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This paper is devoted to the investigation of the design of robust guaranteed cost observer for a class of linear singular Markovian
jump time-delay systems with generally incomplete transition probability. In this singular model, each transition rate can be
completely unknown or only its estimate value is known. Based on stability theory of stochastic differential equations and linear
matrix inequality (LMI) technique, we design an observer to ensure that, for all uncertainties, the resulting augmented system is
regular, impulse free, and robust stochastically stablewith the proposed guaranteed cost performance. Finally, a convex optimization
problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters for linear singular Markovian jump
time-delay systems with generally incomplete transition probability.

1. Introduction

Descriptor systems are also referred to as singular systems,
implicit systems, generalized state-space systems, or semis-
tate systems and provide convenient and natural representa-
tions in the description of economic systems, power systems,
robotics, network theory, and circuits systems [1]. The sta-
bility for singular system is more complicated than that for
nonsingular systems because not only the asymptotic stability
but also the system regularity and impulse elimination are
needed to be addressed [2–5].

In practice, in many physical systems, such as aircraft
control, solar receiver control, power systems, manufacturing
systems, networked control systems, air intake systems, and
other practical systems, abrupt variations may happen in
their structure, due to random failures, repair of components,
sudden environmental disturbances, changing subsystem
interconnections, or abrupt variations in the operating points
of a nonlinear plant [6–19]. Therefore, more and more
attention has been paid to the problem of stochastic stability
and stochastic admissibility for singular Markovian jump

systems (SMJSs) [20–30]. Long et al. [23] derived stochastic
admissibility for a class of singular Markovian jump systems
with mode-dependent time delays. Wang and Zhang [27]
focused on the asynchronous 𝑙

2
−𝑙
∞
filtering for discrete-time

stochastic Markov jump systems with randomly occurring
sensor nonlinearities. However, the TRs in the above men-
tioned literatures are assumed to be completely known.

In practice, the TRs in some jumping processes are
difficult to be precisely estimated due to the cost and some
other factors. Therefore, analysis and synthesis problems
for normal MJSs with incomplete information on transition
probability have attracted more and more attentions [31–49].
Xiong and Lam [32] probed robust𝐻

2
control of Markovian

jump systems with uncertain switching probabilities. Karan
et al. [33] considered the stochastic stability robustness for
continuous-time and discrete-time Markovian jump linear
systems (MJLSs) with upper bounded TRs. Zhang and
Boukas [34] discussed stability and stabilization for the
continuous-time MJSs with partly unknown TRs. Lin et al.
[38] considered delay-dependent 𝐻

∞
filtering for discrete-

time singular Markovian jump systems with time-varying
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delay and partially unknown transition probabilities. Guo
and Wang [49] proposed another description for the uncer-
tain TRs, which is called generally uncertain TRs (GUTRs).

On the other hand, state estimation plays an important
role in systems and control theory, signal processing, and
information fusion [50, 51]. Certainly, the most widely used
estimation method is the well-known Kalman filtering [52,
53]. A common feature in the Kalman filtering is that an
accurate model is available. In some applications, however,
when the system is subject to parameter uncertainties, the
accurate system model is hard to obtain. To overcome this
difficulty, the guaranteed cost filtering approach has been
proposed to ensure the upper bound of guaranteed cost func-
tion [54]. Robust𝐻

∞
filtering for uncertainMarkovian jump

systems with mode-dependent time delays was proposed in
[55]. In [56], guaranteed cost and 𝐻

∞
filtering for time-

delay systems were presented in terms of LMIs. However,
to the best of our knowledge, there are few considering
the robust guaranteed cost observer for a class of linear
singular Markovian jump time-delay systems with generally
incomplete transition probability, which is still an open
problem.

In this paper, based on LMI method, we address the
design problem of the robust guaranteed cost observer for a
class of uncertain descriptor time-delay systems withMarko-
vian jumping parameters and generally uncertain transition
rates. The design problem proposed here is to design a mem-
oryless observer such that for all uncertainties, including
generally uncertain transition rates, the resulting augmented
system is regular, impulse-free, and robust stochastically sta-
ble, and satisfies the proposed guaranteed cost performance.

2. Problem Formulation

Consider the following descriptor time-delay systems with
Markovian jumping parameters:

𝐸�̇� (𝑡) = 𝐴 (𝑟
𝑡
, 𝑡) 𝑥 (𝑡) + 𝐴

𝑑
(𝑟
𝑡
, 𝑡) 𝑥 (𝑡 − 𝑑) ,

𝑦 (𝑡) = 𝐶 (𝑟
𝑡
, 𝑡) 𝑥 (𝑡) + 𝐶

𝑑
(𝑟
𝑡
, 𝑡) 𝑥 (𝑡 − 𝑑) ,

𝑥 (𝑡) = 𝜑 (𝑡) , ∀𝑡 ∈ [−𝑑, 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 and 𝑦(𝑡) ∈ 𝑅

𝑟 are the state vector and
the controlled output, respectively. 𝑑 represents the state time
delay. For convenience, the input terms in system (1) have
been omitted. 𝜑(𝑡) ∈ 𝐿

2
[−𝑑, 0] is a continuous vector-valued

initial function. The random parameter 𝛾(𝑡) represents a
continuous-time discrete-state Markov process taking values
in a finite set S = {1, 2, . . . , 𝑠} and having the transition
probability matrix Π = [𝜋

𝑖𝑗
], 𝑖, 𝑗 ∈ 𝑁. The transition

probability from mode 𝑖 to mode 𝑗 is defined by

Pr {𝑟
𝑡+Δ

= 𝑗 | 𝑟
𝑡
= 𝑖} = {

𝜋
𝑖𝑗
Δ + 𝑜 (Δ) , 𝑖 ̸= 𝑗,

1 + 𝜋
𝑖𝑗
Δ + 𝑜 (Δ) , 𝑖 = 𝑗,

(2)

where Δ > 0 satisfies lim
Δ→0

(𝑜(Δ)/Δ) = 0, 𝜋
𝑖𝑗
≥ 0 is the

transition probability from mode 𝑖 to mode 𝑗 and satisfies

𝜋
𝑖𝑖
= −

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
≤ 0. (3)

In this paper, the transition rates of the jumping process
are assumed to be partly available; that is, some elements in
matrix Λ have been exactly known, some have been merely
known with lower and upper bounds, and others may have
no information to use. For instance, for system (1) with
four operation modes, the transition rate matrix might be
described by

Λ =

[
[
[
[

[

�̂�
11
+ Δ
11

? ? ⋅ ⋅ ⋅ ?

? ? �̂�
23
+ Δ
23

⋅ ⋅ ⋅ �̂�
2𝑠
+ Δ
2𝑠

...
...

... d
...

? �̂�
𝑠2
+ Δ
𝑠2

? ⋅ ⋅ ⋅ ?

