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This paper deals with the problem of fault-tolerant control (FTC) of uncertain stochastic systems subject to modeling uncertainties
and actuator failures. A robust adaptive fault-tolerant controller design method based on stochastic Lyapunov theory is developed
to accommodate the negative impact on system performance arising from uncertain system parameters and external disturbances
as well as actuation faults. There is no need for on-line fault detection and diagnosis (FDD) unit in the proposed FTC scheme,
which not only simplifies the design process but also makes the implementation inexpensive. Numerical examples are provided to
validate and illustrate the benefits of the proposed control method.

1. Introduction

Stability analysis and control design of stochastic systems
have received increasing attention during the past decades.
Under the framework of Itô equations together with the
notion of mean-square stability, some interesting results
have been obtained in terms of generalized algebraic Riccati
equations, linear matrix inequality (LMI), or spectra of some
operators (see, for instance, [1–4] and the references cited
therein).

However, to our knowledge, very few works have
dealt with the stabilization of general stochastic systems
where actuator failures, parameter uncertainties, and state-
dependent disturbances are involved simultaneously. This
motivates us to investigate the reliable control problem
of stochastic systems, aiming at maintaining an acceptable
performance for the closed-loop systems in the presence of
actuator failures and modeling uncertainties.

Actuator failures can cause severe performance deterio-
ration of control systems, or even system instability, leading
to catastrophic accidents. Fault-tolerant control (FTC) has
been viewed as one of the most promising methods to
increase system safety and reliability and has thus received
considerable attention from control and system engineering

research community [5–17]. Most existing FTC methods can
be broadly classified as active FTC and passive FTC. The
active FTC requires a fault detection and diagnosis (FDD)
mechanism to detect and identify the faults in real time,
and a mechanism to reconfigure the controller according
to the on-line fault information from the FDD [9–17]. The
main idea of the passive FTC approach is to design a single
controller that is robust against faults and uncertainties.
In contrast to the passive approach, active methods utilize
control reconfiguration to adjust controllers in real time so
that the impacts of the failures can be compensated and the
stability as well as the acceptable performance of the system
can be maintained. Remarkable progress have been made
in the area of actuator accommodation control with various
effective design methods developed such as linear quadratic
[18], multiple model designs [19–21], model following [2],
FDD-dependent designs [22–24], and sliding mode control-
based designs [10, 25].

It is noted that, by blending adaptive control into FTC,
the resultant control scheme turns out to be effective in
reconfigurable control of systems with actuator failures [9,
26–30]. However, it is noted that few of the aforementioned
works address the fault-tolerant control problem of stochastic
systems.
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In this research, we will consider robust adaptive FTC for
uncertain stochastic systems subject to actuator faults. The
system under consideration involves parameter uncertainties
and state-dependent disturbances. Moreover, there involves
actuation faults that are assumed to be unpredictable during
the system operation.We are interested in developing an FTC
control scheme without the need for FDD. The developed
FTC scheme is user friendly in the fact that no complicated
computation is involved in its design and implementation.

The remaining part of the paper is organized as follows.
In Section 2, the control problem is formulated. The design
and analysis of the proposed control schemes are given in
Section 3. Numerical simulations are conducted to demon-
strate various features of the proposed control method and
the results are presented in Section 4. Finally, the paper is
closed with some concluding comments in Section 5.

Notation. The notations in this paper are quite standard. 𝑅𝑛
and 𝑅𝑛×𝑚 denote, respectively, the 𝑛 dimensional Euclidean
space and the set of all 𝑛 × 𝑚 real matrices. The superscript
“𝑇” denotes the transpose and the notation 𝑋 ≥ 𝑌 (resp.,
𝑋 > 𝑌) where 𝑋 and 𝑌 are symmetric matrices, which
means that 𝑋 − 𝑌 is positive semidefinite (resp., positive
definite). 𝐼 is the identity matrix with compatible dimension.
| ⋅ | is the Euclidean norm in 𝑅

𝑛. If 𝐴 is a matrix, denote
by ‖𝐴‖ its operator norm; that is, ‖𝐴‖ = sup{|𝐴𝑥| : |𝑥| =
1} = 𝜆

1/2

max(𝐴
𝑇

𝐴), where 𝜆max(⋅) [resp., 𝜆min(⋅)] means the
largest (resp., smallest) eigenvalues of 𝐴. Moreover, (Ω, F,P)
is probability space withΩ the sample space, F the 𝜎-algebra
of subsets of the sample space, and P the probability measure.
Ξ{⋅} stands for the mathematical expectation operator with
respect to the given probabilitymeasureP. 𝐿

2
and 𝐿

∞
denote

the spaces of square-integrable vector and bounded vector
functions over [0,∞), respectively.

2. Problem Statement

Consider the stabilization problem of the following uncertain
stochastic systems subject to actuator faults and external
disturbances:

𝑑𝑥 (𝑡) = [(𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑢
𝑎
(𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is state, 𝑢

𝑎
(𝑡) ∈ 𝑅

𝑚 is actual control input,
𝑓(𝑥, 𝑡) ∈ 𝑅

𝑚 is unknown external disturbances.
Here,𝜔(𝑡) is a one-dimensional Brownianmotion defined

on the probability space (Ω, F,P) with Ξ{𝜔(𝑡)} = 0 and
Ξ{𝜔
2

(𝑡)} = 1. 𝐴; 𝐵 and 𝐶 are known real constant matrices
with appropriate dimensions. Without loss of generality, it
is assumed that the pair (𝐴, 𝐵) is controllable. Δ𝐴(𝑡), Δ𝐶(𝑡),
and 𝐶 denote parameter uncertainties and satisfy

Δ𝐴 (𝑡) = 𝐵𝐹
1
(𝑡) Δ𝐶 (𝑡) = 𝐵𝐹

2
(𝑡) 𝐶 = 𝐵𝐹

3
, (2)

where 𝐹
3
is known constant matrix, 𝐹

1
(𝑡) and 𝐹

2
(𝑡) are

unknown time-varying matrix satisfying ‖𝐹
1
(𝑡)‖ ≤ 𝑎

𝐹1
< ∞

and (‖𝐹
2
(𝑡)‖ + ‖𝐹

3
‖)
2

≤ 𝑎
𝐹2
< ∞.

