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The design of the dynamic output feedback 𝐻
∞

control for uncertain interconnected systems of neutral type is investigated. In
the framework of Lyapunov stability theory, a mathematical technique dealing with the nonlinearity on certain matrix variables
is developed to obtain the solvability conditions for the anticipated controller. Based on the corresponding LMIs, the anticipated
gains for dynamic output feedback can be achieved by solving some algebraic equations. Also, the norm of the transfer function
from the disturbance input to the controlled output is less than the given index. A numerical example and the simulation results
are given to show the effectiveness of the proposed method.

1. Introduction

With the development of engineering systems, nowadays
the systems become more and more complex and large.
Therefore, there has been a growing interest in investigating
the stability and stabilization problems for the large-scale
interconnected systems [1–12]. In [5], Schuler et al. address
a design of structured controllers for networks of intercon-
nectedmultivariable discrete-time subsystems, in which a so-
called degree of decentralization is introduced to characterize
the sparsity level of the controller. In [6], Chen et al. consider
the stabilization and 𝐻

∞
disturbance attenuation problem

for uncertain interconnected networked systems with both
quantised output signal and quantised control inputs signal.
A local-output dependent strategy is proposed to update the
parameters of quantisers and achieve the 𝐻

∞
disturbance

attenuation level. In [7], Yan et al. consider the global decen-
tralized stabilization of a class of interconnected systems
with known and uncertain interconnections. Based on the
Razumikhin-Lyapunov approach, they design a composite
sliding surface and analyze the stability of the associated
sliding motion, which is governed by a time delayed inter-
connected system. Not invoking the Lyapunov-Krasovskii
functional approach and the RazumikhinTheorem approach,
Ye provides a new method to globally stabilize a class of

nonlinear large-scale systems with constant time-delay in
[8], in which the Nussbaum gain is employed to tackle
the unknown high-frequency-gain sign in the considered
systems. Hua et al. investigate the model reference adaptive
control problem and the exponential stabilization problem
for a class of large-scale systems with time-varying delays
in [9, 10], respectively. Different from the constraint on the
derivatives of time-varying delays in [9, 10],Wu in [11] relaxes
the constraint, that is, the derivatives of time-varying delays
does not have to be less than one. It is worth pointing out that
the nonlinear interconnections are subject to the matched
condition in [9, 10] and the time-varying delays only appear
in the interconnection in [11].

On the other hand, time delay frequently occurs in many
engineering systems, such as the state, input, or related
variable of dynamic systems [13, 14]. In particular, when
it arises in the state derivative, the considered systems are
called as neutral systems [15]. Neutral system is the general
form of delay system and contains the same highest order
derivatives for the state vector 𝑥(𝑡), at both time 𝑡 and past
time(s) 𝑡

𝑠
≤ 𝑡. Due to the extensive applications of the

neutral systems, in recent years, many efforts have beenmade
for the stability analysis and control problem for neutral
systems [16–22]. In [16], Xiong et al. construct a new class
of stochastic Lyapunov-Krasovskii functionals to investigate
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the stability of neutral Markovian jump systems in the case of
partly known transition probabilities. In [17], the Lyapunov-
Krasovskii functional containing novel triple integral terms
is developed to study the robust stabilization for a class of
uncertain neutral system with discrete and distributed time
delays. Based on the state feedback controller, an improved
robust stability and stabilization criteria depending on the
allowable maximum delay are derived. In [18], Kwon et al.
propose a few delay-dependent stability criteria for uncertain
neutral systems with time-varying delays, in which the aug-
mented Lyapunov-Krasovskii functional is constructed and
the reciprocal convex optimization approach is introduced.
In [19], the delay-dependent exponential stability and stabil-
isation problems are investigated for a class of special neutral
systems with actuator failures. A class of switching laws
incorporating the average dwell time method is proposed to
robustly stabilise the closed-loop system.

In practice, it is not always possible to have full access to
the state variables and only the partial information through
a measured output is available [23]. Therefore, it is more
realistic in control engineering to design the output feedback
control for the considered systems and there is a growing
interest in it [24–29]. However, to the authors’ best knowl-
edge, there is little literature on designing dynamic output
feedback control for interconnected systems of neutral type.
This motivates the present study.

