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Offshore floating wind turbine (OFWT) has been a challenging research spot because of the high-quality wind power and complex
load environment.This paper focuses on the research of variable torque control of offshore wind turbine on Spar floating platform.
The control objective in below-rated wind speed region is to optimize the output power by tracking the optimal tip-speed ratio
and ideal power curve. Aiming at the external disturbances and nonlinear uncertain dynamic systems of OFWT because of the
proximity to load centers and strong wave coupling, this paper proposes an advanced radial basis function (RBF) neural network
approach for torque control ofOFWTsystemat speeds lower than ratedwind speed.The robust RBFneural networkweight adaptive
rules are acquired based on the Lyapunov stability analysis. The proposed control approach is tested and compared with the NREL
baseline controller using the “NREL offshore 5MW wind turbine” model mounted on a Spar floating platform run on FAST and
Matlab/Simulink, operating in the below-rated wind speed condition.The simulation results show a better performance in tracking
the optimal output power curve, therefore, completing the maximum wind energy utilization.

1. Introduction

Wind energy has been an important part of the renewable
energy. It is significantly meaningful for optimizing the
energy system structure, easing the energy crisis, and pro-
tecting the environment by actively developing wind energy.
With the rapidly development of wind energy all over the
world, promising and reliable wind turbine concepts have
been developed. Offshore wind turbine makes it possible
to go further into water deeper than 60m [1]; therefore,
it has become the key research in the field of renewable
energy.

The floating offshore wind turbine (OFWT) concept
provides a groundbreaking strategy to fully utilize the high-
quality wind power in deep waters. The design concept of
“large floating offshore wind turbine” was firstly proposed
by Heronemus from Massachusetts Institute of Technol-
ogy (MIT) in 1972 [2, 3]. American Renewable Energy

Laboratory (NREL) and MIT have completed the dynamic
system modeling of OFWT and the three types of floating
platform: tension leg platform with suction pile anchors,
Spar-buoy with catenary mooring, drag-embedded anchors
and barge with catenary mooring lines through OC3 projects
[4]. Figure 1 shows the three primary types of floating
offshore wind turbine concepts.

Previous research results show that, compared to onshore
wind turbines, OFWTs with six degrees of freedom are
prone to pitching motion and to produce complex dynamic
load because of proximity to load centers and strong wave
coupling [5]. Meanwhile, with the larger scale (the capacity
of OFWTs reaches up to 10MW, the diameter of blades
approximates 200 meters), the blades of OFWT produce
higher uneven loads due to the effect of turbulence, wind
shear, tower shadow, and spindle tilt. Accumulating of the
above two types of loads will result in devastating impact on
the fatigue life and output power quality of theOFWT system.
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Figure 1: Floating offshore wind turbine concepts (image from Google).

Therefore, it is urgently needed to reduce fatigue loads and
improve output power quality for OFWT system by utilizing
advanced control strategies.

Control of OFWT is a relatively new yet challenging
research area. There have been a large number of recent
achievements in the research of blade pitch control forOFWT
in the above-rated wind speed region [6–13]. In our previous
work [6], we propose a computationally inexpensive robust
adaptive control approach with memory-based compensa-
tion for blade pitch control. However, works on the variable
speed control for OFWT system in below-rated wind speed
region are relatively few.

In this study, to address the challenge that the system
parameters of OFWT are varying and uncertain due to the
complex external wind and wave disturbances, an adaptive
radial basis function (RBF) neural network approach is
proposed for torque control of OFWT system at speeds
lower than rated wind speed.The robust RBF neural network
weight adaptive rules are acquired based on the Lyapunov
stability analysis. The proposed torque controller based on
RBF neural network is presented and mounted on a Spar
floating platform for performance comparison with the
baseline torque controller in the below-rated wind speed
region.

Section 2 briefly presents the wind turbine model and
the Spar floating platform utilized in this paper. Section 3
describes the two implemented controllers: the baseline
torque controller and the proposed variable torque con-
troller based on RBF neural network. Section 4 shows the
simulation and results, in which performances of the above
two controllers are compared with each other on Spar
floating platform. Eventually, conclusions are reported in
Section 5.
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Figure 2: Power coefficients for VSVP wind turbine.