Table 1: Representations of typical actuator failures.

Type of actuator failures 𝛿
𝑖
(𝑡) 𝜅(𝑡)

Healthy actuator 1 0
Loss of effectiveness only 0 < 𝛿

𝑖
(𝑡) ≤ 1 0

Loss of effectiveness and partially
out of control 0 < 𝛿

𝑖
(𝑡) ≤ 1 Time-varying

Loss of effectiveness and partially
jammed 0 < 𝛿

𝑖
(𝑡) ≤ 1 Constant

Remark 1. It is observed that the parameter uncertainty struc-
ture as in (2) is more relaxed than the most existing methods.
The parameter uncertainty structure which has been widely
used in the problems of robust control and robust filtering
of uncertain systems is assumed to be (Δ𝐴(𝑡)𝑇 Δ𝐶(𝑡)

𝑇

)
𝑇

=

(𝐸
𝑇

1
𝐸
𝑇

2
)
𝑇

𝐹(𝑡)𝐻, where 𝐸
1
, 𝐸
2
, and 𝐻 are known constant

matrices and 𝐹(𝑡) is an known time-varyingmatrix satisfying
𝐹
𝑇

(𝑡)𝐹(𝑡) < 𝐼 (see, for instance, [31–34]). Obviously, the
structure herein which only needs the existence of the upper
bound of 𝐹(𝑡) is easier to be satisfied.

To formulate the fault-tolerant control problem, the fault
model must be established first. In system (1), the types
of faults under consideration include loss of effectiveness,
stuck, or combination of all. The actual control input 𝑢

𝑎
(𝑡)

able to impact the system and the designed control input
𝑢(𝑡) designed are not the same in general. In this paper, the
relationship between them will be adopted. Consider

𝑢
𝑎
(𝑡) = Δ (⋅) 𝑢 (𝑡) + 𝜅 (𝑡) , (3)

where Δ(⋅) = diag{𝛿
𝑖
(𝑡)} is a diagonal matrix with 𝛿

𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑚) being the unknown and time-varying scalar func-
tion called actuator efficiency factor, or “health indicator.” For
every fault mode, 𝛿

𝑖
and 𝛿

𝑖
represent the lower and upper

bounds of 𝛿
𝑖
, respectively. Note that, when 𝛿

𝑖
= 𝛿 = 1, there

is no fault for the 𝑖th actuator 𝑢
𝑖
. When 𝛿

𝑖
= 𝛿 = 0, the 𝑖th

actuator 𝑢
𝑖
is outage. When 0 < 𝛿

𝑖
≤ 𝛿 < 1, the type of

actuator is loss of effectiveness. 𝜅(𝑡) denotes a vector function
reflecting the portion of the control action produced by the
actuator that is completely out of control.

The type of actuator failures considered in this work is
listed in Table 1.

In order for the system to admit a feasible FTC, the
following assumptions are imposed.

Assumption 2. The unparametrizable stuck-actuator fault
and external disturbance are piecewise continuous bounded
functions; that is, there exist unknown positive constants 𝑎

𝜅

and 𝑎
𝑓
such that

‖𝜅 (𝑡)‖ ≤ 𝑎
𝜅
< ∞,

𝑓 (⋅)
 ≤ 𝑎𝑓𝜓𝑓 (⋅) < ∞. (4)

Assumption 3. For the system under consideration, there
exist some constants 𝛼 > 0 and 𝛽 > 0 such that for all possible
actuator faults, the following relation holds:

𝛼

𝐵
𝑇

𝑃𝑥


2

≤ 𝛽

𝐵
𝑇

𝑃𝑥√Δ (⋅)


2

, (5)
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where

√Δ (⋅) = diag {√𝛿
𝑖
(𝑡)} ,

𝛿
𝑖
(𝑡) ∈ (0, 1] (𝑖 = 1, 2, . . . , 𝑚) .

(6)

Remark 4. Assumption 2 confines the vector 𝜅(𝑡) and exter-
nal disturbances are bounded. Assumption 3, slightly less
restrictive, sets constraint on the actuation faults, which a
feasible FTC is able to deal with. Clearly, such condition is
well justified if all the actuators with faults are still functional
(i.e., 𝛿

𝑖
(𝑡) ̸= 0), whereas the too extreme faults in that all

the actuators completely fail to work (i.e., 𝛿
𝑖
(𝑡) = 0)

make the assumption invalid, which, if not impossible, is
significantly challenging to develop a globally stable control
for the stochastic system (1); thus it is not considered in this
work.

Remark 5. Since (𝐴, 𝐵) is controllable, one can choose 𝑁
0

properly such that𝐴 = 𝐴−𝐵𝑁
0
is Hurwitz. Namely, for given

𝑄 = 𝑄
𝑇

> 0, there exists a symmetric and positive definite 𝑃
such that the following matrix inequality is established:

𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜌𝐼 < −𝑄, (7)

where 𝜌 = ‖𝐵
𝑇

𝑃𝐵‖𝑎
𝐹2
. Note that we can find the proper 𝑃

very easily because (7) is much simpler than those complex
LMIs.Themethod in frame of linear matrix inequality is well
used in many existing works [8, 13, 31, 33].

