V
4

(𝑡)) ] 𝑑𝑡 + 𝑝

4
(𝑒

4
) 𝑑𝑊,

(14)

where |𝜀

𝑖
| ≤ 𝜀

∗

𝑖
(𝑖 = 1, 2, 3, 4) and 𝜀

∗

𝑖
is a positive constant.

In this section, we assume that all the parameters of
the energy resource system are unknown. For convenience,
similar to [7], we define 𝑎

3
= 𝑎

1
/𝑀, 𝑏

4
= 𝑏

3
𝑁, 𝑞

1
= 𝑐

1
𝑐

2
, and

𝑞

2
= 𝑐

1
𝑐

3
; the system (14) can be rewritten as

𝑑𝑒

1
= [−

̇

ℎ

1
+ 𝑎

1
𝑒

1
− 𝑎

2
(𝑒

2
+ 𝑒

3
) − 𝑎

3
𝑥

2

2
+ 𝑎

3
𝑥

2

1
− 𝑑

3
𝑒

4

+ 𝑎

1
ℎ

1
− 𝑎

2
(ℎ

2
+ ℎ

3
) − 𝑑

3
ℎ

4
+ 𝑊

∗𝑇

1
𝜑

1
(𝑥

2
) + 𝜀

1
(𝑥

2
)

+ 𝑢

1
(V
1

(𝑡)) ] 𝑑𝑡 + 𝑝

1
(𝑒

1
) 𝑑𝑊,

𝑑𝑒

2
= [−

̇

ℎ

2
− 𝑏

1
𝑒

2
− 𝑏

2
𝑒

3
+ 𝑏

4
𝑒

1
− 𝑏

3
𝑥

2

2

+ 𝑏

3
𝑥

2

1
+ 𝑏

3
𝑥

2
𝑧

2
− 𝑏

3
𝑥

1
𝑧

1
− 𝑏

1
ℎ

2

− 𝑏

2
ℎ

3
+ 𝑏

4
ℎ

1
+ 𝑊

∗𝑇

2
𝜑

2
(𝑦

2
) + 𝜀

2
(𝑦

2
)

+ 𝑢

2
(V
2

(𝑡)) ] 𝑑𝑡 + 𝑝

2
(𝑒

2
) 𝑑𝑊,

𝑑𝑒

3
= [−

̇

ℎ

3
− 𝑞

2
𝑒

3
+ 𝑞

1
𝑥

2
𝑧

2
− 𝑞

1
𝑥

1
𝑧

1
− 𝑞

2
ℎ

3
+ 𝑊

∗𝑇

3
𝜑

3
(𝑧

2
)

+ 𝜀

3
(𝑧

2
) + 𝑢

3
(V
3

(𝑡)) ] 𝑑𝑡 + 𝑝

3
(𝑒

3
) 𝑑𝑊,

𝑑𝑒

4
= [−

̇

ℎ

4
+ 𝑑

1
𝑒

1
− 𝑑

2
𝑒

4
+ 𝑑

1
ℎ

1
− 𝑑

2
ℎ

4
+ 𝑊

∗𝑇

4
𝜑

4
(𝑤

2
)

+ 𝜀

4
(𝑤

2
) + 𝑢

4
(V
4

(𝑡)) ] 𝑑𝑡 + 𝑝

4
(𝑒

3
) 𝑑𝑊.

(15)

Define the dynamic system as

̇

ℎ

𝑖
= −ℎ

𝑖
+ (𝑢

𝑖
− V
𝑖
) , 𝑖 = 1, 2, 3, 4. (16)

Choose the following Lyapunov function candidate 𝑉 as

𝑉 =

1

2

(𝑒

2

1
+ 𝑒

2

2
+ 𝑒

2

3
+ 𝑒

2

4
) +

̃

𝑊

𝑇

1
̃

𝑊

1
+

̃

𝑊

𝑇

2
̃

𝑊

2
+

̃

𝑊

𝑇

3
̃

𝑊

3

+

̃

𝑊

𝑇

4
̃

𝑊

4
+ 𝑎

2

1
+ 𝑎

2

2
+ 𝑎

2

3
+

̃

𝑏

2

1
+

̃

𝑏

2

2
+

̃

𝑏

2

3
+

̃

𝑏

2

4

+

̃

𝑑

2

1
+

̃

𝑑

2

2
+

̃

𝑑

2

3
+ 𝑞

2

1
+ 𝑞

2

2
,

(17)

where 𝑎

𝑖
= 𝑎

𝑖
− 𝑎

𝑖
, ̃

𝑑

𝑖
= 𝑑

𝑖
−

̂

𝑑

𝑖
(𝑖 = 1, 2, 3), ̃

𝑊

𝑗
= 𝑊

∗

𝑗
−

̂

𝑊

𝑗
,

̃

𝑏

𝑗
= 𝑏

𝑗
−

̂

𝑏

𝑗
(𝑗 = 1, 2, 3, 4), and 𝑞

𝑘
= 𝑞

𝑘
− 𝑞

𝑘
(𝑘 = 1, 2).
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Similar to [16, 17], the ℓ infinitesimal generator of 𝑉 along
with the solutions of (15) is

