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This paper investigates the Hankel norm filter design problem for stochastic time-delay systems, which are represented by Takagi-
Sugeno (T-S) fuzzy model. Motivated by the parallel distributed compensation (PDC) technique, a novel filtering error system is
established. The objective is to design a suitable filter that guarantees the corresponding filtering error system to be mean-square
asymptotically stable and to have a specified Hankel norm performance level 𝛾. Based on the Lyapunov stability theory and the Itô
differential rule, the Hankel norm criterion is first established by adopting the integral inequality method, which can make some
useful efforts in reducing conservativeness. The Hankel norm filtering problem is casted into a convex optimization problem with
a convex linearization approach, which expresses all the conditions for the existence of admissible Hankel norm filter as standard
linear matrix inequalities (LMIs). The effectiveness of the proposed method is demonstrated via a numerical example.

1. Introduction

Thefiltering problem can be briefly described as the design of
an estimator from the measured output to estimate the state
of the given systems and plays an important role in control
fields and signal processing. During the last decades, various
methodologies have been developed for the filter designs,
such as Kalman filter [1, 2],𝐻

∞
filter [3, 4], and𝐻

2
or𝐻
2
/𝐻
∞

filter [5, 6]. To mention a few, the earlier appeared Kalman
filter is based on the precise noise statistics, while 𝐻

∞
filter

can be designed without the statistical assumption on the
noise signals. With the continuous development of filtering
technology, research on the above filteringmethods hasmade
a lot of achievements. In recent years,more andmore scholars
pay their attentions to other performance index, such as 𝐿

1
,

𝐿
2
–𝐿
∞
, and Hankel norm, where the analysis of Hankel

norm takes the effects of past inputs on the future outputs into
account. Since the inputs and outputs of the plants for actual
control systems change over time, environment and any other
factors, the past inputs will affect the future outputs, which is
one issue need to consider in the filtering analysis. Therefore,
the study onHankel normfilter has significance of theoretical
guidance and engineering application.

On another research frontline, a great number of results
on stochastic systems have been reported since stochastic
modeling has come to be a key part in many branches of
science and engineering. As far as we know, the study of
stochastic systems mainly focusses on the stability analysis
[7, 8], controller design [9, 10], filtering [11], model reduction
[12] and fault detection [13], and so forth. Among them, the
literature [8] proposed some sufficient conditions to ensure
that the stochastic interval delay system is exponentially
stable by using the Razumikhin-type theorem, and the robust
𝐻
∞

control and filtering problem for a class of uncertain
stochastic time-delay systems were discussed in [9, 11],
respectively. In the literature [12], theHankel norm gain crite-
rion ofmodel reductionwas established for neutral stochastic
time-delay systems by using the projection lemma. For the
existence of nonlinearity and unknown measured noise as
well as stochastic perturbation, researchers have proposed
different methods as data-driven approach [14, 15] and fault
tolerant control with an iterative optimization scheme [16].
It is noted that the research on the filtering problem for
stochastic time-delay systems has great significance and the
major works are obtained with𝐻

∞
performance, while being
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relatively less with other performance constraints, especially
Hankel norm.

As well known, a significant body of research on the
aforementioned filter design problem has been investigated
up to now and the closely related results of nonlinear systems
are also fruitful with the T-S fuzzy model approach. Over
the past few years, the T-S fuzzy model has been recognised
as a powerful tool in approximating complex nonlinear
systems to a number of linear subsystems by employing
piecewise smooth membership functions. It has been proved
that some stability analysis and synthesis methods in the
linear systems can be effectively extended to the T-S fuzzy
systems [17, 18]. Through the T-S fuzzy model approach, the
filtering problem for nonlinear systems has undergone a fast
development in recent year. Some results are cited in the study
[19, 20], where the literature [19] considered both continuous
and differential uniformly bounded time-varying delays and
proposed some novel delay-dependent 𝐻

∞
filtering criteria

for nonlinear systems via a T-S fuzzy model approach, and
[20] is concerned with the design problem of 𝐻

∞
filter for

continuous T-S fuzzy systems based on the delay partitioning
idea. However, it should be pointed out that the mentioned
results aremostly establishedwith the induced norms, such as
𝐻
2
and𝐻

∞
, while more and more researchers have switched

their interests to Hankel norm very recently. Different from
other norms, the analysis of the Hankel norm included
both the past inputs and the future outputs. By estimating
the effect of the system past inputs on the system future
outputs, the Hankel norm can be used to achieve the system
performance analysis more efficiently. So far, the applications
of the Hankel norm is mainly in system model reduction
[12, 21, 22]. To the best of the authors’ knowledge, the Hankel
norm filtering problem for T-S model-based stochastic time-
delay systems has not been investigated, which motivates the
current research.

The goal of this paper is to design a robust Hankel norm
filter for stochastic time-delay systems. Firstly, based on the
T-S fuzzy model approximation and the parallel distributed
compensation (PDC) technique, a novel filtering error system
is established. Then, two appropriate Lyapunov-Krasovskii
functions are chosen for the stability and Hankel norm per-
formance analysis. By using the Itô differential rule and the
integral inequality method, the Hankel norm criterion is first
proposed for the existence of admissible filter that guaran-
tees the mean-square asymptotic stability and Hankel norm
performance of the corresponding filtering error system.
Finally, the existence conditions of the admissible Hankel
normfilter can be expressed as LMIs and the filter parameters
are obtained by using standard numerical software. An
example is illustrated to show the efficiency of the proposed
filter design methods.

The notation used in this paper is standard. R𝑛 denotes
the 𝑛-dimensional real Euclidean space, R𝑛×𝑚 is the set of
𝑛 × 𝑚 real matrices. N denotes the natural numbers set. The
notation 𝑋𝑇 and 𝑋−1 denote its transpose and inverse when
it exists, respectively. Given a symmetric matrix𝑋 = 𝑋𝑇, the
notation 𝑋 > 0 (𝑋 ≥ 0) means that the matrix 𝑋 is real
positive definiteness (semidefiniteness). By 𝑑𝑖𝑎𝑔 we denote
a block diagonal matrix with its input arguments on the

diagonal. 𝐼 denotes the identity matrix. The symbol ∗ within
a matrix represents the symmetric entries. 𝐿

2
[0,∞) denotes

the space of square integrable functions over [0,∞). The
notationE{⋅} stands for the expectation operator.

2. Problem Statement

Consider a stochastic time-delay system which could be
approximated by a T-S fuzzy model with 𝑟 plant rules.

Plant Rule 𝑖. If 𝜃
1
(𝑡) is𝑊

𝑖1
, 𝜃
2
(𝑡) is𝑊

𝑖2
and. . .and 𝜃

𝑔
(𝑡) is𝑊

𝑖𝑔
,

then
𝑑𝑥 (𝑡) = [𝐴

𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐵

𝑖
V (𝑡)] 𝑑𝑡

+ [𝑀
𝑖
𝑥 (𝑡) + 𝑀

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝑁

𝑖
V (𝑡)] 𝑑𝜔 (𝑡) ,

𝑑𝑦 (𝑡) = [𝐶
𝑖
𝑥 (𝑡) + 𝐶

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐷

𝑖
V (𝑡)] 𝑑𝑡

+ [𝐸
𝑖
𝑥 (𝑡) + 𝐸

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐹

𝑖
V (𝑡)] 𝑑𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐿
𝑖
𝑥 (𝑡) ,

𝑥 (𝑡) = 0, 𝑡 ∈ [−𝜏, 0] , 𝑖 = 1, 2, . . . , 𝑟,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑦(𝑡) ∈ R𝑚 is themeasured
output signal, and V(𝑡) ∈ R𝑝 is the exogenous disturbance
that is assumed to be an arbitrary signal belonging to
𝐿
2
[0,∞). 𝑧(𝑡) ∈ R𝑞 is the signal to be estimated. 𝜔(𝑡) is

a zero-mean real scalar Wiener process on (Ω,F,P). And
E{𝑑𝜔(𝑡)} = 0, E{𝑑𝜔2(𝑡)} = 0. 𝜏 is the time delay and
is assumed to be constant in the whole dynamic process.
𝜃(𝑡) = [𝜃