In the end of this section, the following important lemma
is given, which will be used for the development of our result.

Lemma 6 (see [35]). The trivial solution of the stochastic
differential equation

𝑑𝑥 (𝑡) = 𝑎 (𝑥, 𝑡) 𝑑𝑡 + 𝑏 (𝑥, 𝑡) 𝑑𝜔, (8)

with 𝑎(𝑥, 𝑡) and 𝑏(𝑥, 𝑡) sufficiently differentiable maps, is
globally asymptotically stable in probability, if there exists
a positive definite, radially unbounded, twice continuously
differentiable function 𝑉(𝑥(𝑡), 𝑡) such that the infinitesimal
generator is

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] =
𝜕𝑉

𝜕𝑡
+ (

𝜕𝑉

𝜕𝑥
)

𝑇

𝑎 (𝑥, 𝑡)

+
1

2
𝑏(𝑥(𝑡), 𝑡)

𝑇
𝜕
2

𝑉

𝜕𝑥2
𝑏 (𝑥 (𝑡) , 𝑡) < 0.

(9)

3. Fault-Tolerant Control Design

To show the idea of this work explicitly, several fault-tolerant
control schemes are developed under different conditions in
this section. At the beginning, a robust fault-tolerant control
method is presented.

3.1. Robust Fault-Tolerant Control. In this section, a robust
fault-tolerant control of the form

𝑢 (𝑡) = −𝑁
0
𝑥 + 𝑁 (𝑡) (10a)

is proposed, where𝑁
0
is chosen such that𝐴−𝐵𝑁

0
is Hurwitz,

and𝑁(𝑡) is generated by

𝑁(𝑡) = −
𝑎

𝜆
𝑚

𝜑 (⋅)
𝐵
𝑇

𝑃𝑥

𝐵
𝑇𝑃𝑥



, (10b)

with 0 < 𝜆
𝑚
≤ 𝛼/𝛽 being a constant, where 𝜆

𝑚
represents

the lower bound of the health indicator matrix Δ(⋅); that is,
0 < 𝜆

𝑚
≤ 𝜆min(Δ) and 𝛼 > 0, 𝛽 > 0 are suitable constants

such that

𝛼

𝐵
𝑇

𝑃𝑥


2

≤ 𝛽

𝐵
𝑇

𝑃𝑥√Δ (⋅)


2

, (10c)

𝜑 (⋅) = 1 +
𝑁0𝑥

 +

𝜑
𝑓
(𝑥)


+ ‖𝑥‖ ,

𝑎 = max {1, 𝑎
𝑁
, 𝑎
𝑓
, 𝑎
𝐹1
} .

(10d)

Theorem 7. Under Assumptions 2 and 3, the FTC as given
in ((10a), (10b), (10c), and (10d)) exponentially stabilizes
(in mean square) the stochastic system described by (1), for
all admissible uncertainties as well as all actuator failures
corresponding to (3).

Proof. When the system is subject to the actuator failure as
described in (3), its dynamic behavior becomes

𝑑𝑥 (𝑡) = [ (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+𝐵 (Δ (⋅) 𝑢 (𝑡) + 𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡) .

(11)

With the proposed control ((10a), (10b), (10c), (10d)), one has

𝑑𝑥 (𝑡) = [ (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+𝐵 (Δ (⋅) 𝑢 (𝑡) + 𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡)

= [ (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+𝐵 (Δ (⋅) (−𝑁
0
𝑥 + 𝑁 (𝑡)) + 𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡)

= (𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡) 𝑑𝑡

+ 𝐵 [Δ (⋅)𝑁 (𝑡) + 𝑍 (𝑡)] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡) ,

(12)

where

𝑍 (⋅) = (𝐼 − Δ (⋅))𝑁
0
𝑥 (𝑡) + 𝜅 (𝑡) + 𝑓 (⋅) + 𝐹

1
(𝑡) 𝑥 (𝑡) , (13)

which is bounded as

‖𝑍 (⋅)‖ ≤
𝑁0𝑥

 + ‖𝜅 (⋅)‖ +
𝑓 (⋅)

 +
𝐹1 (𝑡) 𝑥 (𝑡)



≤ 𝑎 (1 +
𝑁0𝑥

 +
𝜓 (𝑥)

 + ‖𝑥‖) ,

(14)
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based on Assumption 2, where 𝑎 = max{1, 𝑎
𝑁
, 𝑎
𝑓
, 𝑎
𝐹1
} and

𝜑(⋅) = 1 + ‖𝑁
0
𝑥‖ + ‖𝜑

𝑓
(𝑥)‖ + ‖𝑥‖. Thus, it is not difficult to

get

(𝐵
𝑇

𝑃𝑥)
𝑇

𝑍 ≤ 𝑎𝜑 (⋅)

𝐵
𝑇

𝑃𝑥

. (15)

Consider the following Lyapunov function candidate:

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) . (16)

Then, by Itô’s formula, the infinitesimal generator of (12) is

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] = 𝑥
𝑇

(𝑡) 𝑃 (𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡)

+ ((𝐴 − 𝐵𝑁
0
) 𝑥(𝑡))

𝑇

𝑃𝑥 (𝑡)

+ 2(𝐵
𝑇

𝑃𝑥)
𝑇

[−Δ (⋅)
𝑎

𝜆
𝑚

𝜑 (⋅)
𝐵
𝑇

𝑃𝑥

𝐵
𝑇𝑃𝑥



]

+ 2 (𝐵
𝑇

𝑃𝑥)
𝑇

𝑍

+ 𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶 (𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) .