]
]
]
]

]

,

(4)

where �̂�
𝑖𝑗
and Δ

𝑖𝑗
∈ [−𝜎

𝑖𝑗
, 𝜎
𝑖𝑗
] (𝜎
𝑖𝑗

≥ 0) represent the
estimate value and estimate error of the uncertain TR 𝜋

𝑖𝑗
,

respectively, where �̂�
𝑖𝑗
and 𝜎

𝑖𝑗
are known. ? represents the

complete unknown TR, which means that its estimate value
�̂�
𝑖𝑗
and estimate error bound are unknown.
For notational clarity, for all 𝑖 ∈ S, the set 𝑈

𝑖

denotes 𝑈
𝑖

= 𝑈
𝑖

𝑘
∪ 𝑈
𝑖

𝑢𝑘
with 𝑈

𝑖

𝑘
= {𝑗 : The estimate

value of 𝜋
𝑖𝑗
is known for 𝑗 ∈ S}, 𝑈𝑖

𝑢𝑘
= {𝑗 : The estimate

value of 𝜋
𝑖𝑗
is unknown for 𝑗 ∈ S}. Moreover, if 𝑈𝑖

𝑘
̸= 0, it is

further described as 𝑈𝑖
𝑘
= {𝑘
𝑖

1
, 𝑘
𝑖

2
, . . . , 𝑘

𝑖

𝑚
}, where 𝑘𝑖

𝑚
∈ N+

represents the 𝑚th bound-known element with the index
𝑘
𝑖

𝑚
in the 𝑖th row of matrix Π. We assume that the known

estimate values of the TRs are well defined. That is

Assumption 1. If 𝑈𝑖
𝑘

= S, then �̂�
𝑖𝑗
− 𝜎
𝑖𝑗

≥ 0 (for all 𝑗 ∈

S, 𝑗 ̸= 𝑖), �̂�
𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
�̂�
𝑖𝑗
and 𝜎

𝑖𝑖
= −∑

𝑠

𝑗=1,𝑗 ̸= 𝑖
𝜎
𝑖𝑗
.

Assumption 2. If 𝑈
𝑖

𝑘
̸=S and 𝑖 ∈ 𝑈

𝑖

𝑘
, then �̂�

𝑖𝑗
− 𝜎
𝑖𝑗

≥

0 (for all 𝑗 ∈ S, 𝑗 ̸= 𝑖), �̂�
𝑖𝑖
+ 𝜎
𝑖𝑖
≤ 0 and ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
.

Assumption 3. If 𝑈
𝑖

𝑘
̸=S and 𝑖 ∉ 𝑈

𝑖

𝑘
, then �̂�

𝑖𝑗
− 𝜎
𝑖𝑗

≥

0 (for all 𝑗 ∈ S).

Remark 4. The above assumption is reasonable, since it is
the direct result from the properties of the TRs (e.g., 𝜋

𝑖𝑗
≥

0 (for all 𝑖, 𝑗 ∈ S, 𝑗 ̸= 𝑖) and 𝜋
𝑖𝑖
= −∑

𝑠

𝑗=1,𝑗 ̸= 𝑖
𝜋
𝑖𝑗
). The above

description about uncertain TRs is more general than either
the MJSs model with bounded uncertain TRs or the MJSs
model with partly uncertain TRs. If 𝑈𝑖

𝑢𝑘
= 0, for all 𝑖 ∈ S,

then generally uncertain TR matrix (4) reduces to bounded
uncertain TR matrix (5) as follows:

[
[
[
[

[

�̂�
11
+ Δ
11

�̂�
12
+ Δ
12

⋅ ⋅ ⋅ �̂�
1𝑠
+ Δ
1𝑠

�̂�
21
+ Δ
21

�̂�
22
+ Δ
22

⋅ ⋅ ⋅ �̂�
2𝑠
+ Δ
2𝑠

...
... d

...
�̂�
𝑠1
+ Δ
𝑠1

�̂�
𝑠2
+ Δ
𝑠2

⋅ ⋅ ⋅ �̂�
𝑠𝑠
+ Δ
𝑠𝑠

]
]
]
]

]

, (5)

where �̂�
𝑖𝑗
−Δ
𝑖𝑗
≥ 0 (for all 𝑗 ∈ S, 𝑗 ̸= 𝑖), �̂�

𝑖𝑖
= −∑

𝑠

𝑗=1,𝑗 ̸= 𝑖
�̂�
𝑖𝑗
≤

0, and Δ
𝑖𝑖
= ∑
𝑠

𝑗=1,𝑗 ̸= 𝑖
Δ
𝑖𝑗
; if 𝜎
𝑖𝑗
= 0, for all 𝑖 ∈ S, for all 𝑗 ∈
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𝑈
𝑖

𝑘
, then generally uncertain TR matrix (4) reduces to partly

uncertain TR matrix (6) as follows:

[
[
[
[

[

𝜋
11

? ? ⋅ ⋅ ⋅ ?

? ? 𝜋
23

⋅ ⋅ ⋅ 𝜋
2𝑠

...
...

... d
...

? 𝜋
𝑠2

? ⋅ ⋅ ⋅ ?

]
]
]
]

]

. (6)

Our results in this paper can be applicable to the general
Markovian jump systems with bounded uncertain or partly
uncertain TR matrix.

𝐴(𝛾(𝑡), 𝑡),𝐴
𝑑
(𝛾(𝑡), 𝑡),𝐶(𝛾(𝑡), 𝑡), and𝐶

𝑑
(𝛾(𝑡), 𝑡) arematrix

functions of the random jumping process 𝛾(𝑡). To simplify the
notion, the notation 𝐴

𝑖
(𝑡) represents 𝐴(𝛾(𝑡), 𝑡) when 𝛾(𝑡) =

𝑖. For example, 𝐴
𝑑
(𝛾(𝑡), 𝑡) is denoted by 𝐴

𝑑𝑖
(𝑡) and so on.

Further, for each 𝛾(𝑡) = 𝑖 ∈ 𝑁, it is assumed that the
matrices 𝐴

𝑖
(𝑡), 𝐴

𝑑𝑖
(𝑡), 𝐶
𝑖
(𝑡), and 𝐶

𝑑𝑖
(𝑡) can be described by

the following form:

𝐴
𝑖
(𝑡) = 𝐴

𝑖
+ Δ𝐴
𝑖
(𝑡) , 𝐴

𝑑𝑖
(𝑡) = 𝐴

𝑑𝑖
+ Δ𝐴
𝑑𝑖
(𝑡) ,

𝐶
𝑖
(𝑡) = 𝐶

𝑖
+ Δ𝐶
𝑖
(𝑡) , 𝐶

𝑑𝑖
(𝑡) = 𝐶

𝑑𝑖
+ Δ𝐶
𝑑𝑖
(𝑡) ,

(7)

where 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐶
𝑖
are 𝐶

𝑑𝑖
known real coefficient matrices

with appropriate dimensions. Time-varying matrices
Δ𝐴
𝑖
(𝑡), Δ𝐴

𝑑𝑖
(𝑡), Δ𝐶

𝑖
(𝑡), and Δ𝐶

𝑑𝑖
(𝑡) represent norm-

bounded uncertainties and satisfy

[
Δ𝐴
𝑖
(𝑡) Δ𝐴

𝑑𝑖
(𝑡)