1
(𝑡), 𝜃
2
(𝑡), . . . , 𝜃

𝑔
(𝑡)] is the premise variables vector,

𝑊
𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑟, 𝑗 = 1, 2, . . . , 𝑔) is the fuzzy set, and 𝑟 is

the number of IF-THEN rules. 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐵
𝑖
,𝑀
𝑖
,𝑀
𝑑𝑖
, 𝑁
𝑖
, 𝐶
𝑖
,

𝐶
𝑑𝑖
, 𝐷
𝑖
, 𝐸
𝑖
, 𝐸
𝑑𝑖
, 𝐹
𝑖
, and 𝐿

𝑖
are known constant matrices with

appropriate dimensions.
The fuzzy system (1) is supposed to have singleton

fuzzifier, product inference, and centroid difuzzifier.The final
output of the fuzzy system is inferred as follows:
𝑑𝑥 (𝑡)

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

× {[𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐵

𝑖
V (𝑡)] 𝑑𝑡

+ [𝑀
𝑖
𝑥 (𝑡) + 𝑀

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝑁

𝑖
V (𝑡)] 𝑑𝜔 (𝑡)} ,

𝑑𝑦 (𝑡)

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

× {[𝐶
𝑖
𝑥 (𝑡) + 𝐶

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐷

𝑖
V (𝑡)] 𝑑𝑡

+ [𝐸
𝑖
𝑥 (𝑡) + 𝐸

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐹

𝑖
V (𝑡)] 𝑑𝜔 (𝑡)} ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) 𝐿

𝑖
𝑥 (𝑡) ,

𝑥 (𝑡) = 0, 𝑡 ∈ [−𝜏, 0] , 𝑖 = 1, 2, . . . , 𝑟,

(2)
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where

ℎ
𝑖
(𝜃 (𝑡)) =

𝜇
𝑖
(𝜃 (𝑡))

∑
𝑟

𝑖=1
𝜇
𝑖
(𝜃 (𝑡))

,

𝜇
𝑖
(𝜃 (𝑡)) =

𝑔

∏

𝑗=1

𝑊
𝑖𝑗
(𝜃
𝑗
(𝑡)) ,

(3)

and𝑊
𝑖𝑗
(𝜃
𝑗
(𝑡)) representing the grade of membership of 𝜃

𝑗
(𝑡)

in𝑊
𝑖𝑗
. Here, for all 𝑡, ℎ

𝑖
(𝜃(𝑡)) ≥ 0 and ∑𝑟

𝑖=1
ℎ
𝑖
(𝜃(𝑡)) = 1.

In this paper, we will design the following Hankel norm
filter by employing the parallel distributed compensation
technique.

Filter Rule 𝑖. If 𝜃
1
(𝑡) is𝑊

𝑖1
, 𝜃
2
(𝑡) is𝑊

𝑖2
and. . .and 𝜃

𝑔
(𝑡) is𝑊

𝑖𝑔
,

then

𝑑𝑥 (𝑡) = 𝐴fi𝑥 (𝑡) + 𝐵fi𝑑𝑦 (𝑡) ,

𝑧̂ (𝑡) = 𝐶fi𝑥 (𝑡) ,
(4)

where 𝑥(𝑡) ∈ R𝑛 and 𝑧̂(𝑡) ∈ R𝑞 are the state and output of
the filter, respectively. The matrices 𝐴fi, 𝐵fi, and 𝐶fi are filter
parameters to be determined.

The defuzzified output of (4) is referred by

𝑑𝑥 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) {𝐴fi𝑥 (𝑡) + 𝐵fi𝑑𝑦 (𝑡)}

𝑧̂ (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) 𝐶fi𝑥 (𝑡) .

(5)

Defining the augmented state vector 𝜉
𝑇

(𝑡) =

[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡)] and 𝑒(𝑡) = 𝑧(𝑡) − 𝑧̂(𝑡), then the filtering
error system can be written in the following form:

𝑑𝜉 (𝑡)

= [𝐴 (𝑡) 𝜉 (𝑡) + 𝐴
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝐵 (𝑡) V (𝑡)] 𝑑𝑡

+ [𝑀 (𝑡) 𝜉 (𝑡) + 𝑀
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)] 𝑑𝜔 (𝑡) ,

𝑒 (𝑡) = 𝐿 (𝑡) 𝜉 (𝑡) ,

(6)

where 𝐺 = [𝐼 0],

𝐴 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [

[

𝐴
𝑗

0

𝐵fi𝐶𝑗 𝐴fi
]

]

= [
𝐴 (𝑡) 0

𝐵
𝑓
(𝑡) 𝐶 (𝑡) 𝐴

𝑓
(𝑡)
] ,

𝐴
𝑑
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [

[

𝐴
𝑑𝑗

𝐵fi𝐶𝑑𝑗
]

]

= [

[

𝐴
𝑑
(𝑡)

𝐵
𝑓
(𝑡) 𝐶
𝑑
(𝑡)
]

]

,

𝐵 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [

[

𝐵
𝑗

𝐵fi𝐷𝑗
]

]

= [
𝐵 (𝑡)

𝐵
𝑓
(𝑡) 𝐷 (𝑡)

] ,

𝑀 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [

[

𝑀
𝑗
0

𝐵fi𝐸𝑗 0
]

]

= [
𝑀(𝑡) 0

𝐵
𝑓
(𝑡) 𝐸 (𝑡) 0

] ,

𝑀
𝑑
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [

[

𝑀
𝑑𝑗

𝐵fi𝐸𝑑𝑗
]

]

= [

[

𝑀
𝑑
(𝑡)

𝐵
𝑓
(𝑡) 𝐸
𝑑
(𝑡)
]

]

,

𝑁 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [

[

𝑁
𝑗

𝐵fi𝐹𝑗
]

]

= [
𝑁 (𝑡)

𝐵
𝑓
(𝑡) 𝐹 (𝑡)

] ,

𝐿 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [𝐿𝑗 −𝐶fi]

= [𝐿 (𝑡) −𝐶
𝑓
(𝑡)] .

(7)

The Hankel norm filtering problem addressed in this
paper can be expressed as follows.

Given a scalar 𝛾 > 0, determine the matrices 𝐴fi, 𝐵fi, and
𝐶fi to find a suitable filter in the form of (5) such that

(i) the filtering error system (6) with V(𝑡) = 0 is mean-
square asymptotically stable;

(ii) subjected to the zero initial condition (𝜉(𝑡) = 0, for all
𝑡 ≤ 0)

E{∫
∞

T

𝑒
𝑇

(𝑡) 𝑒 (𝑡) 𝑑𝑡} < 𝛾
2

∫

T

0

V𝑇 (𝑡) V (𝑡) 𝑑𝑡; (8)

for all V(𝑡) ∈ 𝐿
2
[0,∞) with V(𝑡) = 0, for all 𝑡 ≥ T.

Then, the filtering error system (6) is said to be mean-square
asymptotically stable with a Hankel norm performance level
𝛾.

Lemma 1. Given matrix 𝑅 = 𝑅𝑇 ≥ 0 and scalar 𝜏 > 0, 𝑦(𝑡) is
a vector function which satisfies 𝑦(𝑡)𝑑𝑡 = 𝑑𝜉(𝑡), then

− 𝜏∫

𝑡

𝑡−𝜏

𝑦
𝑇

(𝑠) 𝑅𝑦 (𝑠) 𝑑𝑠

≤ [𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − 𝜏)] [
−𝑅 𝑅

𝑅 −𝑅
] [

𝜉 (𝑡)

𝜉 (𝑡 − 𝜏)
] .