ℓ𝑉 = 𝑒

1
[ℎ

1
+ V
1

+ 𝑎

1
𝑒

1
− 𝑎

2
(𝑒

2
+ 𝑒

3
) − 𝑎

3
𝑥

2

2
+ 𝑎

3
𝑥

2

1

−

̂

𝑑

3
𝑒

4
+ 𝑎

1
ℎ

1
− 𝑎

2
(ℎ

2
+ ℎ

3
) −

̂

𝑑

3
ℎ

4
+ 𝑝

1
(𝑡)

+

̂

𝑊

𝑇

1
𝜑

1
(𝑥

2
) + 𝜀

1
(𝑥

2
)]

+ 𝑒

2
[ℎ

2
+ V
2

−

̂

𝑏

1
𝑒

2
−

̂

𝑏

2
𝑒

3
+

̂

𝑏

4
𝑒

1
−

̂

𝑏

3
𝑥

2

2

+

̂

𝑏

3
𝑥

2

1
+

̂

𝑏

3
𝑥

2
𝑧

2
−

̂

𝑏

3
𝑥

1
𝑧

1
−

̂

𝑏

1
ℎ

2
−

̂

𝑏

2
ℎ

3

+

̂

𝑏

4
ℎ

1
+ 𝑝

2
(𝑡) +

̂

𝑊

𝑇

2
𝜑

2
(𝑦

2
) + 𝜀

2
(𝑦

2
)]

+ 𝑒

3
[ℎ

3
+ V
3

− 𝑞

2
𝑒

3
+ 𝑞

1
𝑥

2
𝑧

2
− 𝑞

1
𝑥

1
𝑧

1
− 𝑞

2
ℎ

3

+ 𝑝

3
(𝑡) +

̂

𝑊

𝑇

3
𝜑

3
(𝑧

2
) + 𝜀

3
(𝑧

2
)]

+ 𝑒

4
[ℎ

4
+ V
4

+

̂

𝑑

1
𝑒

1
−

̂

𝑑

2
𝑒

4
+

̂

𝑑

1
ℎ

1
−

̂

𝑑

2
ℎ

4

+ 𝑝

4
(𝑡) +

̂

𝑊

𝑇

4
𝜑

4
(𝑤

2
) + 𝜀

4
(𝑤

2
)]

+

̃

𝑊

𝑇

1
[𝑒

1
𝜑

1
(𝑥

2
) −

̇

̂

𝑊

1
] +

̃

𝑊

𝑇

2
[𝑒

2
𝜑

2
(𝑦

2
) −

̇

̂

𝑊

2
]

+

̃

𝑊

𝑇

3
[𝑒

3
𝜑

3
(𝑧

2
) −

̇

̂

𝑊

3
] +

̃

𝑊

𝑇

4
[𝑒

4
𝜑

4
(𝑤

2
) −

̇

̂

𝑊

4
]

+ 𝑎

1
[𝑒

2

1
+ 𝑒

1
ℎ

1
−

̇

�̂�

1
]

+ 𝑎

2
[𝑒

1
(𝑒

2
+ 𝑒

3
) − 𝑒

1
(ℎ

2
+ ℎ

3
) −

̇

�̂�

2
]

+ 𝑎

3
[−𝑒

1
𝑥

2

2
+ 𝑒

1
𝑥

2

1
−

̇

�̂�

3
] +

̃

𝑏

1
[−𝑒

2

2
− 𝑒

2
ℎ

2
−

̇

̂

𝑏

1
]

+

̃

𝑏

2
[−𝑒

2
𝑒

3
− 𝑒

2
ℎ

3
−

̇

̂

𝑏

2
]

+

̃

𝑏

3
[−𝑒

2
𝑥

2

2
+ 𝑒

2
𝑥

2

1
+ 𝑒

2
𝑥

2
𝑧

2
− 𝑒

2
𝑥

1
𝑧

1
−

̇

̂

𝑏

3
]

+

̃

𝑏

4
[𝑒

2
𝑒

1
+ 𝑒

2
ℎ

1
−

̇

̂

𝑏

4
] +

̃

𝑑

1
[𝑒

4
𝑒

1
+ 𝑒

4
ℎ

4
+ 𝑒

4
ℎ

1
−

̇

̂

𝑑

1
]