Δ𝐶
𝑖
(𝑡) Δ𝐶

𝑑𝑖
(𝑡)

] = [
𝑀
1𝑖

𝑀
2𝑖

]𝐹
𝑖
(𝑡) [𝑁1𝑖 𝑁2𝑖] , (8)

where𝑀
1𝑖
,𝑀
2𝑖
,𝑀
1𝑖
, and𝑁

2𝑖
are known constant real matri-

ces of appropriate dimensions, which represent the structure
of uncertainties, and 𝐹

𝑖
(𝑡) is an unknown matrix function

with Lebesgue measurable elements and satisfies 𝐹
𝑖
(𝑡)𝐹
𝑇

𝑖
(𝑡) ≤

𝐼.
Further, for convenience, we assume that the system has

the same dimension at each mode and the Markov process
is irreducible. Consider the following nominal unforced
descriptor time-delay system:

𝐸�̇� (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝑑) ,

𝑥 (𝑡) = 𝜑 (𝑡) , ∀𝑡 ∈ [−𝑑, 0] .

(9)

Let 𝑥
0
, 𝑟
0
, and 𝑥(𝑡, 𝜑, 𝑟

0
) be the initial state, initial mode,

and the corresponding solution of the system (9) at time 𝑡,
respectively.

Definition 5. System (9) is said to be stochastically stable if,
for all 𝜑(𝑡) ∈ 𝐿

2
[−𝑑, 0] and initial mode 𝑟

0
∈ 𝑁, there exists

a matrix𝑀 > 0 such that

𝐸{∫

∞

0

𝑥 (𝑡, 𝜑, 𝑟0)

2

𝑑𝑡 | 𝑟
0
, 𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑑, 0]}

≤ 𝑥
𝑇

0
𝑀𝑥
0
.

(10)

The following definition can be regarded as an extension
of the definition in [2].

Definition 6. (1) System (9) is said to be regular if det(𝑠E −

𝐴
𝑖
), 𝑖 = 1, 2, . . . , 𝑠 are not identically zero.
(2) System (9) is said to be impulse free if deg(det(𝑠𝐸 −

𝐴
𝑖
)) = rank 𝐸

𝑖
, 𝑖 = 1, 2, . . . , 𝑠.

(3) System (9) is said to be admissible if it is regular,
impulse free, and stochastically stable.

The linearmemoryless observer under consideration is as
follows:

𝐸 ̇̂𝑥 (𝑡) = 𝐾
1𝑖
𝑥 (𝑡) + 𝐾

2𝑖
𝑦 (𝑡) ,

𝑥
0
= 0, 𝑟 (0) = 𝑟

0
,

(11)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the observer state, and the constant

matrices𝐾
1𝑖
and𝐾

2𝑖
are observer parameters to be designed.

Denote the error state 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡), and the
augmented state vector 𝑥

𝑓
= [𝑥
𝑇
(𝑡) 𝑒
𝑇
(𝑡)]
𝑇

. Let 𝑥(𝑡) = 𝐿𝑒(𝑡)

represent the output of the error states, where 𝐿 is a known
constant matrix. Define

𝐴
𝑓𝑖
= [

𝐴
𝑖

0

𝐴
𝑖
− 𝐾
1𝑖
− 𝐾
2𝑖
𝐶
𝑖
𝐾
1𝑖

] ,

𝐴
𝑓𝑑𝑖

= [
𝐴
𝑑𝑖

0

𝐴
𝑑𝑖
− 𝐾
2𝑖
𝐶
𝑑𝑖

0
] , 𝐸

𝑓
= [

𝐸 0

0 𝐸
] ,

𝑀
𝑓𝑖
= 𝑀
𝑓1𝑖

= [
𝑀
1𝑖

𝑀
1𝑖
− 𝐾
2𝑖
𝑀
2𝑖

] , 𝑁
𝑓𝑖
= [𝑁1𝑖 0] ,

Δ𝐴
𝑓𝑖
= 𝑀
𝑓𝑖
𝐹
𝑖
(𝑡)𝑁
𝑓𝑖
, 𝑁

𝑓1𝑖
= [𝑁2𝑖 0] ,

Δ𝐴
𝑓𝑑𝑖

= 𝑀
𝑓1𝑖

𝐹
𝑖
(𝑡)𝑁
𝑓1𝑖

, 𝐶
𝑓
= [0 𝐿]

(12)

and combine (1) and (11); then we derive the augmented
systems as follows:

𝐸
𝑓
�̇�
𝑓
(𝑡) = (𝐴

𝑓𝑖
+ Δ𝐴
𝑓𝑖
) 𝑥
𝑓
(𝑡)

+ (𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) 𝑥
𝑓
(𝑡 − 𝑑) ,

𝑧 (𝑡) = 𝐶
𝑓
𝑥
𝑓
(𝑡) ,

𝑥
𝑓0

(𝑡) = [𝜑
𝑇
(𝑡) , 𝜑
𝑇
(𝑡)]
𝑇

, ∀𝑡 ∈ [−𝑑, 0] .

(13)

Similar to [5], it is also assumed in this paper that, for all 𝜍 ∈
[−𝑑, 0], there exists a scalar ℎ > 0 such that ‖𝑥

𝑓
(𝑡 + 𝜍)‖ ≤

ℎ‖𝑥
𝑓
(𝑡)‖.
Associated with system (13) is the cost function

J = E{∫

∞

0

𝑧
𝑇
(𝑡) 𝑧 (𝑡) 𝑑𝑡} . (14)

Definition 7. Consider the augmented system (13), if there
exist the observer parameters 𝐾

1𝑖
, 𝐾
2𝑖
and a positive scalar

J∗, for all uncertainties, such that the augmented system
(13) is robust, stochastically stable and the value of the cost
function (14) satisfies J ≤ J∗, then J∗ is said to be a
robust guaranteed cost and observer (11) is said to be a robust
guaranteed cost observer for system (1) with (4).

Problem 8 (robust guaranteed cost observer problem for a
class of linear singular Markovian jump time-delay systems
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with generally incomplete transition probability). Given sys-
tem (1) with GUTRMatrix (4), can we determine an observer
(11) with parameters 𝐾

1𝑖
and 𝐾

2𝑖
such that the observer is a

robust guaranteed cost observer for system (1) with GUTR
Matrix (4)?

Lemma 9. Given any real number 𝜀 and any matrix Q, the
matrix inequality 𝜀(𝑄 + 𝑄

𝑇
) ≤ 𝜀
2
𝑇 + 𝑄𝑇

−1
𝑄
𝑇 holds for any

matrix 𝑇 > 0.