(9)
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Remark 2. 𝑦(𝑡) in Lemma 1 is not equivalent to ̇𝜉(𝑡) in
deterministic time-delay systems and cannot be expressed
by the known system parameters for the existence of the
stochastic perturbation 𝑑𝜔(𝑡). If 𝑑𝜔(𝑡) = 0, 𝑦(𝑡) = ̇𝜉(𝑡).

3. Hankel Norm Performance Analysis

In this subsection, we will derive a sufficient condition for
the existence of the Hankel norm filter that guarantees the
filtering error system (6) to be mean-square asymptotically
stable with a specified Hankel norm performance level.
By making use of the Itô differential rule, the stochastic

differentials of Lyapunov functions along the solution of
system (6) are obtained and the integral inequality method is
also used during the derivation. Based on these, the Hankel
norm criterion of filtering problem is first established. Now,
we will first give the following theorem which will play a key
role in the derivation of our main results.

Theorem 3. The filtering error system (6) is mean-square
asymptotically stable and has a guaranteed Hankel norm
performance 𝛾 if there exist 𝑃

1
> 0, 𝑃

2
> 0, 𝑄

1
> 0, 𝑄

2
> 0,

𝑅
1
> 0, 𝑅

2
> 0, and 𝑆

1
, 𝑆
2
satisfying

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃
1

𝑃
1
𝑀(𝑡) 𝑃

1
𝑀
𝑑
(𝑡) 0 𝑃

1
𝑁(𝑡)

∗ 𝑃
1
𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑃
1
+ 𝐺
𝑇

(𝑄
1
−
𝑅
1

𝜏
)𝐺 𝑃

1
𝐴
𝑑
(𝑡) + 𝐺

𝑇
𝑅
1

𝜏
𝐴
𝑇

(𝑡) 𝐺
𝑇

𝑆
1

𝑃
1
𝐵 (𝑡)

∗ ∗ −𝑄
1
−
𝑅
1

𝜏
𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
1

0

∗ ∗ ∗ 𝜏𝑅
1
− 𝑆
1
− 𝑆
𝑇

1
𝑆
𝑇

1
𝐺𝐵 (𝑡)

∗ ∗ ∗ ∗ −𝛾
2

𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (10)

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃
2

𝑃
2
𝑀(𝑡) 𝑃

2
𝑀
𝑑
(𝑡) 0 0

∗ 𝑃
2
𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑃
2
+ 𝐺
𝑇

(𝑄
2
−
𝑅
2

𝜏
)𝐺 𝑃

2
𝐴
𝑑
(𝑡) + 𝐺

𝑇
𝑅
2

𝜏
𝐴
𝑇

(𝑡) 𝐺
𝑇

𝑆
2
𝐿
𝑇

(𝑡)

∗ ∗ −𝑄
2
−
𝑅
2

𝜏
𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
2

0

∗ ∗ ∗ 𝜏𝑅
2
− 𝑆
2
− 𝑆
𝑇

2
0

∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (11)

𝑃
1
− 𝑃
2
≥ 0, (12)

𝐺
𝑇

(𝑄
1
− 𝑄
2
) 𝐺 ≥ 0, (13)

𝐺
𝑇

(𝑅
1
− 𝑅
2
) 𝐺 ≥ 0. (14)

Proof. Choose the Lyapunov-Krasovskii functionals as

𝑉
1
(𝜉
𝑡
, 𝑡) = 𝜉

𝑇

(𝑡) 𝑃
1
𝜉 (𝑡) + ∫

𝑡

𝑡−𝜏

𝜉
𝑇

(𝛼) 𝐺
𝑇

𝑄
1
𝐺𝜉 (𝛼) 𝑑𝛼

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝛽

𝑦
𝑇

(𝛼) 𝐺
𝑇

𝑅
1
𝐺𝑦 (𝛼) 𝑑𝛼 𝑑𝛽,

(15)

𝑉
2
(𝜉
𝑡
, 𝑡) = 𝜉

𝑇

(𝑡) 𝑃
2
𝜉 (𝑡) + ∫

𝑡

𝑡−𝜏

𝜉
𝑇

(𝛼) 𝐺
𝑇

𝑄
2
𝐺𝜉 (𝛼) 𝑑𝛼

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝛽

𝑦
𝑇

(𝛼) 𝐺
𝑇

𝑅
2
𝐺𝑦 (𝛼) 𝑑𝛼 𝑑𝛽,

(16)

where 𝑃
1
, 𝑃
2
, 𝑄
1
, 𝑄
2
, 𝑅
1
, and 𝑅

2
are real symmetric positive

definite matrices to be determined, 𝜉
𝑡
= 𝜉(𝑡 + 𝜄), −𝜏 ≤ 𝜄 ≤ 0.

𝑦(𝑡) is defined as 𝑦(𝑡)𝑑𝑡 = 𝑑𝜉(𝑡), and according to the
Newton-Leibniz formula, we have

∫

𝑡

𝑡−𝜏

𝑦 (𝛼) 𝑑𝛼 = 𝜉 (𝑡) − 𝜉 (𝑡 − 𝜏) . (17)

Then by making use of the Itô differential rule, the
stochastic differential 𝑑𝑉

1
(𝜉
𝑡
, 𝑡) along the solution of system

(6) can be obtained as

𝑑𝑉
1
(𝜉
𝑡
, 𝑡)

=L𝑉
1
(𝜉
𝑡
, 𝑡) 𝑑𝑡 + 2𝜉

𝑇

(𝑡) 𝑃
1

× [𝑀 (𝑡) 𝜉 (𝑡) + 𝑀
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)] 𝑑𝜔 (𝑡) ,

(18)
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where
L𝑉
1
(𝜉
𝑡
, 𝑡)

= 2𝜉
𝑇

(𝑡) 𝑃
1
[𝐴 (𝑡) 𝜉 (𝑡) + 𝐴

𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝐵 (𝑡) V (𝑡)]

+ [𝑀 (𝑡) 𝜉 (𝑡) + 𝑀
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)]

𝑇

× 𝑃
1
[𝑀 (𝑡) 𝜉 (𝑡) + 𝑀

𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)]

+ 𝜉
𝑇

(𝑡) 𝐺
𝑇

𝑄
1
𝐺𝜉 (𝑡)

− 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

𝑄
1
𝐺𝜉 (𝑡 − 𝜏) + 𝜏𝑦

𝑇

(𝑡) 𝐺
𝑇

𝑅
1
𝐺𝑦 (𝑡)

− ∫

𝑡

𝑡−𝜏

𝑦
𝑇

(𝑠) 𝐺
𝑇

𝑅
1
𝐺𝑦 (𝑠) 𝑑𝑠.

(19)

Applying Lemma 1 toL𝑉
1
(𝜉
𝑡
, 𝑡), we have

L𝑉
1
(𝜉
𝑡
, 𝑡)

≤ 𝜉
𝑇

(𝑡) [2𝑃
1
𝐴 (𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑀(𝑡) + 𝐺

𝑇

(𝑄
1
−
𝑅
1

𝜏
)𝐺]

× 𝜉 (𝑡) + 𝜉
𝑇

(𝑡) [2𝑃
1
𝐴
𝑑
(𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑀
𝑑
(𝑡) + 𝐺

𝑇
𝑅
1

𝜏
]

× 𝐺𝜉 (𝑡 − 𝜏)

+ 𝜉
𝑇

(𝑡) [2𝑃
1
𝐵 (𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑁(𝑡)] V (𝑡)

+ 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

[𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑀(𝑡) +

𝑅
1

𝜏
𝐺] 𝜉 (𝑡)

+ 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

× [𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑀
𝑑
(𝑡) − (𝑄

1
+
𝑅
1

𝜏
)]𝐺𝜉 (𝑡 − 𝜏)

+ 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

× [𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑁(𝑡)] V (𝑡) + V𝑇 (𝑡) [𝑁

𝑇

(𝑡) 𝑃
1
𝑀(𝑡)] 𝜉 (𝑡)

+ V𝑇 (𝑡) [𝑁
𝑇

(𝑡) 𝑃
1
𝑀
𝑑
(𝑡)] 𝐺𝜉 (𝑡 − 𝜏)

+ V𝑇 (𝑡) [𝑁
𝑇

(𝑡) 𝑃
1
𝑁(𝑡)] V (𝑡)

+ 𝜏𝑦
𝑇

(𝑡) 𝐺
𝑇

𝑅
1
𝐺𝑦 (𝑡) .