In this paper, the 𝐻
∞

control problem for uncertain
interconnected systems of neutral type is investigated via
decentralized dynamic output feedback. Based on the Lya-
punov stability theory, we develop a new technique to deal
with the nonlinearity problem of certain matrix variables
appearing in the solvable conditions of dynamic output
feedback𝐻

∞
control. Furthermore, the parameterized char-

acterization of the anticipated controller is achieved, which
can be obtained by solving the corresponding LMIs and
computing the corresponding algebraic equations. Also, it is
guaranteed that the norm of the transfer function from the
disturbance input to the controlled output is less than the
given index. Finally, the effectiveness of the proposedmethod
is elucidated by a numerical example and the simulation
results.

2. Problem Formulation

Consider the following uncertain neutral interconnected
systems composed of𝑁 subsystems:

�̇�
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
�̇�
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))

= [𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)] 𝑥
𝑖
(𝑡)

+ [𝐴
𝑖𝜎𝑖
+ Δ𝐴
𝑖𝜎𝑖
(𝑡)] 𝑥
𝑖
(𝑡 − 𝜎

𝑖
(𝑡))

+ 𝐵
𝑖1
𝜔
𝑖
(𝑡) +

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

[𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
] 𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) ,

𝑧
𝑖
(𝑡) = 𝐶

𝑖1
𝑥
𝑖
(𝑡) + 𝐷

𝑖11
𝜔
𝑖
(𝑡) ,

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , 𝑡 ∈ [−𝑙, 0] , 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) ∈ R𝑛𝑖 , 𝑧

𝑖
(𝑡) ∈ R𝑟𝑖 , and 𝜔

𝑖
(𝑡) ∈ R𝑝𝑖 are the

state, the controlled output, and the disturbance input of
the 𝑖th subsystem, respectively. 𝐴

𝑖
, 𝐴
𝑖𝜎𝑖
, 𝐴
𝑖𝜂𝑖
, 𝐵
𝑖1
, 𝐴
𝑖𝑗
, 𝐶
𝑖1
,

and𝐷
𝑖11

are known constant matrices of appropriate dimen-
sions. 𝜙

𝑖
(𝑡) is the initial condition. 𝜎

𝑖
(𝑡), 𝜂
𝑖
(𝑡), and 𝜏

𝑖𝑗
(𝑡) are

the time-varying delays. Assume that there exist constants
𝑓
𝑖0
, 𝑔
𝑖0
, 𝑙
𝑖0
, 𝑓
𝑖
, 𝑔
𝑖
, 𝑙
𝑖
, and 𝑙 satisfying

0 ≤ 𝜎
𝑖
(𝑡) ≤ 𝑓

𝑖0
, 0 ≤ 𝜂

𝑖
(𝑡) ≤ 𝑔

𝑖0
, 0 ≤ 𝜏

𝑖𝑗
(𝑡) ≤ 𝑙

𝑖0
,

�̇�
𝑖
(𝑡) ≤ 𝑓

𝑖
< 1, ̇𝜂

𝑖
(𝑡) ≤ 𝑔

𝑖
< 1, ̇𝜏

𝑖𝑗
(𝑡) ≤ 𝑙

𝑖
< 1,

𝑙 = max {𝑓
𝑖0
, 𝑔
𝑖0
, 𝑙
𝑖0
} , 𝑖, 𝑗 = 1, 2 . . . , 𝑁, 𝑗 ̸= 𝑖.

(2)

Time-varying parametric uncertaintiesΔ𝐴
𝑖
(𝑡), Δ𝐴

𝑖𝜎𝑖
(𝑡),

and Δ𝐴
𝑖𝑗
(𝑡) are assumed to satisfy

[Δ𝐴
𝑖
(𝑡) Δ𝐴

𝑖𝜎𝑖
(𝑡) Δ𝐴

𝑖𝑗
(𝑡)] = 𝐷

𝑖
𝐹
𝑖
(𝑡) [𝐸𝑖1

𝐸
𝑖𝜎𝑖

𝐿
𝑖𝑗
] , (3)

where matrices 𝐷
𝑖
, 𝐸
𝑖1
, 𝐸
𝑖𝜎𝑖
, and 𝐿

𝑖𝑗
are constant matrices

of appropriate dimensions, and 𝐹
𝑖
(𝑡) is the unknown matrix

function satisfying 𝐹𝑇
𝑖
(𝑡)𝐹
𝑖
(𝑡) ≤ 𝐼, for all 𝑡 ≥ 0.