3. Main Results

Theorem 10. Consider the augmented system (13)with GUTR
Matrix (4) and the cost function (14). Then the robust guar-
anteed cost observer (11) with parameters 𝐾

1𝑖
and 𝐾

2𝑖
can

be designed if there exist matrices 𝑃
𝑖
, 𝐾
1𝑖
, and 𝐾

2𝑖
, 𝑖 =

1, 2, . . . , 𝑠, and symmetric positive definite matrix Q, satisfying
the following LMIs, respectively:

Case 1. If 𝑖 ∉ 𝑈
𝑖

𝑘
and 𝑈

𝑖

𝑘
= {𝑘
𝑖

1
, . . . , 𝑘

𝑖

𝑚
}, there exist a set of

symmetric positive definite matrices 𝑇
𝑖𝑗
∈ R𝑛×𝑛 (𝑖 ∉ 𝑈

𝑖

𝑘
, 𝑗 ∈

𝑈
𝑖

𝑘
) such that

𝐸
𝑇

𝑓
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑓
≥ 0, (15)

[
[

[

Π
𝑖
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) �̂�
1

(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

)
𝑇

𝑃
𝑖

−𝑄 0

∗ ∗ �̂�
2

]
]

]

< 0, (16)

𝑃
𝑖
− 𝑃
𝑗
≥ 0, ∀𝑗 ∈ 𝑈

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖. (17)

Case 2. If 𝑖 ∈ 𝑈
𝑖

𝑘
, 𝑈𝑖
𝑘
= {𝑘
𝑖

1
, . . . , 𝑘

𝑖

𝑚
} and 𝑈𝑖

𝑢𝑘
̸= 0, there exist a

set of symmetric positive definite matrices 𝑉
𝑖𝑗𝑙

∈ R𝑛×𝑛 (𝑖, 𝑗 ∈

𝑈
𝑖

𝑘
, 𝑙 ∈ 𝑈

𝑖

𝑢𝑘
) such that

𝐸
𝑇

𝑓
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑓
≥ 0, (18)

[
[

[

Ω
𝑖
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) �̂�
1

(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

)
𝑇

𝑃
𝑖

−𝑄 0

∗ ∗ �̂�
2

]
]

]

< 0. (19)

Case 3. If 𝑖 ∈ 𝑈
𝑖

𝑘
and 𝑈

𝑖

𝑢𝑘
= 0, there exist a set of symmetric

positive definite matrices𝑊
𝑖𝑗
∈ R𝑛×𝑛 (𝑖, 𝑗 ∈ 𝑈

𝑖

𝑘
) such that

𝐸
𝑇

𝑓
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑓
≥ 0, (20)

[
[

[

Δ
𝑖
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) �̂�
1

(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

)
𝑇

𝑃
𝑖

−𝑄 0

∗ ∗ �̂�
2

]
]

]

< 0, (21)

where

Π
𝑖
= (𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)

+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

1

4
𝜎
2

𝑖𝑗
𝑇
𝑖𝑗
,

Ω
𝑖
= (𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)

+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑙
) + ∑

𝑗∈𝑈
𝑖

𝑘

1

4
𝜎
2

𝑖𝑗
𝑉
𝑖𝑗𝑙
,

Δ
𝑖
= (𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)

+ 𝑄 + ∑

𝑗∈S,𝑗 ̸= 𝑖

�̂�
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈S,𝑗 ̸= 𝑖

1

4
𝜎
2

𝑖𝑗
𝑊
𝑖𝑗
,

�̂�
1
= [𝐸
𝑇

𝑓
(𝑃
𝑖𝑘
𝑖

1

− 𝑃
𝑖
) , 𝐸
𝑇

𝑓
(𝑃
𝑖𝑘
𝑖

2

− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑖𝑘
𝑖

𝑚

− 𝑃
𝑖
)] ,

�̂�
2
= diag {−𝑇

𝑖𝑘
𝑖

1

, . . . , −𝑇
𝑖𝑘
𝑖

𝑚

} ,

�̂�
1
= [𝐸
𝑇

𝑓
(𝑃
𝑘
𝑖

1

− 𝑃
𝑙
) , 𝐸
𝑇

𝑓
(𝑃
𝑘
𝑖

2

− 𝑃
𝑙
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑘
𝑖

𝑚

− 𝑃
𝑙
)] ,

�̂�
2
= diag {−𝑉

𝑖𝑘
𝑖

1
𝑙
, . . . , −𝑉

𝑖𝑘
𝑖

𝑚
𝑙
} ,

�̂�
1
= [𝐸
𝑇

𝑓
(𝑃
1
− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑖−1

− 𝑃
𝑖
) ,

𝐸
𝑇

𝑓
(𝑃
𝑖+1

− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑠
− 𝑃
𝑖
)] ,

�̂�
2
= diag {−𝑊

𝑖1
, . . . , −𝑊

𝑖𝑠
} .

(22)

Proof. According to Definition 2 and Theorem 1 in [2], we
can derive from (15)–(21) that system (13) is regular and
impulse free. Let the mode at time 𝑡 be 𝑖, and consider the
following Lyapunov function with respect to the augmented
system (13)

𝑉(𝑥
𝑓
(𝑡) , 𝛾 (𝑡) = 𝑖) = 𝑥

𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓
𝑃
𝑖
𝑥
𝑓
(𝑡)

+ ∫

𝑡

𝑡−𝑑

𝑥
𝑇

𝑓
(𝑠) 𝑄𝑥

𝑓
(𝑠) 𝑑𝑡,

(23)

where 𝑄 is the symmetric positive definite matrix to be cho-
sen, and 𝑃

𝑖
is a matrix satisfying (15)–(21).The weak infinites-

imal operatorL of the stochastic process {𝛾(𝑡), 𝑥
𝑓
(𝑡)}, 𝑡 ≥ 0,

is presented by

L𝑉(𝑥
𝑓
(𝑡) , 𝛾 (𝑡) = 𝑖)

= lim
Δ→0

1

Δ
[𝐸
𝑓
{𝑉 (𝑥 (𝑡 + Δ) , 𝛾 (𝑡 + Δ)) 𝑥 (𝑡) , 𝛾 (𝑡) = 𝑖}

−𝑉 (𝑥 (𝑡) , 𝛾 (𝑡) = 𝑖) ]

= 𝑥
𝑇

𝑓
(𝑡) [

[

(𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)

+

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
+ 𝑄]

]

𝑥
𝑓
(𝑡)

+ 2𝑥
𝑇

𝑓
(𝑡) 𝑃
𝑖
(𝐴
𝑓1𝑖

+ Δ𝐴
𝑓1𝑖

) 𝑥
𝑓
(𝑡 − 𝑑)

− 𝑥
𝑇

𝑓
(𝑡 − 𝑑)𝑄𝑥

𝑓
(𝑡 − 𝑑) .

(24)



Abstract and Applied Analysis 5

Case 1 (𝑖 ∉ 𝑈
𝑖

𝑘
). Note that in this case ∑

𝑗∈𝑈
𝑖

𝑢𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗

=

−∑
𝑗∈U𝑖
𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
− 𝜋
𝑖𝑖
and 𝜋

𝑖𝑗
≥ 0, 𝑗 ∈ 𝑈

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖; then from

(24), we have

𝑥
𝑇

𝑓
(𝑡) [

[

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) [

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
+ ∑

𝑗∈𝑈
𝑖

𝑢𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
+ 𝜋
𝑖𝑖
𝐸
𝑇

𝑓
𝑃
𝑗
]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) [

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
+ (−𝜋

𝑖𝑖
− ∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
)𝐸
𝑇

𝑓
𝑃
𝑖

+𝜋
𝑖𝑖
𝐸
𝑇

𝑓
𝑃
𝑖
]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓
[

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓
[

[

∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥
𝑓
(𝑡) .