(20)

Noting that 𝑦(𝑡)𝑑𝑡 = 𝑑𝜉(𝑡) and system (6), for arbitrary
matrix 𝑆

1
∈ R𝑛×𝑛 it can be seen that

0 = 2𝑦
𝑇

(𝑡) 𝐺
𝑇

𝑆
𝑇

1
𝐺

× {[𝑀 (𝑡) 𝜉 (𝑡)

+ 𝑀
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)] 𝑑𝜔 (𝑡)

+ [𝐴 (𝑡) 𝜉 (𝑡) + 𝐴
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏)

+ 𝐵 (𝑡) V (𝑡) − 𝑦 (𝑡)] 𝑑𝑡} .

(21)

Thus, it follows from (18) and (21) that

𝑑𝑉
1
(𝜉
𝑡
, 𝑡) =L𝑉̃

1
(𝜉
𝑡
, 𝑡) 𝑑𝑡

+ 2 [𝜉
𝑇

(𝑡) 𝑃
1
+ 𝑦
𝑇

(𝑡) 𝐺
𝑇

𝑆
𝑇

1
𝐺]

× [𝑀 (𝑡) 𝜉 (𝑡) + 𝑀
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)]

× 𝑑𝜔 (𝑡) ,

(22)

where

L𝑉̃
1
(𝜉
𝑡
, 𝑡)

=L𝑉
1
(𝜉
𝑡
, 𝑡) + 2𝑦

𝑇

(𝑡) 𝐺
𝑇

𝑆
𝑇

1
𝐺

× [𝐴 (𝑡) 𝜉 (𝑡) + 𝐴
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏)

+ 𝐵 (𝑡) V (𝑡) − 𝑦 (𝑡)]

≤ 𝜉
𝑇

(𝑡) [2𝑃
1
𝐴 (𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑀(𝑡)

+ 𝐺
𝑇

(𝑄
1
−
𝑅
1

𝜏
)𝐺]

× 𝜉 (𝑡) + 2𝜉
𝑇

(𝑡) [𝑃
1
𝐴
𝑑
(𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑀
𝑑
(𝑡)

+ 𝐺
𝑇
𝑅
1

𝜏
]𝐺𝜉 (𝑡 − 𝜏)

+ 2𝜉
𝑇

(𝑡) [𝐴(𝑡)
𝑇

𝐺
𝑇

𝑆
1
] 𝐺𝑦 (𝑡)

+ 2𝜉
𝑇

(𝑡) [𝑃
1
𝐵 (𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑁(𝑡)] V (𝑡)

+ 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

× [𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑀
𝑑
(𝑡) − 𝑄

1
−
𝑅
1

𝜏
]

× 𝐺𝜉 (𝑡 − 𝜏) + 2𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

× [𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
1
]𝐺𝑦 (𝑡)

+ 2𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

[𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑁(𝑡)] V (𝑡)

+ 𝑦
𝑇

(𝑡) 𝐺
𝑇

[𝜏𝑅
1
− 𝑆
1
− 𝑆
𝑇

1
] 𝐺𝑦 (𝑡)

+ 2𝑦
𝑇

(𝑡) 𝐺
𝑇

[𝑆
𝑇

1
𝐺𝐵 (𝑡)] V (𝑡)

+ V𝑇 (𝑡) [𝑁
𝑇

(𝑡) 𝑃
1
𝑁(𝑡)] V (𝑡) .

(23)

Therefore, when assuming zero input V(𝑡) = 0, it follows
that

L𝑉̃
1
(𝜉
𝑡
, 𝑡) ≤ 𝜂

𝑇

(𝑡) Θ
1
𝜂 (𝑡) , (24)
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where

𝜂
𝑇

(𝑡) = [𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

𝑦
𝑇

(𝑡) 𝐺
𝑇
] ,

Θ
1
=
[
[

[

Π
11
Π
12

𝐴
𝑇

(𝑡) 𝐺
𝑇

𝑆
1

∗ Π
22

𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
1

∗ ∗ 𝜏𝑅
1
− 𝑆
1
− 𝑆
𝑇

1

]
]

]

,

Π
11
= 𝑃
1
𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑃
1
+𝑀
𝑇

(𝑡) 𝑃
1
𝑀(𝑡)

+ 𝐺
𝑇

(𝑄
1
−
𝑅
1

𝜏
)𝐺,

Π
12
= 𝑃
1
𝐴
𝑑
(𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑀
𝑑
(𝑡) + 𝐺

𝑇
𝑅
1

𝜏
,

Π
22
= 𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑀
𝑑
(𝑡) − 𝑄

1
−
𝑅
1

𝜏
.

(25)

By using the Schur complement lemma, the inequality
(10) implies the negative definiteness of Θ

1
. Then, we have

L𝑉̃
1
(𝜉
𝑡
, 𝑡) < 0, and the filtering error system (6) with V(𝑡) = 0

is guaranteed to be mean-square asymptotically stable. And
the next step is to establish the Hankel norm performance:

E{∫
∞

T

𝑒
𝑇

(𝑡) 𝑒 (𝑡) 𝑑𝑡} < 𝛾
2

∫

T

0

V𝑇 (𝑡) V (𝑡) 𝑑𝑡, (26)

under zero initial condition and V(𝑡) ∈ 𝐿
2
[0,∞) with V(𝑡) =

0, for all 𝑡 ≥ T.
For any nonzero V(𝑡) ∈ 𝐿

2
[0,∞) with V(𝑡) = 0, for all

𝑡 ≥ T, the inequality of (23) can be rewritten in the following
quadratic form:

L𝑉̃
1
(𝜉
𝑡
, 𝑡) ≤ 𝜁

𝑇

(𝑡) Θ̃
1
𝜁 (𝑡) , (27)

where

𝜁
𝑇

(𝑡) = [𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

𝑦
𝑇

(𝑡) 𝐺
𝑇 V𝑇 (𝑡)] ,

Θ̃
1
=

[
[
[
[
[

[

Π
11
Π
12

𝐴
𝑇

(𝑡) 𝐺
𝑇

𝑆
1
𝑃
1
𝐵 (𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑁(𝑡)

∗ Π
22

𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
1

𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑁(𝑡)

∗ ∗ 𝜏𝑅
1
− 𝑆
1
− 𝑆
𝑇

1
𝑆
𝑇

1
𝐺𝐵 (𝑡)

∗ ∗ ∗ 𝑁
𝑇

(𝑡) 𝑃
1
𝑁(𝑡)

]
]
]
]
]

]

.

(28)

The inequalities (10) and (27) imply

L𝑉̃
1
(𝜉
𝑡
, 𝑡) − 𝛾

2V𝑇 (𝑡) V (𝑡)

≤ 𝜁
𝑇

(𝑡) Θ̃
1
𝜁 (𝑡) − 𝛾

2V𝑇 (𝑡) V (𝑡) < 0.
(29)

Integrating both sides of (22) and (29), respectively, from
0 toT and then taking expectation, we have

E {𝑉
1
(𝜉T,T)}

= E{∫
T

0

L𝑉̃
1
(𝜉
𝑡
, 𝑡) 𝑑𝑡} < 𝛾

2

∫

T

0

V𝑇 (𝑡) V (𝑡) 𝑑𝑡,
(30)

where zero initial condition is used.