2. Wind Turbine and Platform Models

2.1. 5MWOffshoreWindTurbineModel. Thebasic properties
of future offshore turbines can be estimated by considering
the amount of kinetic energy density in the wind, which can
be converted into kinetic energy of the turbine shaft. The
expression for power produced by the wind is simply given by

𝑃
𝑆
=
1

2
𝐶
𝑝 (𝜆, 𝛽) 𝜌𝐴V

3
, (1)

where 𝜌 is air density and 𝐴 is the swept area of the turbine
rotor with a radius 𝑅, giving 𝐴 = 𝜋𝑅

2. V is wind speed
passing the rotor. 𝐶

𝑝
denotes power coefficient of wind

turbine, which is a nonlinear function of the tip-speed ratio
𝜆 and the pitch angle 𝛽 [14]. Figure 2 depicts the curve of
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power coefficients for variable speed and variable pitch wind
turbine. It indicates that, for a different 𝛽, there will be a
different curve for the 𝐶

𝑝
− 𝜆, while, for a fixed 𝛽, there will

be an optimal 𝜆 at which the power output is maximum. In
addition, for any tip-speed ratio 𝜆, power coefficient 𝐶𝑝 is
relatively maximum when blade pitch angle 𝛽 = 0

∘. When 𝛽
increases, 𝐶

𝑝
decreases simultaneously.

Note that the tip-speed ratio is defined as

𝜆 =

VTip
V

=
𝑅𝜔𝑟

V
, (2)

where VTip is the tip speed and 𝜔
𝑟
is the rotor speed.

For a constant value of 𝛽 = 0
∘, the mathematical model

of 𝐶
𝑝
is expressed as

𝐶
𝑝 (𝜆) = 𝑐1 (

𝑐
2

𝜆1

− 𝑐
4
) 𝑒
−𝑐
5
/𝜆
1 + 𝑐
6
𝜆,

1

𝜆
1

= (
1

𝜆
− 0.035) ,

(3)

where the coefficients (𝑐
1
, 𝑐
2
, 𝑐
4
, 𝑐
5
, 𝑐
6
) depend on the aero-

dynamic design of the blade and operating conditions of the
wind turbine. In this paper, the coefficients are 𝑐1 = 0.5176,
𝑐2 = 116, 𝑐4 = 5, 𝑐5 = 21, and 𝑐6 = 0.0068 [15]. For the “NREL
5MW reference offshore wind turbine” model simulated in
this paper, the peak power coefficient of 0.482 occurred at a
tip-speed ratio of 7.55 and a rotor-collective blade-pitch angle
of 0.0∘ [16].

In the case of the variable speed wind power generation
system, the maximum power point control from the wind
turbine can be adopted. The maximum power of the wind
turbine is given by

𝑃max =
1

2

𝜌𝜋𝑅
5
𝐶𝑝 max

𝜆∗3
𝜔
∗3

𝑟
. (4)

The physical properties of the specified wind turbine
model used for analysis, the “NREL 5MW reference offshore
wind turbine,” are listed in Table 1 [16]. This wind turbine is
mounted on a Spar floating platform.

2.2. Floating Platform. The Spar-buoy platform is modeled
for the support structure. The NREL 5 MW offshore floating
platform input properties for the OC3-Hywind Spar-buoy
used in this paper are briefly summarized in Table 2 [4].

3. Implemented Controllers

This section gives the detailed information about the two
controllers simulated in the analysis.

3.1. The Baseline Generator Torque Controller. The baseline
generator torque controller is built on the best performance
presented by Jonkman in his previous research on the Spar-
buoy platform [17].

In the below rated wind speed region, the purpose is to
optimize power capture.The generator torque is proportional

Table 1: NREL 5MW turbine model properties.

Power rating 5MW
Rotor orientation, Configuration Upwind, 3 blades

Control Variable speed, variable
pitch, active yaw

Rotor, hub diameter 126m, 3m
Hub height 90m
Cut-in, rated, cut-out wind speed 3m/s, 11.4m/s, 25m/s
Rated rotor, generator speed 12.1 rpm, 1173.7 rpm
Rotor mass 110000 kg
Optimal tip-speed-ratio 7.55
Blade operation Pitch to feather
Maximum blade pitch rate 8∘/s
Rated generator torque 43,093Nm
Maximum generator torque 47,402Nm
Using the turbine model data from [16].

Table 2: Physical properties for the OC3-hywind spar-buoy.

Diameter 6.5m
Draft 120.0m
Platform mass 7,466,330 kg
Water depth 320.0m
Number of mooring lines 3
Using the barge platform data from [4].

to the square of the filtered generator speed to maintain a
constant optimal tip-speed ratio.