(25)

On the other hand, in view of Lemma 9, we have

∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
)

= ∑

𝑗∈𝑈
𝑖

𝑘

[
1

2
Δ
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
) +

1

2
Δ
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
)]

≤ ∑

𝑗∈𝑈
𝑖

𝑘

[(
1

2
Δ
𝑖𝑗
)

2

𝑇
𝑖𝑗
+ 𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
) 𝑇
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) 𝐸
𝑓
]

≤ ∑

𝑗∈𝑈
𝑖

𝑘

[
1

4
𝜎
2

𝑖𝑗
𝑇
𝑖𝑗
+ 𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
) 𝑇
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) 𝐸
𝑓
] .

(26)

Case 2 (𝑖 ∈ 𝑈
𝑖

𝑘
and𝑈𝑖

𝑢𝑘
̸= 0). Because of𝑈𝑖

𝑘
= {𝑘
𝑖

1
, . . . , 𝑘

𝑖

𝑚
} and

𝑈
𝑖

𝑢𝑘
= {𝑢
𝑖

1
, . . . , 𝑢

𝑖

𝑠−𝑚
}, there must be 𝑙 ∈ 𝑈

𝑖

𝑢𝑘
so that 𝐸𝑇

𝑓
𝑃
𝑙
≥

𝐸
𝑇

𝑓
𝑃
𝑗
(for all 𝑗 ∈ 𝑈

𝑖

𝑢𝑘
):

𝑥
𝑇

𝑓
(𝑡) [

[

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
]

]

𝑥
𝑓
(𝑡)

≤ 𝑥
𝑇

𝑓
(𝑡) [

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
− ( ∑

𝑗∈𝑈
𝑖

𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
)𝐸
𝑇

𝑓
𝑃
𝑙
]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓
[

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
)]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓
[

[

∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
) + ∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
)]

]

𝑥
𝑓
(𝑡) .

(27)

By using Lemma 9, we have

∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑙
)

= ∑

𝑗∈𝑈
𝑖

𝑘

[
1

2
Δ
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑙
) +

1

2
Δ
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑙
)]

≤ ∑

𝑗∈𝑈
𝑖

𝑘

[(
1

2
Δ
𝑖𝑗
)

2

𝑉
𝑖𝑗𝑙
+ 𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑙
)𝑉
−1

𝑖𝑗𝑙
(𝑃
𝑗
− 𝑃
𝑙
) 𝐸
𝑇

𝑓
]

≤ ∑

𝑗∈𝑈
𝑖

𝑘

[
1

4
𝜎
2

𝑖𝑗
𝑉
𝑖𝑗𝑙
+ 𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑙
)𝑉
−1

𝑖𝑗𝑙
(𝑃
𝑗
− 𝑃
𝑙
) 𝐸
𝑇

𝑓
] .

(28)

Case 3 (𝑖 ∈ 𝑈
𝑖

𝑘
and 𝑈

𝑖

𝑢𝑘
= 0). Consider

𝑥
𝑇

𝑓
(𝑡) [

[

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓
[

[

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓
[

[

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)

+

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥
𝑓
(𝑡) .

(29)

Case 1. Substituting (25) and (26) into (24), it results in

L𝑉 ≤ Λ
𝑇
(𝑡) Φ (𝑖) Λ (𝑡) , (30)

where Λ𝑇(𝑡) = [𝑥
𝑇

𝑓
(𝑡), 𝑥
𝑇

𝑓
(𝑡 − 𝑑)] and

Φ
𝑖
=
[
[

[

Π
𝑖
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) �̂�
1

(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

)
𝑇

𝑃
𝑖

−𝑄 0

∗ ∗ �̂�
2

]
]

]

. (31)

Case 2. Substituting (27) and (28) into (24), it results in

L𝑉 ≤ Λ
𝑇
(𝑡) Ψ (𝑖) Λ (𝑡) , (32)

where Λ𝑇(𝑡) = [𝑥
𝑇

𝑓
(𝑡), 𝑥
𝑇

𝑓
(𝑡 − 𝑑)] and

Ψ
𝑖
=
[
[

[

Ω
𝑖
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) �̂�
1

(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

)
𝑇

𝑃
𝑖

−𝑄 0

∗ ∗ �̂�
2

]
]

]

. (33)
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Case 3. Substituting (29) into (24), we get

L𝑉 ≤ Λ
𝑇
(𝑡) Γ (𝑖) Λ (𝑡) , (34)

where Λ𝑇(𝑡) = [𝑥
𝑇

𝑓
(𝑡), 𝑥
𝑇

𝑓
(𝑡 − 𝑑)] and

Γ
𝑖
=
[
[

[

Δ
𝑖
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) �̂�
1

(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

)
𝑇

𝑃
𝑖

−𝑄 0

∗ ∗ �̂�
2

]
]

]

. (35)

Similar to [5], usingDynkin’s formula, we drive for each 𝑖 ∈ 𝑁:

lim
𝑇→∞

E{∫

𝑇

0

𝑥
𝑇

𝑓
(𝑡) 𝑥
𝑓
(𝑡) 𝑑𝑡 | 𝜑

𝑓
, 𝛾
0
= 𝑖} ≤ 𝑥

𝑇

𝑓0
𝑀𝑥
𝑓0
. (36)

By Definition 5, it is easy to see that the augmented system
(13) is stochastically stable. Furthermore, from (16), (19), and
(21), we have

L𝑉 ≤ −𝑥
𝑇

𝑓
(𝑡) 𝐶
𝑇

𝑓
𝐶
𝑓
𝑥
𝑓
(𝑡) < 0. (37)

On the other hand, we have

J = E{∫

∞

0

𝑥
𝑇

𝑓
(𝑡) 𝐶
𝑇

𝑓
𝐶
𝑓
𝑥
𝑓
(𝑡) 𝑑𝑡} < −∫

∞

0

L𝑉𝑑𝑡

= − E { lim
𝑡→∞

𝑉 (𝑥 (𝑡) , 𝛾 (𝑡))} + 𝑉 (𝑥
0
, 𝛾
0
) .

(38)

As the augmented system (13) is stochastically stable, it
follows from (38) that 𝐽 < 𝑉(𝑥

𝑓0
, 𝑟
0
). From Definition 7, it

is concluded that a robust guaranteed cost for the augmented
system (13) can be given by 𝐽

∗
= 𝑥
𝑇

𝑓0
(𝑡)𝐸
𝑇

𝑓𝑟0
𝑃(𝑟
0
)𝑥
𝑓0

+

∫
0

−𝑑
𝑥
𝑇

𝑓
(𝑡)𝑄𝑥

𝑓
(𝑡)𝑑𝑡.

In the following, based on the above sufficient condition,
the design of robust guaranteed cost observers can be turned
into the solvability of a system of LMIs.