Second, introduce 𝑉
2
(𝜉
𝑡
, 𝑡) in (16). By following similar

lines as above, it is not difficult to obtain the stochastic
differential 𝑑𝑉

2
(𝜉
𝑡
, 𝑡) as

𝑑𝑉
2
(𝜉
𝑡
, 𝑡) =L𝑉̃

2
(𝜉
𝑡
, 𝑡) 𝑑𝑡

+ 2 [𝜉
𝑇

(𝑡) 𝑃
2
+ 𝑦
𝑇

(𝑡) 𝐺
𝑇

𝑆
𝑇

2
𝐺]

× [𝑀 (𝑡) 𝜉 (𝑡) + 𝑀
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)]

× 𝑑𝜔 (𝑡) ,

(31)

where
L𝑉̃
2
(𝜉
𝑡
, 𝑡) ≤ 𝜁

𝑇

(𝑡) Θ̃
2
𝜁 (𝑡) ,

Θ̃
2
=

[
[
[
[
[
[
[
[
[
[

[

Γ
11
Γ
12

𝐴
𝑇

(𝑡) 𝐺
𝑇

𝑆
2
𝑃
2
𝐵 (𝑡) + 𝑀

𝑇

(𝑡) 𝑃
2
𝑁(𝑡)

∗ Γ
22

𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
2

𝑀
𝑇

𝑑
(𝑡) 𝑃
2
𝑁(𝑡)

∗ ∗ 𝜏𝑅
2
− 𝑆
2
− 𝑆
𝑇

2
𝑆
𝑇

2
𝐺𝐵 (𝑡)

∗ ∗ ∗ 𝑁
𝑇

(𝑡) 𝑃
2
𝑁(𝑡)

]
]
]
]
]
]
]
]
]
]

]

,

Γ
11
= 𝑃
2
𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑃
2
+𝑀
𝑇

(𝑡) 𝑃
2
𝑀(𝑡)

+ 𝐺
𝑇

(𝑄
2
−
𝑅
2

𝜏
)𝐺,

Γ
12
= 𝑃
2
𝐴
𝑑
(𝑡) + 𝑀

𝑇

(𝑡) 𝑃
2
𝑀
𝑑
(𝑡) + 𝐺

𝑇
𝑅
2

𝜏
,

Γ
22
= 𝑀
𝑇

𝑑
(𝑡) 𝑃
2
𝑀
𝑑
(𝑡) − 𝑄

2
−
𝑅
2

𝜏
,

(32)

By Schur complement lemma, the inequality (11) is equiv-
alent to

[
[
[

[

Γ
11
Γ
12

𝐴
𝑇

(𝑡) 𝐺
𝑇

𝑆
2

∗ Γ
22

𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
2

∗ ∗ 𝜏𝑅
2
− 𝑆
2
− 𝑆
𝑇

2

]
]
]

]

+ [

[

𝐿
𝑇

(𝑡)

0

0

]

]

[𝐿 (𝑡) 0 0] < 0.

(33)

Thus, we have

Υ = 𝜉
𝑇

(𝑡) [𝑃
2
𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑃
2

+ 𝑀
𝑇

(𝑡) 𝑃
2
𝑀(𝑡) + 𝐺

𝑇

(𝑄
2
−
𝑅
2

𝜏
)𝐺] 𝜉 (𝑡)

+ 2𝜉
𝑇

(𝑡) [𝑃
2
𝐴
𝑑
(𝑡) + 𝑀

𝑇

(𝑡) 𝑃
2
𝑀
𝑑
(𝑡) + 𝐺

𝑇
𝑅
2

𝜏
]

× 𝐺𝜉 (𝑡 − 𝜏)

+ 2𝜉
𝑇

(𝑡) [𝐴 (𝑡)
𝑇

𝐺
𝑇

𝑆
2
]𝐺𝑦 (𝑡)

+ 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

[𝑀
𝑇

𝑑
(𝑡) 𝑃
2
𝑀
𝑑
(𝑡) − 𝑄

2
−
𝑅
2

𝜏
]

× 𝐺𝜉 (𝑡 − 𝜏)

+ 2𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

[𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
2
]𝐺𝑦 (𝑡)
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+ 𝑦
𝑇

(𝑡) 𝐺
𝑇

[𝜏𝑅
2
− 𝑆
2
− 𝑆
𝑇

2
] 𝐺𝑦 (𝑡)

+ [𝐿 (𝑡) 𝜉 (𝑡)]
𝑇

[𝐿 (𝑡) 𝜉 (𝑡)]

< 0.

(34)

By considering V(𝑡) = 0, for all 𝑡 ≥ T and (32), for any
𝑡 ≥ T, inequalities (32) and (34) guarantee

L𝑉̃
2
(𝜉
𝑡
, 𝑡) + 𝑒

𝑇

(𝑡) 𝑒 (𝑡) < 0, ∀𝑡 ≥ T. (35)

Integrating both sides of (31) and (35), respectively, from
T to∞ and then taking expectation, we have

E{∫
∞

T

L𝑉̃
2
(𝜉
𝑡
, 𝑡) 𝑑𝑡} +E{∫

∞

T

𝑒
𝑇

(𝑡) 𝑒 (𝑡) 𝑑𝑡} < 0. (36)

Due to E{∫
∞

T
L𝑉̃
2
(𝜉
𝑡
, 𝑡)𝑑𝑡} = E{𝑉

2
(𝜉
∞
,∞)} − E{𝑉

2
(𝜉T,

T)} and E{𝑉
2
(𝜉
∞
,∞)} ≥ 0, then

E{∫
∞

T

𝑒
𝑇

(𝑡) 𝑒 (𝑡) 𝑑𝑡} < E {𝑉
2
(𝜉T,T)} . (37)

By considering (12), (13), (14), (30), and (37), we obtain
(26), the proof is concluded.

Remark 4. For general continuous time stochastic time-delay
systems, the delay-independent results can be obtained by
choosing the following form of Lyapunov functional:

𝑉 (𝑡) = 𝜉
𝑇

(𝑡) 𝑃𝜉 (𝑡) + ∫

𝑡

𝑡−𝜏

𝜉
𝑇

(𝑠) 𝑄𝜉 (𝑠) 𝑑𝑠. (38)

However, the presence of stochastic perturbation (Wiener
process) in the stochastic time-delay systems makes ̇𝜉(𝑡)

undefined and the above function is not suitable for its large
conservative.Thus, we adopt the Lyapunov functionals in the
form of (15) and (16) in the original version and obtain delay-
dependent criterion of filtering problem for stochastic time-
delay systems. It should be pointed out that the Lyapunov
functions are chosen with constant delay 𝜏 in this paper, and
the proposedmethod can be also extended to the case of time-
varying delay 𝜏(𝑡), which can have more conservative results.

Remark 5. Theorem 3 provides a delay-dependent sufficient
condition of the robustly mean-square asymptotic stability
with aHankel normperformance level 𝛾 for the filtering error
system (6). By introducing the assistant vector 𝑦(𝑡) and free-
weighting matrices 𝑆

𝑖
, the derivation of the above theorem

is completed without using any model transformations and
cross terms bounding techniques. The introduction of 𝑆

𝑖

helps establishing the contact of 𝜉(𝑡), 𝑦(𝑡), and 𝜉(𝑡 − 𝜏) and
then the delay-dependent results are obtained.This approach
has been proved to be less conservative.

4. Hankel Norm Filter Design

In this section, we will provide the solution to Hankel
norm filtering problem for stochastic time-delay systems.

As mentioned above, Theorem 3 gives a sufficient condition
for the existence of a filter that guarantees the filtering
error system mean-square asymptotically stable with Hankel
norm performance. However, the inequalities (10) and (11) in
Theorem 3 cannot be solved directly for the coupled matrix
variables. To solve this problem, we will make decoupling
process and adopt the convex linearization approach to
transform (10) and (11) into LMI forms, which can be solved
easily with the standard numerical software.