The generator torque for this region is expressed as

𝑇
𝜔
𝑟

𝑔
= 𝑇
1

𝑔
+

𝑇
∗

𝑔
− 𝑇
1

𝑔

𝜔𝑟,2 − 𝜔𝑟,1

(𝜔
𝑟
− 𝜔
𝑟,1
) , (5)

where𝜔
𝑟
is rotor speed,𝑇1

𝑔
is the generator torque at the rotor

speed inwhich this region starts (𝜔
𝑟,1),𝑇
∗

𝑔
is rated torque, and

𝜔
𝑟,2

is the rotor speed in which the rated torque is reached.

3.2. Advanced Generator Torque Controller Based on RBF
Neural Network. We propose a RBF neural network for
variable torque control of the OFWT system. The total
number of input signals in the OFWT torque control system
is no more than 4. Consequently, it is a computationally
inexpensive approach to utilize the RBF neural network for
linearization and approximation.

In this paper, the RBF neural network is a three-layer
forward network, including an input layer, a hidden layer
with a Gaussian activation function, and a linear output layer.
The mapping from input to output is nonlinear, while the
mapping from hidden layer to output layer is linear, therefore
speeding up the process of study obviously and avoiding
local minimum problem. The topological structure of RBF
network is presented in Figure 3.

The control block diagram of RBF neural network is
illustrated in Figure 4.



4 Abstract and Applied Analysis

Input layer
Hidden layer

Output layer
x1

x2

xn

h1

h2

hm

w1

w2

wm

F

i j

(x)∑
...

...

Figure 3: Topological graph of RBF neural network.
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Figure 4: Control block diagram of RBF neural network.

In RBF network,𝑋 = [𝑥1, 𝑥1, . . . , 𝑥𝑛]
𝑇 is the input vector,

ℎ𝑔 is a nonlinear RBF activation function, which is given by

ℎ
𝑔
= Φ (


𝑋 − 𝐶

𝑔


) = exp(−


𝑋 − 𝐶

𝑔



2

2𝑏2
𝑔

) ,

𝑔 = 1, 2, . . . , 𝑚,

(6)

where 𝑚 is the number of neurons in the hidden layer and
𝐶
𝑔 = [𝑐1𝑔, 𝑐2𝑔, . . . , 𝑐𝑖𝑔, . . . , 𝑐𝑛𝑔]

𝑇 is the central vector of 𝑔th
hidden neuron. 𝐵 = [𝑏

1, 𝑏2, . . . , 𝑏𝑔, . . . , 𝑏𝑚]
𝑇 is the basis-width

vector, 𝑏𝑔 > 0 is the base width constant of 𝑔th mode,
and the weight vector of the linear output neurons is 𝑤 =

[𝑤1, 𝑤2, . . . , 𝑤𝑔, . . . , 𝑤𝑚]
𝑇.

The output 𝑅𝑛 → 𝑅 of the neural network is defined as

𝐹 (𝑥) = 𝑤𝐻 =

𝑚

∑

𝑔=1

𝑤𝑔Φ(

𝑥 − 𝐶

𝑔


) . (7)

From previous research results [13, 18–25], we could learn
that, a RBF neural network with enough hidden neurons
can approximate any nonlinear continuous functions with
arbitrary precision. In this paper, in order to train the RBF
neural network, we utilize the Lyapunov stability to get the
weights updating rules of the RBF neural network.

In the first mode of operating at variable torque control,
where the wind speed is less than the rated speed region,
the electrical torque of the wind turbine must be adjusted to
make the rotor speed track the desired speed that is specified
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Figure 5: Layout of drive train model.

according to the optimal tip-speed ratio. The drive train
dynamics are depicted in Figure 5. The mechanical motion
equations are given by

𝐽𝑟�̇�𝑟 + 𝐾𝑟𝜔𝑟 + 𝐵𝑟𝜃𝑟 = 𝑇𝑚 (𝜔, 𝛽, V, �̇�) − 𝑇𝐿,

𝐽
𝑔
�̇�
𝑔
+ 𝐾
𝑔
𝜔
𝑔
+ 𝐵
𝑔
𝜃
𝑔
= 𝑇
𝐻
− 𝑇
𝑒
,

𝑛 =

𝜔
𝑔

𝜔𝑟

=
𝑇𝐿

𝑇𝐻

,

(8)

where 𝐽
𝑟
and 𝐽
𝑔
are themoment of inertia of the rotor and the

generator.𝐾
𝑟
and𝐾

𝑔
are the coefficient of viscous reaction of

rotor and generator, respectively. 𝐵
𝑟
and 𝐵

𝑔
are the coefficient

and stiffness of rotor and generator, respectively. 𝑇
𝑚
, 𝑇
𝑒
, 𝑇
𝐿
,

and 𝑇
𝐻
are the shaft torque at wind turbine end, generator

end, and before and after gear box, respectively. 𝑥 is the tower
displacement and 𝑛 is the gearbox ratio. 𝜃𝑟 and 𝜃𝑔 are the
mechanical angular position of the rotor and generator.