(17)

Note that the last term of (17) cannot be combined with
𝑍(⋅); thus the adaptive updating law cannot be used to
compensate its effect as usual. To establish the robust stability
of the closed-loop system (12), we need to have the following
development. From the fact that (‖𝐹

2
(𝑡)‖ + ‖𝐹

3
‖)
2

≤ 𝑎
𝐹2
< ∞

and using (2), it is seen that the last term of (17) can be
expressed as

𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶(𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡)

= 𝑥
𝑇

(𝑡) [𝐵(𝐹
2
(𝑡) + 𝐹

3
)
𝑇

𝑃𝐵 (𝐹
2
(𝑡) + 𝐹

3
)] 𝑥 (𝑡)

≤ 𝑥
𝑇

(𝑡) [

𝐵
𝑇

𝑃𝐵

𝑎
𝐹2
] 𝑥 (𝑡) ;

(18)

from (10c), it holds that

−(𝐵
𝑇

𝑃𝑥)
𝑇

Δ (⋅) (𝐵
𝑇

𝑃𝑥) ≤ −
𝛼

𝛽


𝐵
𝑇

𝑃𝑥


2

≤ −𝜆
𝑚


𝐵
𝑇

𝑃𝑥


2

.

(19)

and by defining 𝜌 = ‖𝐵
𝑇

𝑃𝐵‖𝑎
𝐹2
, the inequality (17) can be

shown to satisfy

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] ≤ 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥 (𝑡)

− 2
𝑎

𝜆
𝑚

𝜑 (⋅)

𝐵
𝑇𝑃𝑥



(𝐵
𝑇

𝑃𝑥)
𝑇

Δ (⋅) (𝐵
𝑇

𝑃𝑥)

+ 𝑎𝜑 (⋅)

𝐵
𝑇

𝑃𝑥

+ 𝑥
𝑇

(𝑡)

𝐵
𝑇

𝑃𝐵


𝐹2


2

𝑥 (𝑡)

≤ 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜌𝐼) 𝑥 (𝑡)

≤ −
1

2
𝑥
𝑇

𝑄𝑥 < 0 for 𝑥 (𝑡) ̸= 0,

(20)

where matrixes 𝑃 and 𝑄 are chosen properly to satisfy
𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜌𝐼 ≤ −𝑄. Therefore, it is confirmed from
Lemma 6 that the closed-loop system (11) is asymptotically
mean square stable in probability despite faulty actuatorswith
the proposed FTC.

Remark 8. Note that if proper constants 𝛼 and 𝛽 can be
obtained in advance, the proposed control ((10a), (10b), (10c),
and (10d)) achieved exponential stability in mean square for
the stochastic system under Assumptions 2 and 3. However,
it is a little difficult to select such 𝛼 and 𝛽 to ensure 𝜆

𝑚
≤ 𝛼/𝛽,

since 𝜆
𝑚

the lower bound of the eigenvalue of the health
indicator matrix is not available in general. In view of this,
a more feasible method is developed in the next subsection.

3.2. Robust Adaptive Fault-Tolerant Control. In order to
develop a control scheme that is not only robust but also
adaptive yet fault-tolerant, we modify the previous one to get

𝑢 (𝑡) = −𝑁
0
𝑥 + �̂� (𝑡) , (21a)

where 𝑁
0
> 0 is chosen such that 𝐴 − 𝐵𝑁

0
is Hurwitz and

�̂�(𝑡) is on-line updated by

�̂� (𝑡) =
𝑎 (𝑡) 𝜑 (𝑥) 𝐵

𝑇

𝑃𝑥

𝐵
𝑇𝑃𝑥



, (21b)

with

𝜑 (𝑥) = 1 +
𝑁0𝑥

 +

𝜑
𝑓
(𝑥)


+ ‖𝑥‖ , (21c)

̇̂𝑎 (𝑡) = −𝛾𝜑 (𝑥)

𝐵
𝑇

𝑃𝑥

, 𝛾 > 0. (21d)

Theorem 9. Consider the uncertain stochastic system (11)
underAssumptions 2 and 3. If the robust adaptive fault-tolerant
controller ((21a), (21b), (21c), and (21d)) is implemented, the
closed-loop system is ensured to be asymptotically stable.

Proof. Substituting the proposed control ((21a), (21b), (21c),
and (21d)) into the stochastic system (11), we obtain the
closed-loop system dynamics as follows:

𝑑𝑥 (𝑡) = [(𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+𝐵 (Δ (⋅) 𝑢 (𝑡) + 𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡)

= [ (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+𝐵 (Δ (⋅) (−𝑁
0
𝑥 + �̂� (𝑡)) + 𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡)

= (𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡) 𝑑𝑡

+ 𝐵 [Δ (⋅) �̂� (𝑡) + Ζ (𝑡)] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡) .

(22)
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Consider the following Lyapunov function candidate:

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑥
𝑇

𝑃𝑥 +
1

𝜆
𝑚
𝛾
(𝑎 − 𝑎𝜆

𝑚
)
2

, (23)

where 𝛾 > 0 is a constant related to adaptation rate chosen by
the designer and 𝜆

𝑚
> 0 is constant defined as before. Upon

using the control schemewith the adaptive algorithm, it is not
difficult to show that

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] = 𝑥
𝑇

(𝑡) 𝑃 (𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡)

+ ((𝐴 − 𝐵𝑁
0
) 𝑥(𝑡))

𝑇

𝑃𝑥 (𝑡)

+ 2 (𝑎 − 𝑎𝜆
𝑚
) (− ̇̂𝑎𝛾

−1

)

+ 𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶 (𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡)

= [𝐴𝑥 + 𝐵 (Δ(⋅)�̂�(𝑡)𝑥 + 𝑍(⋅))]
𝑇

𝑃𝑥

+ 𝑥
𝑇

𝑃 [𝐴𝑥 + 𝐵 (Δ (⋅) �̂� (𝑡) 𝑥 + 𝑍 (⋅))]

+ 2 (𝑎 − 𝑎𝜆
𝑚
) (− ̇̂𝑎𝛾

−1

)

+ 𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶 (𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡)

= 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥

+ 2𝑥
𝑇

𝑃𝐵 (Δ (⋅) �̂� (𝑡) 𝑥 + 𝑍 (⋅))

+ 2 (𝑎 − 𝑎𝜆
𝑚
) (− ̇̂𝑎𝛾

−1

)

+ 𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶 (𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) .

(24)

Then

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)]

= 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥

+ 2𝑥
𝑇

𝑃𝐵{Δ (⋅) [−

𝑎𝜑 (𝑥) (𝐵
𝑇

𝑃𝑥)

𝐵
𝑇𝑃𝑥



] + 𝑍 (⋅)}

+ 2 (𝑎 − 𝜆
𝑚
𝑎) (−𝛾

−1 ̇̂𝑎)

+ 𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶 (𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) .

(25)

In light of the definition of 𝜆
𝑚
, it is true that (𝐵𝑇𝑃𝑥)𝑇

Δ(⋅)(𝐵
𝑇

𝑃𝑥) ≥ 𝜆
𝑚
‖𝐵
𝑇

𝑃𝑥‖
2; thus the second term in (25) can

be rewritten as

2𝑥
𝑇

𝑃𝐵{Δ (⋅) [−

𝑎𝜑 (𝑥) (𝐵
𝑇

𝑃)

𝐵
𝑇𝑃𝑥



] 𝑥 + 𝑍 (⋅)}

= −2
𝑎𝜑 (𝑥)

𝐵
𝑇𝑃𝑥



(𝐵
𝑇

𝑃𝑥)
𝑇

Δ (⋅) (𝐵
𝑇

𝑃𝑥)

+ 2(𝐵
𝑇

𝑃𝑥)
𝑇

𝑍 (⋅)

≤ 2 (𝑎 − 𝜆
𝑚
𝑎) 𝜑 (𝑥)


𝐵
𝑇

𝑃𝑥

.

(26)

The fact 𝑥
𝑇

(𝑡)(𝐶 + Δ𝐶(𝑡))
𝑇

𝑃(𝐶 + Δ𝐶(𝑡))𝑥(𝑡) ≤

𝑥
𝑇

(𝑡)[‖𝐵
𝑇

𝑃𝐵‖𝑎
𝐹2
]𝑥(𝑡) ≤ 𝑥

𝑇

(𝑡)(𝜌𝐼)𝑥(𝑡) leads (25) to

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] ≤ 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥 (𝑡)

+ 2 (𝑎 − 𝜆
𝑚
𝑎) 𝜑 (𝑥)


𝐵
𝑇

𝑃𝑥


+ 2 (𝑎 − 𝜆
𝑚
𝑎) (−𝛾

−1 ̇̂𝑎)

+ 𝑥
𝑇

(𝑡) (

𝐵
𝑇

𝑃𝐵


𝐹2


2

) 𝑥 (𝑡)

≤ 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜌𝐼) 𝑥 (𝑡) .

(27)

Using the updating law (21d) and choosing the proper
matrixes 𝑃 and 𝑄 to ensure that the matric inequality is
established, one obtains from (27) that

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] ≤ −
1

2
𝑥
𝑇

𝑄𝑥 < 0 for 𝑥 (𝑡) ̸= 0. (28)

Consequently, according to Lemma 6, it can be obtained
that the closed-loop system (11) is globally asymptotically
stable in probability in presence of actuator failures.

Remark 10. Note that in designing and implementing the first
robust fault-tolerant control method we need to predeter-
mine the parameters 𝑎 and 𝜆

𝑚
. This might present analyt-

ical and technical difficulty in practice. The second robust
adaptive FTC scheme, which does not need the analytic
computation of the parameters 𝑎 and 𝜆

𝑚
, circumvents this

shortcoming. Although the existence of 𝜆
𝑚

> 0 is used
in stability analysis, none of them are used in the control
algorithm.

Remark 11. It is seen that the proposed control is independent
of explicit information on faults and disturbances. As with
most variable structure control methods, when the states
get closer to zero, the control scheme might experience
chattering, which can be easily avoided by replacing 𝑧/‖𝑧‖
with 𝑧/(‖𝑧‖ + 𝜍), where 𝜍 is a small number, as commonly
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adopted in the literature. Also to prevent the estimate 𝑎 from
drifting, (21d) can be modified as

̇̂𝑎 (𝑡) = −𝜎𝑎 + 𝛾

𝜑(𝑥)
2

𝐵
𝑇

𝑃𝑥


2

𝜑 (𝑥)
𝐵
𝑇𝑃𝑥

 + 𝜍
, 𝛾 > 0, 𝜎 > 0. (29a)

In this case, we have the following ultimately uniformly
bounded (UUB) stabilization result.