Theorem 11. Consider system (13)with GUTRMatrix (4) and
the cost function (14). If there exist matrices 𝑌

1𝑖
and 𝑌

2𝑖
, 𝑖 =

1, 2, . . . , 𝑠 positive scalars 𝜀
𝑖
, 𝑖 = 1, 2, . . . , 𝑠, symmetric positive

definite matrix Q, and the full rank matrices 𝑃
2𝑖
, and matrices

𝑃
𝑖
= diag(𝑃

1𝑖
, 𝑃
2𝑖
), 𝑖 = 1, 2, . . . , 𝑠, satisfying the following

LMIs, respectively.

Case 1. If 𝑖 ∉ 𝑈
𝑖

𝑘
and 𝑈

𝑖

𝑘
= {𝑘
𝑖

1
, . . . , 𝑘

𝑖

𝑚
}, a set of positive

definite matrices 𝑇
𝑖𝑗
∈ R𝑛×𝑛 (𝑖 ∉ 𝑈

𝑖

𝑘
, 𝑗 ∈ 𝑈

𝑖

𝑘
) exist such that

𝐸
𝑇

𝑓
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑓
≥ 0, (39)

[
[
[
[
[
[
[
[
[

[

𝜙
1𝑖

𝜙
2𝑖

𝑁
1

𝜙
3𝑖

𝜙
𝑇

2𝑖
−𝑄 0 0

𝑁
𝑇

1
0 𝑁

2
0

𝜙
𝑇

3𝑖
0 0 −𝜀

𝑖
𝐼

]
]
]
]
]
]
]
]
]

]

< 0, (40)

𝑃
𝑖
− 𝑃
𝑗
≥ 0, ∀𝑗 ∈ 𝑈

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖. (41)

Case 2. If 𝑖 ∈ 𝑈
𝑖

𝑘
(𝑈
𝑖

𝑘
= {𝑘
𝑖

1
, . . . , 𝑘

𝑖

𝑚
}) and 𝑈

𝑖

𝑢𝑘
̸= 0, a set of

positive definite matrices𝑉
𝑖𝑗𝑙
∈ R𝑛×𝑛 (𝑖, 𝑗 ∈ 𝑈

𝑖

𝑘
, 𝑙 ∈ 𝑈

𝑖

𝑢𝑘
) exist

such that

𝐸
𝑇

𝑓
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑓
≥ 0, (42)

[
[
[
[
[
[
[
[
[

[

𝜑
1𝑖

𝜑
2𝑖

𝑀
1

𝜑
3𝑖

𝜑
𝑇

2𝑖
−𝑄 0 0

𝑀
𝑇

1
0 𝑀

2
0

𝜑
𝑇

3𝑖
0 0 −𝜀

𝑖
𝐼

]
]
]
]
]
]
]
]
]

]

< 0. (43)

Case 3. If 𝑖 ∈ 𝑈
𝑖

𝑘
and 𝑈

𝑖

𝑢𝑘
= 0, a set of positive definite

matrices𝑊
𝑖𝑗
∈ R𝑛×𝑛 (𝑖, 𝑗 ∈ 𝑈

𝑖

𝑘
) exist such that

𝐸
𝑇

𝑓𝑖
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑓𝑖
≥ 0, (44)

[
[
[
[
[
[
[
[
[

[

𝜓
1𝑖

𝜓
2𝑖

𝐿
1

𝜓
3𝑖

𝜓
𝑇

2𝑖
−𝑄 0 0

𝐿
𝑇

1
0 𝐿
2

0

𝜓
𝑇

3𝑖
0 0 −𝜀

𝑖
𝐼

]
]
]
]
]
]
]
]
]

]

< 0, (45)

where

𝜙
1𝑖
= 𝜑
1𝑖
= 𝜓
1𝑖

= [
𝑃
1𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
1𝑖

𝐴
𝑇

𝑖
𝑃
2𝑖
− 𝑌
𝑇

1𝑖
− 𝐶
𝑇

𝑖
𝑌
𝑇

2𝑖

𝑃
2𝑖
𝐴
𝑖
− 𝑌
1𝑖
− 𝑌
2𝑖
𝐶
𝑖

𝑌
𝑇

1𝑖
+ 𝑌
1𝑖

]

+ 𝑄 + 𝐶
𝑇

𝑓
𝐶
𝑓
+ ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

1

4
𝜎
2

𝑖𝑗
𝑇
𝑖𝑗
,

𝜙
2𝑖
= 𝜑
2𝑖
= 𝜓
2𝑖
= [

𝑃
1𝑖
𝐴 i 0

𝑃
2𝑖
𝐴
𝑖
− 𝑌
1𝑖
− 𝑌
2𝑖
𝐶
𝑖
0
] ,

𝜙
3𝑖
= 𝜑
3𝑖
= 𝜓
3𝑖
= [

𝑃
1𝑖
𝑀
1𝑖

𝑃
2𝑖
𝑀
1𝑖
− 𝑌
1𝑖
𝑀
1𝑖
− 𝑌
2𝑖
𝑀
2𝑖

] ,

𝑁
1
= [𝐸
𝑇

𝑓
(𝑃
𝑘
𝑖

1

− 𝑃
𝑖
) , 𝐸
𝑇

𝑓
(𝑃
𝑘
𝑖

2

− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑘
𝑖

𝑚

− 𝑃
𝑖
)] ,

𝑁
2
= diag {−𝑇

𝑖𝑘
𝑖

1

, . . . , −𝑇
𝑖𝑘
𝑖

𝑚

} ,

𝑀
1
= [𝐸
𝑇

𝑓
(𝑃
𝑘
𝑖

1

− 𝑃
𝑖
) , 𝐸
𝑇

𝑓
(𝑃
𝑘
𝑖

2

− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑘
𝑖

𝑚

− 𝑃
𝑖
)] ,

𝑀
2
= diag {−𝑉

𝑖𝑘
𝑖

1
𝑙
, . . . , −𝑉

𝑖𝑘
𝑖

𝑚
𝑙
} ,

𝐿
1
= [𝐸
𝑇

𝑓
(𝑃
1
− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑖−1

− 𝑃
𝑖
) ,

𝐸
𝑇

𝑓
(𝑃
𝑖+1

− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑠
− 𝑃
𝑖
)] ,

𝐿
2
= diag {−𝑊

𝑖1
, . . . , −𝑊

𝑖𝑠
} .

(46)
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Then a suitable robust guaranteed cost observer in the
form of (11) has parameters as follows:

𝐾
1𝑖
= 𝑃
−1

1𝑖
𝑌
1𝑖
, 𝐾

2𝑖
= 𝑃
−1

2𝑖
𝑌
2𝑖

(47)

and 𝐽∗ is a robust guaranteed cost for system (13) with GUTR
Matrix (4).