We rewrite the above mechanical motion equations in a
compact form as follows:

𝐽�̇�
𝑟
+ 𝐾𝜔
𝑟
+ 𝐵𝜃
𝑟
= 𝑇
𝑚
(𝜔, 𝛽, V, �̇�) − 𝑛𝑇

𝑒
, (9)

where, 𝐵 are lumped parameters given by

𝐽 = 𝐽𝑟 + 𝑛
2
𝐽𝑔,

𝐾 = 𝐾
𝑟
+ 𝑛
2
𝐾
𝑔
,

𝐵 = 𝐵𝑟 + 𝑛
2
𝐵𝑔.

(10)

𝑇
𝑚
is given by

𝑇
𝑚 =

𝜌𝜋𝑅
3
𝐶𝑝 (𝜆, 𝛽)

2𝜆
(V − �̇�)2. (11)

The affine form of the rotor speed equation can be
characterized by the following equation:

�̇�
𝑟
= Γ (𝜔

𝑟
, V) + 𝛾𝑇

𝑒
, (12)

where 𝛾 is a constant negative value and 𝑇
𝑒
is the input signal,

with

Γ (𝜔𝑟, V) =
(𝜌𝜋𝑅
3
𝐶
𝑝
(𝜆, 𝛽) /2𝜆) V2 − 𝐾𝜔

𝑟
− 𝐵𝜃
𝑟

𝐽
,

𝛾 =
−𝑛

𝐽
.

(13)
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Construct a nonlinear approximation function through
RBF neural network given by

Γ (𝜔𝑟, V)
𝛾

= Φ (𝜔
𝑟
, V) 𝑤 + 𝐿 (𝜔

𝑟
, V) , (14)

where |𝐿(𝜔
𝑟
, V)| ≤ 𝐿max represents the lumped RBF neural

network approximation error.
To design the rotor speed tracking controller, define the

rotor tracking error 𝑒 as follows:

𝑒 = 𝜔
𝑟
− 𝜔
∗

𝑟
, (15)

where 𝜔∗
𝑟
is the optimal rotor speed, which is defined as

𝜔
∗

𝑟
=
𝜆
∗V
𝑅
, (16)

where the optimum tip speed ratio 𝜆∗ is given in Table 1.
The control system can be justified by considering the

Lyapunov function candidate as follows:

𝑉 =
1

−2𝛾
𝑒
2
+

1

2𝜃
1

𝑤
𝑇
𝑤, (17)

where 𝜃1 > 0 is the positive adaptation gain. 𝑤 = 𝑤 − 𝑤 is
the weight error. 𝑤 and 𝑤 are the ideal weight and estimated
weight of the network, respectively. The Lyapunov function
candidate 𝑉 is a positive definite function and �̇� ≤ 0 is the
sufficient condition for the robust stability of the nonlinear
system. We can get the following:

�̇� = (𝜔
𝑟
− 𝜔
∗

𝑟
) (−

Γ (𝜔
𝑟
, V)

𝛾
− 𝑇
𝑒
+
𝜆
∗V̇
𝑅𝛾

) −
1

𝜃1

𝑤
𝑇 ̇̂𝑤. (18)

Deriving the approximation through the neural networks
Γ(𝜔
𝑟, V)/𝛾 = Φ(𝜔𝑟, V)𝑤+𝐿(𝜔𝑟, V) and Γ̂(𝜔𝑟, V)/𝛾 = Φ(𝜔𝑟, V)𝑤.

For the stability of the nonlinear system, consider the follow-
ing controller:

�̂� = 𝑇
𝑒
= −Φ (𝜔

𝑟
, V) 𝑤 + 𝜅 (𝜔

𝑟
− 𝜔
∗

𝑟
) + 𝜔
𝑟
, (19)

where 𝜅 > 0 is the rotor speed tracking error feedback gain.

Proof. Based on (18) and (19), we can get

�̇� = (𝜔 − 𝜔
∗
) (−𝐿 (𝜔

𝑟
, V) − 𝜅 (𝜔

𝑟
− 𝜔
∗

𝑟
) − 𝜔
𝑟
+
𝜆
∗V̇
𝑅𝛾

)

+ 𝑤
𝑇
(−Φ
𝑇
(𝜔
𝑟
, V) (𝜔

𝑟
− 𝜔
∗

𝑟
) −

1

𝜃1

̇̂𝑤) .