Theorem 12. Consider the uncertain stochastic system (11). Let
the Assumptions 2 and 3 hold. If the following robust adaptive
control is applied:

𝑢 (𝑡) = −𝑁
0
𝑥 + �̂� (𝑡) , (29b)

where𝑁
0
> 0 is chosen such that𝐴−𝐵𝑁

0
is Hurwitz, and �̂�(𝑡)

is generated by

�̂� (𝑡) =
𝑎 (𝑡) 𝜑(𝑥)

2

𝐵
𝑇

𝑃𝑥

𝐵
𝑇𝑃𝑥

 𝜑 (𝑥) + 𝜍
(29c)

and 𝑎 is updated by (29a), then the closed-loop system (11) is
ensured to UUB stable.

Proof. The result can be established by using the method
similar to that as in [15].

Remark 13. Since the robust FTC with the fixed gain may
bring more conservatives, a new robust adaptive FTC is
further addressed in the next subsection. Bymeans of the on-
line estimation of effectiveness values of faulty actuators, the
robust adaptive FTC gain is adaptively updated to compen-
sate the effects of actuator faults.

3.3. Improved Robust Adaptive Fault-Tolerant Control. Con-
sider that the elements of the actuator efficiency factorΔ(⋅) are
constants. A robust and adaptive control scheme integrated
with on-line fault estimation is designed as

𝑢 (𝑡) = −Δ̂(𝑡)
−1

𝑁
0
𝑥 + �̂� (𝑡) , (30a)

where Δ̂(𝑡) = diag{𝛿
1
(𝑡), 𝛿
2
(𝑡), . . . , 𝛿

𝑚
(𝑡)}, 𝛿

𝑖
(𝑡) is the

estimated values of effectiveness for 𝑖th actuator, and the
updating law for 𝛿

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑚) is given as

̇̂
𝛿
𝑖
(𝑡) = Pr
[𝛿
𝑖
,𝛿𝑖]

{
0, if 𝛿

𝑖
= 𝛿
𝑖
, 𝑈
𝑖
≤ 0, or 𝛿

𝑖
= 𝛿
𝑖
, 𝑈
𝑖
≥ 0

𝑈
𝑖
, otherwise,

(30b)

where 𝑈
𝑖
= 𝜂
𝑖
𝑥(𝑡)
𝑇

(𝑃𝐵)
𝑖
Δ̂(⋅)
−1

𝑁
𝑖

0
𝑥(𝑡), 𝜂

𝑖
> 0 is the adaptive

law gain to be chosen according to practical applications.
Here, 𝑀𝑖 and 𝑀

𝑖
denote the 𝑖th row and 𝑖th column of a

matrix𝑀, respectively.
𝑁
0
> 0 is chosen such that 𝐴 − 𝐵𝑁

0
is Hurwitz, and �̂�(𝑡)

is on-line updated by

�̂� (𝑡) =
𝑎 (𝑡) 𝜓 (𝑥) 𝐵

𝑇

𝑃𝑥

𝐵
𝑇𝑃𝑥



, (30c)

with

𝜓 (𝑥) = 1 +

𝜑
𝑓
(𝑥)


+ ‖𝑥‖ , (30d)

̇̂𝑎 (𝑡) = −𝛾𝜓 (𝑥)

𝐵
𝑇

𝑃𝑥

, 𝛾 > 0. (30e)

Remark 14. It is noted from (30b) that Pr{⋅} is a projection
operator [28], which projects the estimate 𝛿

𝑖
into the interval

[𝛿
𝑖
, 𝛿
𝑖
] so as to satisfy the assumption on the bound of

effectiveness values in (3). Because this updating law can
ensure the estimated values 𝛿

𝑖
(𝑡) are not zero, the control

signal 𝑢(𝑡) will take effect on the plant.

Theorem 15. For the uncertain stochastic system (11), the
robust adaptive fault-tolerant controller given as ((30a), (30b),
(30c), (30d), and (30e)) can ensure that the state will asymp-
totically tend to zero.

Proof. Substituting ((30a), (30b), (30c), (30d), and (30e)) into
the stochastic system (11), we obtain the closed-loop system
equation as follows:

𝑑𝑥 (𝑡) = [ (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+𝐵 (Δ (⋅) 𝑢 (𝑡) + 𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡)

= [ (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+ 𝐵 (Δ (⋅) (−Δ̂(⋅)
−1

𝑁
0
𝑥 + �̂� (𝑡))

+𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)) )] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡)

= (𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡) 𝑑𝑡

+ 𝐵 [(𝐼 − Δ (⋅) Δ̂(⋅)
−1

)𝑁
0
𝑥 + Δ (⋅) �̂� (𝑡) + 𝑍 (⋅)] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡) ,

(31)

where 𝑍(⋅) = 𝜅(𝑡) + 𝑓(⋅) + 𝐹
1
(𝑡)𝑥(𝑡), which is bounded by

‖𝑍 (⋅)‖ ≤ ‖𝜅 (⋅)‖ +
𝑓 (⋅)

 +
𝐹1 (𝑡) 𝑥 (𝑡)



≤ 𝑎 (1 +
𝜑 (𝑥)

 + ‖𝑥‖)

(32)

under Assumption 2.
Consider the following Lyapunov function candidate

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑥
𝑇

𝑃𝑥 +
1

𝜆
𝑚
𝛾
(𝑎 − 𝑎𝜆

𝑚
)
2

+

𝑚

∑

𝑖=1

𝜂
−1

𝑖
𝛿
2

𝑖
(𝑡) , (33)

where 𝛾 > 0 and 𝜂 > 0 are constants related to adaptation
rate chosen by the designer and 𝜆

𝑚
> 0 is constant defined

as before. Upon using the control scheme with the adaptive
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algorithm, it is not difficult to show that the infinitesimal
operator