Proof. Define

𝐴
1

𝑖
=

[
[
[
[

[

𝐴
𝑇

𝑓𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑓𝑖
+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

1

4
𝜎
2

𝑖𝑗
𝑇
𝑖𝑗
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
𝐴
𝑓𝑑𝑖

𝑁
1

𝐴
𝑇

𝑓𝑑𝑖
𝑃
𝑖

−𝑄 0

∗ ∗ 𝑁
2

]
]
]
]

]

, (48)

𝐴
2

𝑖
=

[
[
[
[

[

𝐴
𝑇

𝑓𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑓𝑖
+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

1

4
𝜎
2

𝑖𝑗
𝑉
𝑖𝑗𝑙
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
𝐴
𝑓𝑑𝑖

𝑀
1

𝐴
𝑇

𝑓𝑑𝑖
𝑃
𝑖

−𝑄 0

∗ ∗ 𝑀
2

]
]
]
]

]

, (49)

𝐴
3

𝑖
=

[
[
[
[

[

𝐴
𝑇

𝑓𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑓𝑖
+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

1

4
𝜎
2

𝑖𝑗
𝑊
𝑖𝑗
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
𝐴
𝑓𝑑𝑖

𝐿
1

𝐴
𝑇

𝑓𝑑𝑖
𝑃
𝑖

−𝑄 0

∗ ∗ 𝐿
2

]
]
]
]

]

< 0. (50)

Then (16) is equivalent to

𝐴
1

𝑖
+ [

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝐹
𝑖
[𝑁𝑓𝑖 𝑁𝑓1𝑖 0]

+ [𝑁𝑓𝑖 𝐹𝑓1𝑖 0]
𝑇

𝐹
𝑇

𝑖
[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝑇

< 0.

(51)

Then (19) is equivalent to

𝐴
2

𝑖
+ [

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝐹
𝑖
[𝑁𝑓𝑖 𝑁𝑓1𝑖 0]

+ [𝑁𝑓𝑖 𝐹𝑓1𝑖 0]
𝑇

𝐹
𝑇

𝑖
[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝑇

< 0.

(52)

Then (21) is equivalent to

𝐴
3

𝑖
+ [

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝐹
𝑖
[𝑁𝑓𝑖 𝑁𝑓1𝑖 0]

+ [𝑁𝑓𝑖 𝐹𝑓1𝑖 0]
𝑇

𝐹
𝑇

𝑖
[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝑇

< 0.

(53)

By applying Lemma 2.4 in [57], (50), (51), and (52) hold for
all uncertainties𝐹i satisfying𝐹

𝑇

𝑖
𝐹
𝑖
< 𝐼 if and only if there exist

positive scalars 𝜀
𝑖
, 𝑖 = 1, 2, . . . , 𝑠, such that

𝐴
1

𝑖
+ 𝜀
−1

𝑖
[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝑇

+ 𝜀
𝑖
[𝑁𝑓𝑖 𝐹𝑓1𝑖 0]

𝑇

[𝑁𝑓𝑖 𝐹𝑓1𝑖 0] < 0,

𝐴
2

𝑖
+ 𝜀
−1

𝑖
[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝑇

+ 𝜀
𝑖
[𝑁𝑓𝑖 𝐹𝑓1𝑖 0]

𝑇

[𝑁𝑓𝑖 𝐹𝑓1𝑖 0] < 0,

𝐴
3

𝑖
+ 𝜀
−1

𝑖
[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝑇

+ 𝜀
𝑖
[𝑁𝑓𝑖 𝐹𝑓1𝑖 0]

𝑇

[𝑁𝑓𝑖 𝐹𝑓1𝑖 0] < 0.

(54)

Let 𝑃
𝑖
= diag(𝑃

1𝑖
, 𝑃
2𝑖
), and using (47), we can conclude from

Schur complement results that the above matrix inequalities
are equivalent to the coupled LMIs (40), (43), and (45).
It further follows from Theorem 10 that 𝐽

∗ is a robust
guaranteed cost for system (13) with (4).

Remark 12. The solution of LMIs (39)–(45) parameterizes
the set of the proposed robust guaranteed cost observers.
This parameterized representation can be used to design the
guaranteed cost observer with some additional performance
constraints. By applying the methods in [14], the suboptimal
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guaranteed cost observer can be determined by solving a
certain optimization problem. This is the following theorem.

Theorem 13. Consider system (13)with GUTRMatrix (4) and
the cost function (14), and suppose that the initial conditions 𝑟

0

and 𝑥
𝑓0

are known; if the following optimization problem

min
𝑄,𝑃1𝑖 ,𝑃2𝑖 ,𝜀𝑖 ,𝑌1𝑖 and 𝑌2𝑖

𝐽
∗

s.t. LMIs (39) – (45)
(55)

has a solution 𝑄, 𝑃
1𝑖
, 𝑃
2𝑖
, 𝜀
𝑖
, 𝑌
1𝑖
, and 𝑌

2𝑖
, 𝑖 = 1, 2, . . . , 𝑠,

then the observer (11) is a suboptimal guaranteed cost
observer for system (1), where 𝐽

∗
= 𝑥
𝑇

𝑓0
𝐸
𝑇

𝑓𝑟0
𝑃(𝑟
0
)𝑥
𝑓0

+

tr(∫0
−𝑑

𝑥
𝑓0
(𝑡)𝑥
𝑓0
(𝑡)𝑥
𝑇

𝑓0
𝑑𝑡𝑄).

Proof. It follows from Theorem 11 that the observer (11)
constructed in terms of the solution 𝑄, 𝑃

1𝑖
, 𝑃
2𝑖
, 𝜀
𝑖
, 𝑌
1𝑖
, and

𝑌
2𝑖
, 𝑖 = 1, 2, . . . , 𝑠, is a robust guaranteed cost observer. By

noting that

∫

0

−𝑑

𝑥
𝑇

𝑓0
(𝑡) 𝑄𝑥

𝑓0
(𝑡) 𝑑𝑡 = ∫

0

−𝑑

tr (𝑥𝑇
𝑓0

(𝑡) 𝑄𝑥
𝑓0

(𝑡)) 𝑑𝑡

= tr(∫
0

−𝑑

𝑥
𝑇

𝑓0
(𝑡) 𝑥
𝑓0

(𝑡) 𝑑𝑡𝑄) ,

(56)

it follows that the suboptimal guaranteed cost observer
problem is turned into the minimization problem (55).

Remark 14. Theorem 13 gives the suboptimal guaranteed cost
observer conditions of a class of linear Markovian jump-
ing time-delay systems with generally incomplete transition
probability and LMI constraints, which can be easily solved
by the LMI toolbox in MATLAB.

4. Numerical Example

In this section, a numerical example is presented to
demonstrate the effectiveness of the method mentioned in
Theorem 11. Consider a 2-dimensional system (1) with 3
Markovian switching modes. In this numerical example, the
singular system matrix is set as 𝐸 = [ 1 0

0 0
], and the 3-mode

transition rate matrix is Λ = [
−3.2 ? ?

? ? 2

1.5 2.1 −3.6

], where Δ
11
, Δ
31

∈

[−0.15, 0.15]; Δ
23
, Δ
33

∈ [−0.12, 0.12] and Δ
32

∈ [−0.1, 0.1].
The other system matrices are as follows.