Theorem 6. For the given positive constants 𝜏 > 0 and
0 < 𝛼 ≤ 1, an admissible Hankel norm filter in the form
of (5) exists such that the filtering error system (6) is mean-
square asymptotically stable and has a guaranteed Hankel
norm performance level 𝛾 if there exist 𝑋 > 0, 𝑌 > 0, 𝑄 > 0,
𝑅 > 0, 𝑆, 𝐴

𝑓
(𝑡), 𝐵
𝑓
(𝑡), and 𝐶

𝑓
(𝑡) satisfying

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑋 −𝑌 Φ
13

0 Φ
15

0 Φ
17

∗ −𝑌 Φ
23

0 Φ
25

0 Φ
27

∗ ∗ Φ
33
Φ
34
Φ
35
𝐴
𝑇

(𝑡) 𝑆 Φ
37

∗ ∗ ∗ Φ
44
Φ
45

0 Φ
47

∗ ∗ ∗ ∗ Φ
55
𝐴
𝑇

𝑑
(𝑡) 𝑆 0

∗ ∗ ∗ ∗ ∗ Φ
66

𝑆
𝑇

𝐵 (𝑡)

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (39)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝛼𝑋 −𝛼𝑌 Ψ
13

0 Ψ
15

0 0

∗ −𝛼𝑌 Ψ
23

0 Ψ
25

0 0

∗ ∗ Ψ
33
Ψ
34
Ψ
35
𝛼𝐴
𝑇

(𝑡) 𝑆 𝐿
𝑇

(𝑡)

∗ ∗ ∗ Ψ
44
Ψ
45

0 −𝐶
𝑇

𝑓
(𝑡)

∗ ∗ ∗ ∗ Ψ
55
𝛼𝐴
𝑇

𝑑
(𝑡) 𝑆 0

∗ ∗ ∗ ∗ ∗ Ψ
66

0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(40)

where

Φ
13
= 𝑋𝑀(𝑡) + 𝐵

𝑓
(𝑡) 𝐸 (𝑡) ,

Φ
15
= 𝑋𝑀

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡) ,

Φ
17
= 𝑋𝑁 (𝑡) + 𝐵

𝑓
(𝑡) 𝐹 (𝑡) ,

Φ
23
= 𝑌𝑀(𝑡) + 𝐵

𝑓
(𝑡) 𝐸 (𝑡) ,

Φ
25
= 𝑌𝑀

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡) ,

Φ
27
= 𝑌𝑁 (𝑡) + 𝐵

𝑓
(𝑡) 𝐹 (𝑡) ,

Φ
33
= 𝑋𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑋 + 𝐵
𝑓
(𝑡) 𝐶 (𝑡)

+ 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) + 𝑄 −

𝑅

𝜏
,
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Φ
34
= 𝐴
𝑓
(𝑡) + 𝐴

𝑇

(𝑡) 𝑌 + 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) ,

Φ
35
= 𝑋𝐴

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡) +

𝑅

𝜏
,

Φ
37
= 𝑋𝐵 (𝑡) + 𝐵

𝑓
(𝑡) 𝐷 (𝑡) ,

Φ
44
= 𝐴
𝑓
(𝑡) + 𝐴

𝑇

𝑓
(𝑡) ,

Φ
45
= 𝑌𝐴
𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡) ,

Φ
47
= 𝑌𝐵 (𝑡) + 𝐵

𝑓
(𝑡) 𝐷 (𝑡) ,

Φ
55
= −𝑄 −

𝑅

𝜏
,

Φ
66
= 𝜏𝑅 − 𝑆 − 𝑆

𝑇

,

Ψ
13
= 𝛼 (𝑋𝑀(𝑡) + 𝐵

𝑓
(𝑡) 𝐸 (𝑡)) ,

Ψ
15
= 𝛼 (𝑋𝑀

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡)) ,

Ψ
23
= 𝛼 (𝑌𝑀(𝑡) + 𝐵

𝑓
(𝑡) 𝐸 (𝑡)) ,

Ψ
25
= 𝛼 (𝑌𝑀

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡)) ,

Ψ
33
= 𝛼(𝑋𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑋 + 𝐵
𝑓
(𝑡) 𝐶 (𝑡)

+ 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) + 𝑄 −

𝑅

𝜏
) ,

Ψ
34
= 𝛼 (𝐴

𝑓
(𝑡) + 𝐴

𝑇

(𝑡) 𝑌 + 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡)) ,

Ψ
35
= 𝛼(𝑋𝐴

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡) +

𝑅

𝜏
) ,

Ψ
44
= 𝛼 (𝐴

𝑓
(𝑡) + 𝐴

𝑇

𝑓
(𝑡)) ,

Ψ
45
= 𝛼 (𝑌𝐴

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡)) ,

Ψ
55
= −𝛼(𝑄 +

𝑅

𝜏
) ,

Ψ
66
= 𝛼 (𝜏𝑅 − 𝑆 − 𝑆

𝑇

) .

(41)

Proof. Inequality (39) implies𝑋 > 0 and 𝑌 > 0. For arbitrary
symmetric positive definite matrix 𝑌, one can always find a
nonsingular matrix𝑉 and symmetric positive definite matrix
𝑊 satisfying 𝑌 = 𝑉𝑊−1𝑉𝑇. Now we introduce, respectively,
the following matrix variables

𝑃 = [
𝑋 𝑉

𝑉
𝑇

𝑊
] , 𝐽

1
= [
𝐼 0

0 𝑊
−1

𝑉
𝑇] . (42)

By Schur complement lemma, we can infer from (39) that
𝑋 − 𝑉𝑊

−1

𝑉
𝑇

= 𝑋 − 𝑌 > 0, and then 𝑃 > 0.
Defining 𝑃

1
= 𝑃, 𝑃

2
= 𝛼𝑃, 𝑄

1
= 𝑄, 𝑄

2
= 𝛼𝑄, 𝑅

1
=

𝑅, 𝑅
2
= 𝛼𝑅, and applying the congruence transformation by

matrix Δ̂ = diag{𝐽
1
, 𝐽
1
, 𝐼, 𝐼, 𝐼} to (10) and (11), respectively, we

can easily infer the following inequalities:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑋 −𝑌 Φ̃
13

0 Φ̃
15

0 Φ̃
17

∗ −𝑌 Φ̃
23

0 Φ̃
25

0 Φ̃
27

∗ ∗ Φ̃
33
Φ̃
34

Φ̃
35

𝐴
𝑇

(𝑡) 𝑆 Φ̃
37

∗ ∗ ∗ Φ̃
44

Φ̃
45

0 Φ̃
47

∗ ∗ ∗ ∗ −𝑄 −
𝑅

𝜏
𝐴
𝑇

𝑑
(𝑡) 𝑆 0

∗ ∗ ∗ ∗ ∗ 𝜏𝑅 − 𝑆 − 𝑆
𝑇

𝑆
𝑇

𝐵 (𝑡)

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝛼𝑋 −𝛼𝑌 Ψ̃
13

0 Ψ̃
15

0 0

∗ −𝛼𝑌 Ψ̃
23

0 Ψ̃
25

0 0

∗ ∗ Ψ̃
33
Ψ̃
34

Ψ̃
35

𝛼𝐴
𝑇

(𝑡) 𝑆 𝐿
𝑇

(𝑡)

∗ ∗ ∗ Ψ̃
44

Ψ̃
45

0 −𝐶
𝑇

𝑓
(𝑡)

∗ ∗ ∗ ∗ −𝛼(𝑄 +
𝑅

𝜏
) 𝛼𝐴

𝑇

𝑑
(𝑡) 𝑆 0

∗ ∗ ∗ ∗ ∗ 𝛼 (𝜏𝑅 − 𝑆 − 𝑆
𝑇

) 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(43)
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where

Φ̃
13
= 𝑋𝑀(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸 (𝑡) ,

Φ̃
15
= 𝑋𝑀

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡) ,

Φ̃
17
= 𝑋𝑁 (𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐹 (𝑡) ,

Φ̃
23
= 𝑌𝑀(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸 (𝑡) ,

Φ̃
25
= 𝑌𝑀

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡) ,

Φ̃
27
= 𝑌𝑁 (𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐹 (𝑡) ,

Φ̃
33
= 𝑋𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑋 + 𝑉𝐵
𝑓
(𝑡) 𝐶 (𝑡)