(20)

The weight updating rule of the network can be obtained
through the e-modification method given by

̇̂𝑤 = − 𝜃1 (Φ
𝑇
(𝜔
𝑟
, V) (𝜔

𝑟
− 𝜔
∗

𝑟
) + 𝜐

𝜔𝑟 − 𝜔
∗

𝑟

 𝑤) , (21)

where 𝜐 is a constant positive value. Combine (20) and (21) to
get the following:

�̇� = (𝜔
𝑟
− 𝜔
∗

𝑟
) (−𝐿 (𝜔

𝑟
, V) − 𝜔

𝑟
+
𝜆
∗V̇
𝑅𝛾

)

− 𝜅(𝜔
𝑟
− 𝜔
∗

𝑟
)
2
+ 𝜐

𝜔𝑟 − 𝜔
∗

𝑟

 𝑤
𝑇
𝑤.

(22)
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Figure 6: Block diagram of the RBF NN variable speed control
scheme.

It is assumed that 𝜔
𝑟
and �̇�∗

𝑟
are bounded, so

𝜔𝑟
 ≤ 𝐿1,

�̇�
∗

𝑟

 =



𝜆
∗V̇
𝑅𝛾



≤ 𝐿
2
,

�̇� ≤
𝜔𝑟 − 𝜔

∗

𝑟



⋅ ((𝐿max + 𝐿1 + 𝐿2) − 𝜅
𝜔𝑟 − 𝜔

∗

𝑟

 − 𝜐𝑤
𝑇
𝑤 + 𝜐𝑤

𝑇
𝑤) .

(23)

If |𝜔
𝑟
−𝜔
∗

𝑟
| ≥ (𝐿max +𝐿𝑤)/𝜅+ (𝜐𝑤

2
)/4𝜅 or ‖𝑤‖ ≥ (𝑤/2)+

√(𝐿max + 𝐿𝑤)/𝜐 + 𝑤
2/4, we could get

�̇� ≤ 0. (24)

Therefore, the overall dynamic system is uniformly ulti-
mately bounded.

From the above equations, we can see that the estimated
wind speed input enables the generator to track the optimal
output power curve by generating a reference rotor speed.
There are many previous researches working on estimating
wind speed without directly measuring the wind speed. In
this paper, we utilize the sensorless scheme presented in [26]
to estimate wind speed based on neural network. Then we
could get the reference rotor speed by the following equation:

𝜔
∗

𝑟
= 𝑓 (V) =

𝜆
∗V
𝑅
. (25)

The block diagram of the RBF neural network variable
speed control scheme of the OFWT system is depicted in
Figure 6.

4. Simulation and Results

In this section, the “NREL 5MW reference offshore wind
turbine” installed on a OC3-Hywind Spar-buoy floating
platform is tested and simulated with the FAST and MAT-
LAB/Simulink under mean value of 8m/s turbulence wind
speed, which is below the rated wind speed.

To verify the robustness and self-adaptation of the
proposed variable torque controller based on RBF neural
network, compared simulations of two types of controllers,
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the baseline torque controller and the proposed torque
controller, have been performed on the same offshore wind
turbine system. Two comparison performances are simulated
based on power tracking: generator output power and torque
regulations.

Figure 7 shows the turbulence wind and wave conditions.
Figure 8 compares the average generator output power

tracking for the proposed torque controller based on RBF
neural network and the baseline torque controller with the
optimal output power trajectory. It can be observed that,
the proposed adaptive torque controller is able to follow the
optimal output power curve with better tracking accuracy
than the baseline torque controller, therefore completing the
maximum offshore wind energy utilization.

Figure 9 presents the compared curve in generator
torque.

5. Conclusions

This paper mainly focuses on the variable torque control
of OFWT system for power tracking in below-rated wind
speed region on a Spar-buoy floating platform. In allusion to
the external disturbances and uncertain system parameters
of OFWT due to the much more complicated external load
environment and strong wave coupling compared to the
onshore wind turbine, a robust adaptive torque controller
based on RBF neural network is proposed and tested. Two
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Figure 9: Comparison in generator torque.

types of controllers are implemented on the OC3-Hywind
Spar-buoy floating platform for performance comparison: the
baseline torque controller and the proposed torque controller

According to the average simulation results, the proposed
torque controller based on RBF neural network is not only
robust to complex wind andwave disturbances but also adap-
tive to varying and uncertain system parameters as well. As a
result, the advanced controller shows a better performance in
tracking the optimal generator output power curve, therefore
completing the maximum wind energy utilization.
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