For mode 𝑖 = 1, there are

𝐴
1
= [

−3.2 0.65

1 0.2
] , 𝐴

𝑑1
= [

0.2 0.5

1 −0.68
] ,

𝐶
1
= [

[

1.2 0.65

−6.5 1.9

−0.21 −1.8

]

]

, 𝐶
𝑑1

= [

[

−3.6 −1.05

2.1 0.96

0.21 −0.86

]

]

,

𝑀
11

= [
−0.2

0.8
] , 𝑀

21
= [

[

0.25

0.875

−2

]

]

,

𝑁
11

= [−1.2 3.1] , 𝑁
21

= [−0.69 −4.2] .

(57)

For mode 𝑖 = 2, there are

𝐴
2
= [

−1 6

2 −3.6
] , 𝐴

𝑑2
= [

−3.1 −1.6

3 0.75
] ,

𝐶
2
= [

[

9 −2.5

0.35 −2

3.6 −1.8

]

]

, 𝐶
𝑑2

= [

[

0.89 −6

−1.2 0.9

−2.4 6

]

]

,

𝑀
12

= [
2.3

−4
] , 𝑀

22
= [

[

0.75

−3.6

2.5

]

]

,

𝑁
12

= [−7.2 −6] , 𝑁
22

= [1 2] .

(58)

For mode 𝑖 = 3, there are

𝐴
3
= [

−10.6 2.9

−0.3 3.6
] , 𝐴

𝑑3
= [

−5.6 −1.2

−3 4.5
] ,

𝐶
3
= [

[

−3 −0.36

0.15 −1.8

0.9 −5

]

]

, 𝐶
𝑑3

= [

[

−1.65 5

−1.2 2.65

−0.98 −5.6

]

]

,

𝑀
13

= [
−8.2

−0.3
] , 𝑀

23
= [

[

−0.52

2.5

−3.6

]

]

,

𝑁
13

= [1.05 −5] , 𝑁
23

= [−7.2 −1.26] .

(59)

Then, we set the error state matrix 𝐿 = [ −45 0.6
2 −6

], and the
positive scalars in Theorem 11 are 𝜀

1
= 0.2, 𝜀

2
= 0.15, 𝜀

3
=

0.32. According to the definitions of augmented statematrices
in (12), we can easily obtain the following parameter matrices
in Theorem 11 by MATLAB

𝑌
11

= [
−8452.1006 0.0127

0.0127 8450.9001
] ,

𝑌
21

= [
0.02 0.1291 0.1435

−2.3520 −0.4080 −0.8106
] ,

𝑌
12

= [
−17.0991 26.9626

26.9626 −24.6750
] ,

𝑌
22

= [
−20.0744 −13.2941 52.9388

21.6893 18.0120 −50.6693
] ,

𝑌
13

= [
−675.1329 22.4456

22.4456 −897.6976
] ,

𝑌
23

= [
−13.6021 −146.1726 54.0500

−3.4324 −19.5125 −10.3068
] ,

𝑃
1
=
[
[
[

[

6.3029 0 0 0

0 4.8620 0 0

0 0 2.2914 0

0 0 0 0.3169

]
]
]

]

,
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𝑃
2
=
[
[
[

[

0.8914 0 0 0

0 1.2505 0 0

0 0 7.3629 0

0 0 0 3.0056

]
]
]

]

,

𝑃
3
=
[
[
[

[

3.0265 0 0 0

0 0.2156 0 0

0 0 0.8965 0

0 0 0 1.0002

]
]
]

]

,

𝑄 =
[
[
[

[

0.5000 0 0 0

0 0.5001 0 0

0 0 0.5001 0

0 0 0 0.5001

]
]
]

]

,

𝑇
11

=
[
[
[

[

3417.3214 −870.7765 0 0

−870.7765 416.7216 0 0

0 0 2226.3598 −320.7456

0 0 −320.7456 1226.3101

]
]
]

]

,

𝑇
23

=
[
[
[

[

3775.3231 −2799.9330 0 0

−2799.9330 2810.7685 0 0

0 0 10690.7366 −10743.2750

0 0 −10743.2750 10855.5053

]
]
]

]

,

𝑇
31

=
[
[
[

[

951.8504 −539.9245 0 0

−539.9245 896.2029 0 0

0 0 1477.3012 −207.7540

0 0 −207.7540 1479.1256

]
]
]

]

,

𝑇
32

=
[
[
[

[

2161.7695 −1209.4164 0 0

−1209.4164 2037.1205 0 0

0 0 1.4786 −0.9283

0 0 −0.9283 1.4794

]
]
]

]

,

𝑇
33

=
[
[
[

[

1493.9313 −839.8780 0 0

−839.8780 1407.3689 0 0

0 0 147.8123 −133.6452

0 0 −133.6452 245.9347

]
]
]

]

,

𝑉
11

=
[
[
[

[

1.6650 0 0 0

0 1.6650 0 0

0 0 1.6650 0

0 0 0 1.6650

]
]
]

]

,

𝑊
31

=
[
[
[

[

1.5426 0 0 0

0 1.6650 0 0

0 0 1.6662 0

0 0 0 1.6650

]
]
]

]

,

𝑊
32

=
[
[
[

[

1.5428 0 0 0

0 1.6650 0 0

0 0 1.6622 0

0 0 0 1.6650

]
]
]

]

.

(60)

Therefore, we can design a linear memoryless observer as
(11) with the constant matrices

𝐾
11

= 𝑃
−1

11
𝑌
11

= [
−1340.9860 0.0020

0.0026 1738.1530
] ,

𝐾
21

= 𝑃
−1

21
𝑌
21

= [
0.0087 0.0563 0.0626

−7.4219 −1.2875 −2.5579
] ,

𝐾
12

= 𝑃
−1

12
𝑌
12

= [
−19.1823 30.2475

21.5615 −19.7321
] ,

𝐾
22

= 𝑃
−1

22
𝑌
22

= [
−2.7264 −1.8056 7.1899

7.2163 5.9928 −16.8583
] ,

𝐾
13

= 𝑃
−1

13
𝑌
13

= [
−223.1402 7.4186

104.1076 −4163.7180
] ,

𝐾
23

= 𝑃
−1

23
𝑌
23

= [
−15.1724 −163.0481 60.2900

−3.4317 −19.5086 −10.3047
] .

(61)

Finally, the observer (11) with the above parameter matri-
ces for this numerical example is a suboptimal guaranteed
cost observer byTheorems 11 and 13.

5. Conclusions

In this paper, the robust guaranteed cost observer problem
for a class of uncertain descriptor time-delay systems with
Markovian jumping parameters and generally uncertain
transition rates is studied by using LMI method. In this
GUTR singular model, each transition rate can be com-
pletely unknown or only its estimate value is known. The
parameter’s uncertainty is time varying and is assumed to
be norm-bounded. Memoryless guaranteed cost observers
are designed in terms of a set of linear coupled matrix
inequalities. The suboptimal guaranteed cost observer is
designed by solving a certain optimization problem. Our
results can be applicable to the general Markovian jump
systems with bounded uncertain or partly uncertain TR
matrix.
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