+

̃

𝑑

2
[−𝑒

2

4
−

̇

̂

𝑑

2
] +

̃

𝑑

3
[−𝑒

1
(𝑒

4
+ ℎ

4
) −

̇

̂

𝑑

3
]

+ 𝑞

1
[𝑒

3
𝑥

2
𝑧

2
− 𝑒

3
𝑥

1
𝑧

1
−

̇

�̂�

1
] + 𝑞

2
[−𝑒

2

3
− 𝑒

3
ℎ

3
−

̇

�̂�

2
]

+

4

∑

𝑖=1

𝑒

𝑖
𝜎

𝑖
(𝑒

𝑖
) .

(18)

Design the actual controllers V
𝑗
and parameters update laws

of ̂

𝑊

𝑗
, 𝑎

𝑖
, ̂

𝑑

𝑖
(𝑖 = 1, 2, 3), ̂

𝑏

𝑗
(𝑗 = 1, 2, 3, 4), and 𝑞

𝑘
(𝑘 = 1, 2)

as follows:

V
1

= − 𝑙

1
𝑒

1
− 𝜎

1
(𝑒

1
) − ℎ

1
− 𝑎

1
𝑒

1
+ 𝑎

2
(𝑒

2
+ 𝑒

3
)

+ 𝑎

3
𝑥

2

2
− 𝑎

3
𝑥

2

1
+

̂

𝑑

3
𝑒

4
− 𝑎

1
ℎ

1
+ 𝑎

2
(ℎ

2
+ ℎ

3
)

+

̂

𝑑

3
ℎ

4
−

̂

𝑊

𝑇

1
𝜑

1
(𝑥

2
) − sgn (𝑒

1
) (𝜀

∗

1
+ 𝛼

1
) ,

(19)

V
2

= − 𝑙

2
𝑒

2
− 𝜎

2
(𝑒

2
) − ℎ

2
+

̂

𝑏

1
𝑒

2
+

̂

𝑏

2
𝑒

3
−

̂

𝑏

4
𝑒

1

+

̂

𝑏

3
𝑥

2

2
−

̂

𝑏

3
𝑥

2

1
−

̂

𝑏

3
𝑥

2
𝑧

2
+

̂

𝑏

3
𝑥

1
𝑧

1
+

̂

𝑏

1
ℎ

2
+

̂

𝑏

2
ℎ

3

−

̂

𝑏

4
ℎ

1
−

̂

𝑊

𝑇

2
𝜑

2
(𝑦

2
) − sgn (𝑒

2
) (𝜀

∗

2
+ 𝛼

2
) ,

(20)

V
3

= − 𝑙

3
𝑒

3
− 𝜎

3
(𝑒

3
) − ℎ

3
+ 𝑞

2
𝑒

3
− 𝑞

1
𝑥

2
𝑧

2
+ 𝑞

1
𝑥

1
𝑧

1

+ 𝑞

2
ℎ

3
−

̂

𝑊

𝑇

3
𝜑

3
(𝑧

2
) − sgn (𝑒

3
) (𝜀

∗

3
+ 𝛼

3
) ,

(21)

V
4

= − 𝑙

4
𝑒

4
− 𝜎

4
(𝑒

4
) − ℎ

4
−

̂

𝑑

1
𝑒

1
+

̂

𝑑

2
𝑒

4
−

̂

𝑑

1
ℎ

1

+

̂

𝑑

2
ℎ

4
−

̂

𝑊

𝑇

4
𝜑

4
(𝑤

2
) − sgn (𝑒

4
) (𝜀

∗

4
+ 𝛼

4
) ,

(22)

where 𝑙

𝑖
(𝑖 = 1, 2, 3, 4) are positive design parameters. Con-

sider the following:

̇

̂

𝑊

1
= 𝑒

1
𝜑

1
(𝑥

2
) ,

(23)

̇

̂

𝑊

2
= 𝑒

2
𝜑

2
(𝑦

2
) ,

(24)

̇

̂

𝑊

3
= 𝑒

3
𝜑

3
(𝑧

2
) ,

(25)

̇

̂

𝑊

4
= 𝑒

4
𝜑

4
(𝑤

2
) ,

(26)

̇

�̂�

1
= 𝑒

2

1
+ 𝑒

1
ℎ

1
, (27)

̇

�̂�

2
= 𝑒

1
(𝑒

2
+ 𝑒

3
) − 𝑒

1
(ℎ

2
+ ℎ

3
) , (28)

̇

�̂�

3
= −𝑒

1
𝑥

2

2
+ 𝑒

1
𝑥

2

1
, (29)