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] = 𝑥
𝑇

(𝑡) 𝑃 (𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡)

+ ((𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡))

𝑇

𝑃𝑥 (𝑡)

+ 2 (𝑎 − 𝑎𝜆
𝑚
) (− ̇̂𝑎𝛾

−1

)

+ 2

𝑚

∑

𝑖=1

𝜂
−1

𝑖
𝛿
𝑖
(𝑡)

̇̂
𝛿
𝑖
(𝑡)

= [𝐴𝑥 + 𝐵 (−𝛿𝛿
−1

𝑁
0
𝑥

+Δ (⋅) �̂� (𝑡) 𝑥 + 𝑍 (⋅))
𝑇

] 𝑃𝑥

+ 𝑥
𝑇

𝑃 [𝐴𝑥 + 𝐵 (−𝛿𝛿
−1

𝑁
0
𝑥

+Δ (⋅) �̂� (𝑡) 𝑥 + 𝑍 (⋅))]

+ 2 (𝑎 − 𝑎𝜆
𝑚
) (− ̇̂𝑎𝛾

−1

)

+ 2

𝑚

∑

𝑖=1

𝜂
−1

𝑖
𝛿
𝑖
(𝑡)

̇̂
𝛿
𝑖
(𝑡)

= 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥 + 2𝑥
𝑇

𝑃𝐵𝛿𝛿
−1

𝑁
0
𝑥

+ 2𝑥
𝑇

𝑃𝐵 (Δ (⋅) �̂� (𝑡) 𝑥 + 𝑍 (⋅))

+ 2 (𝑎 − 𝑎𝜆
𝑚
) (− ̇̂𝑎𝛾

−1

)

+ 2

𝑚

∑

𝑖=1

𝜂
−1

𝑖
𝛿
𝑖
(𝑡)

̇̂
𝛿
𝑖
(𝑡) .

(34)

Considering that 𝑃𝐵𝛿𝛿−1 = ∑
𝑚

𝑖=1
𝛿(𝑃𝐵)

𝑖

𝛿
−1 and the adaptive

law (30b), we have

−2𝑥
𝑇

𝑃𝐵𝛿𝛿
−1

𝑁
0
𝑥 + 2

𝑚

∑

𝑖=1

𝜂
−1

𝑖
𝛿
𝑖
(𝑡)

̇̂
𝛿
𝑖
(𝑡) ≤ 0. (35)

Then, 𝐿[𝑉(𝑥(𝑡), 𝑡)] becomes

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)]

= 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥

+ 2𝑥
𝑇

𝑃𝐵{Δ (⋅) [−

𝑎𝜓 (𝑥) (𝐵
𝑇

𝑃𝑥)

𝐵
𝑇𝑃𝑥



] + 𝑍 (⋅)}

+ 2 (𝑎 − 𝜆
𝑚
𝑎) (−𝛾

−1 ̇̂𝑎)

+ 𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶 (𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) ,

(36)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

t (s)

Figure 1: Profile of the time-varying actuator efficiency variable (𝛿
1

(solid), 𝛿
2
(dot)).

in which the second term in (36) can be rewritten as

2𝑥
𝑇

𝑃𝐵{Δ (⋅) [−

𝑎𝜓 (𝑥) (𝐵
𝑇

𝑃)

𝐵
𝑇𝑃𝑥



] 𝑥 + 𝑍 (⋅)}

= −2
𝑎𝜓 (𝑥)

𝐵
𝑇𝑃𝑥



(𝐵
𝑇

𝑃𝑥)
𝑇

Δ (⋅) (𝐵
𝑇

𝑃𝑥)

+ 2(𝐵
𝑇

𝑃𝑥)
𝑇

𝑍 (⋅)

≤ 2 (𝑎 − 𝜆
𝑚
𝑎) 𝜓 (𝑥)


𝐵
𝑇

𝑃𝑥

;

(37)

by using (19) it is true that (𝐵𝑇𝑃𝑥)𝑇Δ(⋅)(𝐵𝑇𝑃𝑥) ≥ 𝜆
𝑚
‖𝐵
𝑇

𝑃𝑥‖
2.

Thus by using the fact that 𝑥
𝑇

(𝑡)(𝐶 + Δ𝐶(𝑡))
𝑇

𝑃(𝐶 +

Δ𝐶(𝑡))𝑥(𝑡) ≤ 𝑥
𝑇

(𝑡)(𝜌𝐼)𝑥(𝑡) and the updating law (30e), the
function 𝐿[𝑉(𝑥(𝑡), 𝑡)] eventually is bounded as

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] ≤ 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜌𝐼) 𝑥

+ 2 (𝑎 − 𝜆
𝑚
𝑎) 𝜓 (𝑥)


𝐵
𝑇

𝑃𝑥


+ 2 (𝑎 − 𝜆
𝑚
𝑎) (−𝛾

−1 ̇̂𝑎)

≤ −
1

2
𝑥
𝑇

𝑄𝑥 < 0 for 𝑥 (𝑡) ̸= 0,

(38)

as long as proper matrixes 𝑃 and 𝑄 are select to ensure (7).
Therefore, it can be obtained from Lemma 6 that the state of
the stochastic system is asymptotically stable in probability
and the estimation parameters (𝑎−𝜆

𝑚
𝑎) and 𝛿

𝑖
are bounded.

4. Numerical Simulation

Two examples are used to demonstrate the features of the
proposed control scheme.
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Figure 2:The curve of𝑥(𝑡)with the proposed control scheme ((29a),
(29b), and (29c)).
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Figure 3:The curve of𝑢(𝑡)with the proposed control scheme ((29a),
(29b), and (29c)).