Assumption 1 (see [30]). The matrix 𝐴
𝑖𝜂𝑖

̸= 0 and ‖𝐴
𝑖𝜂𝑖
‖ < 1.

As a general approach of dealing with the retarded
argument in the state derivatives, it is assumed often that
either there is no unstable neutral root chain or they can first
use derivative feedback to assign the unstable neutral root
chain to the left-hand side of the complex plane. Also, since
𝐴
𝑖𝜂𝑖

̸= 0, it follows form that that the solution of (1) exists and
is unique.

Lemma 2 (see [31]). Given any constant 𝜀 > 0 and matrices
𝐷, 𝐸, and 𝐹 with compatible dimensions such that 𝐹𝑇𝐹 < 𝐼

then

2𝑥
𝑇

𝐷𝐹𝐸𝑦 ≤ 𝜀𝑥
𝑇

𝐷𝐷
𝑇

𝑥 + 𝜀
−1

𝑦
𝑇

𝐸
𝑇

𝐸𝑦, (4)

for all 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑛.

3. Main Result

3.1. Robust𝐻
∞

Performance Analysis

Theorem 3. For given 𝛾
𝑖
> 0, consider system (1) with (2) and

(3). Under the condition of Assumption 1, system (1) is robustly
asymptotically stable and satisfies ‖𝑇

𝑧𝑖𝜔𝑖
‖
∞

< 𝛾
𝑖
, if there exist

matrices 𝑃
𝑖
> 0, 𝑄

𝑖1
> 0, 𝑄

𝑖2
> 0, 𝐺

𝑖𝑗
> 0, and 𝐺

𝑗𝑖
> 0 such

that the following LMI holds:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
𝑖

11
Γ
𝑖

12
Γ
𝑖

13
Γ
𝑖

14
Γ
𝑖

15
Γ
𝑖

16
Γ
𝑖

17
0

∗ Γ
𝑖

22
Γ
𝑖

23
Γ
𝑖

24
0 0 0 0

∗ ∗ Γ
𝑖

33
Γ
𝑖

34
0 0 0 0

∗ ∗ ∗ Γ
𝑖

44
Γ
𝑖

45
0 0 Γ

𝑖

48

∗ ∗ ∗ ∗ Γ
𝑖

55
Γ
𝑖

56
0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (5)
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where