̇

̂

𝑏

1
= −𝑒

2

2
− 𝑒

2
ℎ

2
,

(30)

̇

̂

𝑏

2
= −𝑒

2
𝑒

3
− 𝑒

2
ℎ

3
,

(31)

̇

̂

𝑏

3
= −𝑒

2
𝑥

2

2
+ 𝑒

2
𝑥

2

1
+ 𝑒

2
𝑥

2
𝑧

2
− 𝑒

2
𝑥

1
𝑧

1
,

(32)

̇

̂

𝑏

4
= 𝑒

2
𝑒

1
+ 𝑒

2
ℎ

1
,

(33)

̇

̂

𝑑

1
= 𝑒

4
𝑒

1
+ 𝑒

4
ℎ

4
+ 𝑒

4
ℎ

1
,

(34)

̇

̂

𝑑

2
= −𝑒

2

4
,

(35)

̇

̂

𝑑

3
= −𝑒

1
(𝑒

4
+ ℎ

4
) ,

(36)

̇

�̂�

1
= 𝑒

3
𝑥

2
𝑧

2
− 𝑒

3
𝑥

1
𝑧

1
, (37)

̇

�̂�

2
= −𝑒

2

3
− 𝑒

3
ℎ

3
. (38)

Substituting (19)–(38) into (18) results in

ℓ𝑉 ≤ −𝑙

1
𝑒

2

1
− 𝑙

2
𝑒

2

2
− 𝑙

3
𝑒

2

3
− 𝑙

4
𝑒

2

4
. (39)

From (39) and Lemma 3, we can conclude that the states
𝑥

2
, 𝑦

2
, 𝑧

2
, and 𝑤

2
of response system (2) and the states 𝑥

1
,

𝑦

1
, 𝑧

1
, and 𝑤

1
of drive system (3) are ultimately synchronized

asymptotically in probability.
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Figure 4: The trajectory of 𝑒

1
.
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Figure 5: The trajectory of 𝑒

2
.

5. Simulation Results

In this section, external perturbations 𝑝

𝑖
(𝑒

𝑖
) = 𝑒

𝑖
; uncertain

nonlinear 𝑓

1
(𝑥

2
) = 0.1𝑥

2

2
, 𝑓

2
(𝑦

2
) = 0.1𝑦

2

2
, 𝑓

3
(𝑧

2
) = 𝑧

2
, and

𝑓

4
(𝑤

2
) = 𝑤

2
. Consider 𝛼

1
= 𝛼

2
= 𝛼

2
= 𝛼

2
= 0.1 and

𝜀

∗

1
= 𝜀

∗

2
= 𝜀

∗

3
= 𝜀

∗

4
= 0.1. RBFNNs, ̂

𝑊

𝑇

𝑖
𝜑

𝑖
(⋅), contain 25

nodes, with centers evenly spaced in [−4, 4] and width is 2.
̇

𝑊(𝑡) is assumed to be Gaussian white noise with zero mean
and variance 1.0.

The initial values are chosen as 𝑥

1
(0) = 0.1, 𝑦

1
(0) = −0.8,

𝑧

1
(0) = 0.2, 𝑤

1
(0) = 0.1, 𝑥

2
(0) = 0.4, 𝑦

2
(0) = 0.1, 𝑧

2
(0) =

0.6, and 𝑤

2
(0) = −0.3, and the other initial values are chosen

as zeros. The saturation values are 𝑢

2𝑀
= 5, 𝑢

3𝑀
= 2, and

𝑢

4𝑀
= 2. Design parameters in controllers are 𝑙

1
= 20, 𝑙

2
= 20,

𝑙

3
= 20, and 𝑙

4
= 20. The simulation results are shown in

Figures 4, 5, 6, 7, 8, 9, 10, and 11.

Remark 4. It is worth pointing out that the method of [10]
cannot be used to control the systems of this paper.There exist
three reasons: (i) the system of this paper is four dimensional
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and the system in [10] is three dimensional; (ii) the system of
this paper contains stochastic disturbances, and the system
in [10] does not contain them; (iii) the controlled response
system of this paper contains unknown nonlinearities, and
[10] does not contain them.

6. Conclusions

This paper has solved the synchronization problems of a class
of unknown parameters four-dimensional energy resource
system.The main features of the proposed algorithm are that
(i) the problems of the input constraint have been solved
by employing a new auxiliary system; (ii) the unknown
nonlinearities and stochastic disturbances that existed in the
response system have been overcome by the neural networks
and some special robust terms, respectively; (iii) the stability
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Figure 11: The trajectories of V
4
(solid line) and 𝑢

4
(dash-dotted

line).

of the energy resource demand-supply system has been guar-
anteed based on stochastic Lyapunov theory.
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