+ 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) 𝑉
𝑇

+ 𝑄 −
𝑅

𝜏
,

Φ̃
34
= 𝑉𝐴
𝑓
(𝑡)𝑊
−1

𝑉
𝑇

+ 𝐴
𝑇

(𝑡) 𝑌 + 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) 𝑉
𝑇

,

Φ̃
35
= 𝑋𝐴

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡) +

𝑅

𝜏
,

Φ̃
37
= 𝑋𝐵 (𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐷 (𝑡) ,

Φ̃
44
= 𝑉𝐴
𝑓
(𝑡)𝑊
−1

𝑉
𝑇

+ 𝑉𝑊
−1

𝐴
𝑇

𝑓
(𝑡) 𝑉
𝑇

,

Φ̃
45
= 𝑌𝐴
𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡) ,

Φ̃
47
= 𝑌𝐵 (𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐷 (𝑡) ,

Ψ̃
13
= 𝛼 (𝑋𝑀(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸 (𝑡)) ,

Ψ̃
15
= 𝛼 (𝑋𝑀

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡)) ,

Ψ̃
23
= 𝛼 (𝑌𝑀(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸 (𝑡)) ,

Ψ̃
25
= 𝛼 (𝑌𝑀

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡)) ,

Ψ̃
33
= 𝛼(𝑋𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑋 + 𝑉𝐵
𝑓
(𝑡) 𝐶 (𝑡)

+ 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) 𝑉
𝑇

+ 𝑄 −
𝑅

𝜏
) ,

Ψ̃
34
= 𝛼 (𝑉𝐴

𝑓
(𝑡)𝑊
−1

𝑉
𝑇

+ 𝐴
𝑇

(𝑡) 𝑌 + 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) 𝑉
𝑇

) ,

Ψ̃
35
= 𝛼(𝑋𝐴

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡) +

𝑅

𝜏
) ,

Ψ̃
44
= 𝛼 (𝑉𝐴

𝑓
(𝑡)𝑊
−1

𝑉
𝑇

+ 𝑉𝑊
−1

𝐴
𝑇

𝑓
(𝑡) 𝑉
𝑇

) ,

Ψ̃
45
= 𝛼 (𝑌𝐴

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡)) .

(44)

Letting 𝐴
𝑓
(𝑡) = 𝑉𝐴

𝑓
(𝑡)𝑊
−1

𝑉
𝑇, 𝐵
𝑓
(𝑡) = 𝑉𝐵

𝑓
(𝑡), 𝐶
𝑓
(𝑡) =

𝐶
𝑓
(𝑡)𝑊
−1

𝑉
𝑇, we readily obtain (39) and (40). The proof is

completed.

Remark 7. It is noted that there exist different approaches to
solve the Hankel norm filtering problem asmentioned above,
such as the well-known projection lemma and the convex
linearization approach. In this paper, the later approach
is employed to solve the Hankel norm filtering problem.
Compared with the projection lemma, the convex lineariza-
tion approach has been proved to be less conservative. The
contrast analysis of the two methods can be referred in the
literature [19].

Remark 8. AlthoughTheorem 6 overcome the coupled prob-
lem in Theorem 3, the inequalities (39) and (40) still cannot
be used to solve the filter parameters in (5) directly.Therefore,
the next step of using Δ(𝑡) = ∑𝑟

𝑖=1
ℎ
𝑖
(𝜃(𝑡))Δ

𝑖
to substitute the

matrix functions inTheorem 6 is necessary, where Δ denotes
system matrices 𝐴, 𝐴

𝑑
, 𝐵,𝑀,𝑀

𝑑
, 𝑁, 𝐶, 𝐶

𝑑
, 𝐷, 𝐸, 𝐸

𝑑
, 𝐹, 𝐿,

𝑆 and corresponding parameters 𝐴
𝑓
, 𝐵
𝑓
, 𝐶
𝑓
. By this way, the

following theorem is obtained to present the final results.

Theorem9. For the given positive constants 𝜏 > 0 and 0 < 𝛼 ≤
1, the filtering error system (6) is mean-square asymptotically
stable and has a guaranteed Hankel norm performance level 𝛾
if there exist 𝑋 > 0, 𝑌 > 0, 𝑄 > 0, 𝑅 > 0, 𝑆

𝑖
, 𝐴
𝑓𝑖
, 𝐵
𝑓𝑖
, and

𝐶
𝑓𝑖
(𝑖 = 1, 2, . . . , 𝑟) satisfying

Ω
𝑖𝑗

1
+ Ω
𝑗𝑖

1
< 0,

Ω
𝑖𝑗

2
+ Ω
𝑗𝑖

2
< 0, 𝑖 ≤ 𝑗,

(45)

whereΩ𝑖𝑗
1
and Ω𝑖𝑗

2
are given as

Ω
𝑖𝑗

1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑋 −𝑌 𝑋𝑀
𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑗
0 𝑋𝑀

𝑑𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑑𝑗

0 𝑋𝑁
𝑗
+ 𝐵
𝑓𝑖
𝐹
𝑗

∗ −𝑌 𝑌𝑀
𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑗

0 𝑌𝑀
𝑑𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑑𝑗

0 𝑌𝑁
𝑗
+ 𝐵
𝑓𝑖
𝐹
𝑗

∗ ∗ Λ
33

Λ
34
𝑋𝐴
𝑑𝑗
+ 𝐵
𝑓𝑖
𝐶
𝑑𝑗
+
𝑅

𝜏
𝐴
𝑇

𝑗
𝑆
𝑖

𝑋𝐵
𝑗
+ 𝐵
𝑓𝑖
𝐷
𝑗

∗ ∗ ∗ Λ
44

𝑌𝐴
𝑑𝑗
+ 𝐵
𝑓𝑖
𝐶
𝑑𝑗

0 𝑌𝐵
𝑗
+ 𝐵
𝑓𝑖
𝐷
𝑗

∗ ∗ ∗ ∗ −𝑄 −
𝑅

𝜏
𝐴
𝑇

𝑑𝑗
𝑆
𝑖

0

∗ ∗ ∗ ∗ ∗ 𝜏𝑅 − 𝑆
𝑖
− 𝑆
𝑇

𝑖
𝑆
𝑇

𝑖
𝐵
𝑗

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,
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Ω
𝑖𝑗

2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝛼𝑋 −𝛼𝑌 𝛼 (𝑋𝑀
𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑗
) 0 𝛼 (𝑋𝑀

𝑑𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑑𝑗
) 0 0

∗ −𝛼𝑌 𝛼 (𝑌𝑀
𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑗
) 0 𝛼 (𝑌𝑀

𝑑𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑑𝑗
) 0 0

∗ ∗ Λ̃
33

Λ̃
34
𝛼(𝑋𝐴

𝑑𝑗
+ 𝐵
𝑓𝑖
𝐶
𝑑𝑗
+
𝑅

𝜏
) 𝛼𝐴

𝑇

𝑗
𝑆
𝑖

𝐿
𝑇

(𝑡)

∗ ∗ ∗ Λ̃
44

𝛼 (𝑌𝐴
𝑑𝑗
+ 𝐵
𝑓𝑖
𝐶
𝑑𝑗
) 0 −𝐶

𝑇

𝑓𝑖

∗ ∗ ∗ ∗ −𝛼(𝑄 +
𝑅

𝜏
) 𝛼𝐴

𝑇

𝑑𝑗
𝑆
𝑖

0

∗ ∗ ∗ ∗ ∗ 𝛼 (𝜏𝑅 − 𝑆
𝑖
− 𝑆
𝑇

𝑖
) 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Λ
33
= 𝑋𝐴

𝑗
+ 𝐴
𝑇

𝑗
𝑋 + 𝐵

𝑓𝑖
𝐶
𝑗
+ 𝐶
𝑇

𝑗
𝐵
𝑇

𝑓𝑖
+ 𝑄 −

𝑅

𝜏
,

Λ
34
= 𝐴
𝑓𝑖
+ 𝐴
𝑇

𝑗
𝑌 + 𝐶

𝑇

𝑗
𝐵
𝑇

𝑓𝑖
, Λ

44
= 𝐴
𝑓𝑖
+ 𝐴
𝑇

𝑓𝑖
,

Λ̃
33
= 𝛼(𝑋𝐴

𝑗
+ 𝐴
𝑇

𝑗
𝑋 + 𝐵

𝑓𝑖
𝐶
𝑗
+ 𝐶
𝑇

𝑗
𝐵
𝑇

𝑓𝑖
+ 𝑄 −

𝑅

𝜏
) ,

Λ̃
34
= 𝛼 (𝐴

𝑓𝑖
+ 𝐴
𝑇

𝑗
𝑌 + 𝐶

𝑇

𝑗
𝐵
𝑇

𝑓𝑖
) , Λ̃

44
= 𝛼 (𝐴

𝑓𝑖
+ 𝐴
𝑇

𝑓𝑖
) .