Γ
𝑖

11
= 𝑃
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
+

1

1 − 𝑓
𝑖

𝑄
𝑖1
+

1

1 − 𝑔
𝑖

𝑄
𝑖2
+

1

1 − 𝑙
𝑗

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐺
𝑗𝑖
+ 2𝐸
𝑇

𝑖1
𝐸
𝑖1
, Γ

𝑖

12
= 𝑃
𝑖
𝐴
𝑖𝜎𝑖
+ 2𝐸
𝑇

𝑖1
𝐸
𝑖𝜎𝑖
,

Γ
𝑖

13
= [𝑃
𝑖
𝐴
𝑖1
+ 2𝐸
𝑇

𝑖1
𝐿
𝑖1
⋅ ⋅ ⋅ 𝑃
𝑖
𝐴
𝑖 𝑖−1

+ 2𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖−1

𝑃
𝑖
𝐴
𝑖 𝑖+1

+ 2𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖+1

⋅ ⋅ ⋅ 𝑃
𝑖
𝐴
𝑖𝑁
+ 2𝐸
𝑇

𝑖1
𝐿
𝑖𝑁
] ,

Γ
𝑖

14
= −𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖𝜂𝑖
, Γ

𝑖

15
= 𝑃
𝑖
𝐵
𝑖1
, Γ

𝑖

16
= 𝐶
𝑇

𝑖1
, Γ

𝑖

17
= 𝑃
𝑖
𝐷
𝑖
, Γ

𝑖

22
= −𝑄
𝑖1
+ 2𝐸
𝑇

𝑖𝜎𝑖

𝐸
𝑖𝜎𝑖
,

Γ
𝑖

24
= −𝐴
𝑇

𝑖𝜎𝑖

𝑃
𝑖
𝐴
𝑖𝜂𝑖
, Γ

𝑖

23
= [2𝐸

𝑇

𝑖𝜎𝑖

𝐿
𝑖1
⋅ ⋅ ⋅ 2𝐸

𝑇

𝑖𝜎𝑖

𝐿
𝑖 𝑖−1

2𝐸
𝑇

𝑖𝜎𝑖

𝐿
𝑖 𝑖+1

⋅ ⋅ ⋅ 2𝐸
𝑇

𝑖𝜎𝑖

𝐿
𝑖𝑁
] ,

Γ
𝑖

33
= diag {−𝐺

𝑖1
+ 2𝐿
𝑇

𝑖1
𝐿
𝑖1
, . . . , −𝐺

𝑖 𝑖−1
+ 2𝐿
𝑇

𝑖 𝑖−1
𝐿
𝑖 𝑖−1

, −𝐺
𝑖 𝑖+1

+ 2𝐿
𝑇

𝑖 𝑖+1
𝐿
𝑖 𝑖+1

, . . . , −𝐺
𝑖𝑁
+ 2𝐿
𝑇

𝑖𝑁
𝐿
𝑖𝑁
} ,

Γ
𝑖

34
= [−𝐴

𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐴
𝑖1
⋅ ⋅ ⋅ −𝐴

𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐴
𝑖 𝑖−1

−𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐴
𝑖 𝑖+1

⋅ ⋅ ⋅ −𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐴
𝑖𝑁
]

𝑇

, Γ
𝑖

44
= −𝑄
𝑖2
,

Γ
𝑖

45
= −𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐵
𝑖1
, Γ

𝑖

48
= −𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐷
𝑖
, Γ

𝑖

55
= −𝛾
2

𝑖
𝐼, Γ

𝑖

56
= 𝐷
𝑇

𝑖11
.

(6)

Proof. Construct the following Lyapunov-Krasovskii func-
tional candidate of the form

𝑉 (𝑥
𝑡
) =

𝑁

∑

𝑖=1

𝑉
𝑖
(𝑥
𝑡
)

=

𝑁

∑

𝑖=1

{

{

{

[𝑥
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))]

𝑇

× 𝑃
𝑖
[𝑥
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))]

+

1

1 − 𝑓
𝑖

∫

𝑡

𝑡−𝜎𝑖(𝑡)

𝑥
𝑇

𝑖
(𝑠) 𝑄
𝑖1
𝑥
𝑖
(𝑠) 𝑑𝑠

+

1

1 − 𝑔
𝑖

∫

𝑡

𝑡−𝜂𝑖(𝑡)

𝑥
𝑇

𝑖
(𝑠) 𝑄
𝑖2
𝑥
𝑖
(𝑠) 𝑑𝑠

+

1

1 − 𝑙
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

𝑥
𝑇

𝑗
(𝑠) 𝐺
𝑖𝑗
𝑥
𝑗
(𝑠) 𝑑𝑠

}

}

}

.

(7)

The time derivative of𝑉(𝑥
𝑡
) along the trajectory of system

(1) satisfies

�̇� (𝑥
𝑡
) =

𝑁

∑

𝑖=1

�̇�
𝑖
(𝑥
𝑡
) ≤

𝑁

∑

𝑖=1

�̇�
𝑖
(𝑥
𝑡
)

≤

𝑁

∑

𝑖=1

{

{

{

2(𝑥
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡)))

𝑇

× 𝑃
𝑖

[

[

(𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)) 𝑥
𝑖
(𝑡)

+ (𝐴
𝑖𝜎𝑖
+ Δ𝐴
𝑖𝜎𝑖
(𝑡))

× 𝑥
𝑖
(𝑡 − 𝜎

𝑖
(𝑡)) + 𝐵

𝑖1
𝜔
𝑖
(𝑡)

+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
) 𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))

]

]

+

1

1 − 𝑓
𝑖

𝑥
𝑇

𝑖
(𝑡) 𝑄
𝑖1
𝑥
𝑖
(𝑡)

+

1

1 − 𝑔
𝑖

𝑥
𝑇

𝑖
(𝑡) 𝑄
𝑖2
𝑥
𝑖
(𝑡)

− 𝑥
𝑇

𝑖
(𝑡 − 𝜎

𝑖
(𝑡)) 𝑄

𝑖1
𝑥
𝑖
(𝑡 − 𝜎

𝑖
(𝑡))

− 𝑥
𝑇

𝑖
(𝑡 − 𝜂
𝑖
(𝑡)) 𝑄

𝑖2
𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))

+

1

1 − 𝑙
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗
(𝑡) 𝐺
𝑖𝑗
𝑥
𝑗
(𝑡)

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) 𝐺

𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))

}

}

}

.