Example 1. Consider the uncertain stochastic system (11)
with

𝐴 = [

[

0.2 −0.2 0

−0.2 −0.6 0.3

0.2 −0.4 −0.2

]

]

, 𝐵 = [

[

−0.2 0.2

1 −1.7

0.6 −0.7

]

]

,

𝐶 = [

[

−0.04 0.2 0.07

−0.03 0.1 0.04

0.04 −0.2 −0.07

]

]

,

Δ𝐴 = [

[

0.02 sin (𝑡) 0.04cos2 (𝑡) 0.04 cos (2𝑡)
0.02 0.04 sin (2𝑡) cos (𝑡) 0.04

0.03 cos (𝑡) 0.06 0.06 sin (𝑡)
]

]

,

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

t (s)

Figure 4: Updating of 𝑎(𝑡)with the proposed control scheme ((29a),
(29b), and (29c)).
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Figure 5: System responses under the control of the proposed FTC
((30a), (30b), (30c), (30d), and (30e)).

Δ𝐶 = [

−0.007 cos (𝑡) 0.014 0.014 sin (2𝑡)
0.004cos2 (𝑡) 0.008sin2 (𝑡) 0.008

−0.007 −0.014 sin (𝑡) cos (2𝑡) −0.014 sin (𝑡) cos (3𝑡)
] ,

𝑓 (𝑥 (𝑡)) = (
sin (𝑥

1
(𝑡)) sin (𝑥

2
(𝑡))

2𝑥
1
(𝑡) cos (𝑥

2
(𝑡))

) .

(39)

It is seen that the uncertainties Δ𝐴 and Δ𝐶 are complex
to be described by the form of (Δ𝐴(𝑡)𝑇 Δ𝐶(𝑡)

𝑇

)
𝑇

=

(𝐸
𝑇

1
𝐸
𝑇

2
)
𝑇

𝐹(𝑡)𝐻. But the form of (2) is easy to satisfy. The
external disturbance 𝑓(⋅) is state-dependent and unknown.
For the simulation, the initial conditions are 𝑥(0) = [1, 2.5, 3]
and 𝑎(0) = 0.

The actuator efficiency variables for each of the two
control channels simulated are as illustrated in Figure 1,
where two of the actuators suffer from the failure as shown
in the figure.
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Figure 6: The curve of 𝑢(𝑡) with the proposed control scheme
((30a), (30b), (30c), (30d), and (30e)).
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Figure 7: Updating of 𝑎(𝑡)with the proposed control scheme ((30a),
(30b), (30c), (30d), and (30e)).
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Figure 8: The curve of the estimate Δ̂(𝑡) with 𝜂 = 2 (𝛿
1
(solid), 𝛿

2

(dot)).

The scenario simulated is that the system operates nor-
mally at the beginning, and the disturbances always exist
during the system operation. After 4 seconds of the operation
some faults in actuators occur: the first and the second
actuators encounter severe failures in the fact that both
channels lose their effectiveness by over 50% at some time and
the faults are fast time-varying for some period.

The objective in this work is to design a reliable robust
adaptive fault-tolerant controller such that the closed-loop
system is asymptotically stable in probability despite the
presence of actuator faults. In applying the control scheme
((29a), (29b), and (29c)), one can easily determine all the
control parameters:

𝑁
0
= [

−1.0912 0.3210 0.0695

8.0245 −3.8070 0.0239
] ,

𝛾 = 5, 𝜎 = 0.08, 𝜀 = 0.001,

𝜑 (𝑥) = 1 +
𝑁0𝑥

 +

𝜑
𝑓
(𝑥)


+ ‖𝑥‖ .

(40)

The simulation results in terms of stabilization of the three
states are presented in Figure 2. It can be seen that the states
𝑥
1
, 𝑥
2
, and 𝑥

3
can converge to a small neighborhood around

zero. Figure 3 shows the control signals of the two inputs.The
estimated parameter 𝑎(𝑡) is shown in Figure 4. The results
confirm the theoretical prediction.

Example 2. The second simulation is made for robust adap-
tive fault-tolerant controller ((30a), (30b), (30c), (30d), and
(30e)). It is assumed that at 𝑡 = 4 𝑠, the first actuator 𝑢

1
is still

normal and the second actuator 𝑢
2
is faulty with 𝛿

2
= 0.5.The

simulations are shown in Figures 5, 6, 7, and 8. Also it should
be pointed out from [36] that the estimated value 𝛿

𝑖
(𝑡) (𝑖 =

1, 2) can converge butmay not converge to its true value 𝛿
𝑖
(𝑡).

And in our controller design procedure, only the estimated
value 𝛿

𝑖
(𝑡) is needed to construct adaptive controller and

whether 𝛿
𝑖
(𝑡) can converge to its true values or not is not

necessary.
From Figure 5, the FTC scheme ((30a), (30b), (30c),

(30d), and (30e)) makes the curves relatively smooth via the
adaptive estimate 𝛿

𝑖
(𝑡) of efficiency value. The simulation

results confirm that the robust adaptive FTC can achieve
a good performance on dealing with the reliable control
problem of stochastic systems in presence of actuator failures,
parameter uncertainty, and state-dependent disturbance.

5. Conclusion

In this paper, the problem of robust adaptive FTC for
stochastic systems with faulty actuators has been considered.
By blending adaptive control into robust FTC, the proposed
control method is able to accommodate actuation faults
and modeling uncertainties concurrently. Both theoretical
analysis and numerical simulations validate the benefits and
effectiveness of the proposed approach.
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