(46)

In this case, the filter parameters in (5) are given by

𝐴
𝑓𝑖
= 𝑌
−1

𝐴
𝑓𝑖
, 𝐵

𝑓𝑖
= 𝑌
−1

𝐵
𝑓𝑖
,

𝐶
𝑓𝑖
= 𝐶
𝑓𝑖
, 𝑖 = 1, 2, . . . , 𝑟.

(47)

Proof. Based onTheorems 3 and 6, we set

𝐴
𝑓
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) 𝐴fi,

𝐵
𝑓
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) 𝐵fi,

𝐶
𝑓
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) 𝐶fi,

𝑆 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) 𝑆

𝑖
.

(48)

From (39) and (40), we have

Ω
1
(𝑡) =

𝑟

∑

𝑖=1

ℎ
2

𝑖
(𝜃 (𝑡)) Ω

𝑖𝑖

1

+

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) (Ω

𝑖𝑗

1
+ Ω
𝑗𝑖

1
) < 0,

Ω
2
(𝑡) =

𝑟

∑

𝑖=1

ℎ
2

𝑖
(𝜃 (𝑡)) Ω

𝑖𝑖

2

+

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) (Ω

𝑖𝑗

2
+ Ω
𝑗𝑖

2
) < 0.

(49)

By virtue of Theorems 3 and 6, the Hankel norm filter
design problem is solvable and the filter parameters are given
by

𝐴
𝑓
(𝑡) = 𝑉

−1

𝐴
𝑓
(𝑡) 𝑉
−𝑇

𝑊, 𝐵
𝑓
(𝑡) = 𝑉

−1

𝐵
𝑓
(𝑡) ,

𝐶
𝑓
(𝑡) = 𝐶

𝑓
(𝑡) 𝑉
−𝑇

𝑊,

(50)

where matrices 𝑊 > 0 and 𝑉 are such that 𝑌 =

𝑉𝑊
−1

𝑉
𝑇. Or equivalently under transformation 𝑉−𝑇𝑊𝑥(𝑡),

the filter parameters can be obtained as (47). The proof is
completed.

Remark 10. Notice that the obtained conditions inTheorem 9
are all in LMI forms and the Hankel norm filtering problem
can be solved by the following convex optimization problem
with LMI Toolbox in MATLAB:

min
𝑋>0,𝑌>0,𝑄>0,𝑅>0,𝑆𝑖 ,𝐴fi,𝐵fi,𝐶fi

𝜆 Subject to (45) , (51)

where 𝜆 = 𝛾2, and the admissible filter parameters can be
determined by (47).

5. Numerical Example

In this section, we will present a numerical example to
demonstrate the validity of the developed results. Consider
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a stochastic system of the form (2) with the following
parameters (𝑟 = 2):

𝐴
1
= [
−1.5 0.5

−1 −3
] , 𝐴

𝑑1
= [
−0.8 0.2

0.2 −0.2
] , (52)

𝐵
1
= [

0.2

−0.2
] , 𝑀

1
= [
−0.8 0.2

0.5 −0.5
] , (53)

𝑀
𝑑1
= [
0.5 0.5

0.2 0.3
] , 𝑁

1
= [
−0.2

0.5
] , (54)

𝐶
1
= [0.2 0.1] , 𝐶

𝑑1
= [−0.1 0.2] , 𝐷

1
= 0.2,

(55)

𝐸
1
= [−0.2 0.2] , 𝐸

𝑑1
= [0.2 −0.5] , (56)

𝐹
1
= 0.5, 𝐿

1
= [−1 0.5] , (57)

𝐴
2
= [
−1 0.5

0.5 −1.3
] , 𝐴

𝑑2
= [
0.02 0.14

0 0.15
] , (58)

𝐵
2
= [
0.3

0.1
] , 𝑀

2
= [

−1 0

−0.5 −1.3
] , (59)

𝑀
𝑑2
= [

0.1 0

0.02 0.03
] , 𝑁

2
= [

0.2

−0.5
] , (60)

𝐶
2
= [0.5 0.1] , 𝐶

𝑑2
= [−0.1 0.5] , 𝐷

2
= 0.1,

(61)

𝐸
2
= [−0.1 0.2] , 𝐸

𝑑2
= [0.1 −0.5] , (62)

𝐹
2
= 0.2, 𝐿

2
= [0.5 −0.1] . (63)

According to Theorem 9, we can get the minimum per-
formance level 𝛾 = 0.5253 for 𝜏 = 0.5 and 𝛼 = 1, and the
solutions of corresponding parameters are as follows:

𝑌 = [
0.1901 −0.1134

−0.1134 0.1207
] , 𝐴

𝑓1
= [
−0.5394 −0.0057

−0.0057 −0.3529
] ,

𝐵
𝑓1
= [

0.2148

−0.1394
] , 𝐶

𝑓1
= [−0.6610 0.0083]

𝐴
𝑓2
= [
−0.4336 0.5944

0.5944 −0.9336
] , 𝐵

𝑓2
= [
−0.0247

−0.1454
] ,

𝐶
𝑓2
= [0.6553 −1.1762] .

(64)

Then the Hankel norm filter parameter matrices are
computed from (47) as

𝐴
𝑓1
= [
−6.5154 −4.0327

−6.1661 −6.7104
] , 𝐵

𝑓1
= [

1.0035

−0.2123
] ,

𝐶
𝑓1
= [−0.6610 0.0083] , 𝐴

𝑓2
= [
0.7727 −3.3775

5.6483 −10.9038
] ,

𝐵
𝑓2
= [
−1.9283

−3.0147
] , 𝐶

𝑓2
= [0.6553 −1.1762] .

(65)

Table 1: Minimum index 𝛾 for different 𝜏.

𝜏 = 0.5 𝜏 = 0.6 𝜏 = 0.8 𝜏 = 1.0

𝛾 0.5253 0.5553 0.6387 0.8138

The solvability of the filter parameters indicates that the
proposed approach is effective. Furthermore, different value
of 𝜏 may yield different 𝛾min. By selecting several different
values of 𝜏, the computation results of minimum 𝛾 are
obtained in Table 1. Table 1 shows that the results presented
in this paper are delay-dependent and less conservative.

6. Conclusions

In this paper, the problem of Hankel norm filter design
for stochastic time-delay systems via T-S fuzzy-model-based
approach has been investigated. A new filtering error system
is established by designing local linear filters for each linear
subsystem according to the parallel distributed compensation
(PDC) method. Based on the Lyapunov stability theory and
LMI techniques, a delay-dependent sufficient condition is
developed in terms of LMIs for the mean-square asymptotic
stability with Hankel norm performance of the filtering
error system. The integral inequality method is adopted
and an assistant vector and free matrices are introduced,
which helps achieving much less conservative results. The
results of numerical example are presented to demonstrate
the effectiveness of the proposed approach.
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