(8)
In view of (3), applying Lemma 2, we obtain the following

inequality:

2[𝑥
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))]

𝑇

× 𝑃
𝑖

[

[

Δ𝐴
𝑖
(𝑡) 𝑥
𝑖
(𝑡) + Δ𝐴

𝑖𝜎𝑖
(𝑡) 𝑥
𝑖
(𝑡 − 𝜎

𝑖
(𝑡))

+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

Δ𝐴
𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))

]

]

≤ 𝑥
𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
𝑥
𝑖
(𝑡) + 2𝛼

𝑇

𝑖
(𝑡)𝑀
𝑇

𝑖
𝑀
𝑖
𝛼
𝑖
(𝑡)

+ 𝑥
𝑇

𝑖
(𝑡 − 𝜂
𝑖
(𝑡)) 𝐴

𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖𝜂𝑖
𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡)) ,

(9)
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where

𝛼
𝑖
(𝑡) = [𝑥

𝑖
(𝑡) 𝑥

𝑖
(𝑡 − 𝜎

𝑖
(𝑡)) 𝑥

𝑖1
(𝑡 − 𝜏

𝑖1
(𝑡)) ⋅ ⋅ ⋅ 𝑥

𝑖 𝑖−1
(𝑡 − 𝜏

𝑖 𝑖−1
(𝑡)) 𝑥

𝑖 𝑖+1
(𝑡 − 𝜏

𝑖 𝑖+1
(𝑡)) ⋅ ⋅ ⋅ 𝑥

𝑖𝑁
(𝑡 − 𝜏

𝑖𝑁
(𝑡)) 𝑥

𝑖
(𝑡 − 𝜂

𝑖
(𝑡))] ,

𝑀
𝑖
= [𝐸
𝑖1
𝐸
𝑖𝜎𝑖

𝐿
𝑖1
⋅ ⋅ ⋅ 𝐿

𝑖 𝑖−1
𝐿
𝑖 𝑖+1

⋅ ⋅ ⋅ 𝐿
𝑖𝑁

0] .

(10)

It follows from (8) and (9) that

�̇� (𝑥
𝑡
) =

𝑁

∑

𝑖=1

�̇�
𝑖
(𝑥
𝑡
) ≤

𝑁

∑

𝑖=1

𝛼
𝑇

𝑖
(𝑡) [Ξ
𝑖
+ 2𝑀

𝑇

𝑖
𝑀
𝑖
] 𝛼
𝑖
(𝑡) , (11)

where
𝑀
𝑖
= [𝐸
𝑖1
𝐸
𝑖𝜎𝑖

𝐿
𝑖1
⋅ ⋅ ⋅ 𝐿

𝑖 𝑖−1
𝐿
𝑖 𝑖+1

⋅ ⋅ ⋅ 𝐿
𝑖𝑁

0] ,

Ξ
𝑖
=

[

[

[

[

[

Ξ
𝑖

11
𝑃
𝑖
𝐴
𝑖𝜎𝑖

Ξ
𝑖

13
−𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖𝜂𝑖

∗ −𝑄
𝑖1

0 −𝐴
𝑇

𝑖𝜎𝑖

𝑃
𝑖
𝐴
𝑖𝜂𝑖

∗ ∗ Ξ
𝑖

33
Ξ
𝑖

34

∗ ∗ ∗ Ξ
𝑖

44

]

]

]

]

]

,

Ξ
𝑖

44
= −𝑄
𝑖2
+ 𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖𝜂𝑖
,

Ξ
𝑖

11
= 𝑃
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
+

1

1 − 𝑓
𝑖

𝑄
𝑖1
+

1

1 − 𝑔
𝑖

𝑄
𝑖2

+

1

1 − 𝑙
𝑗

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐺
𝑗𝑖
+ 𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
,

Ξ
𝑖

13
= [𝑃
𝑖
𝐴
𝑖1
⋅ ⋅ ⋅ 𝑃
𝑖
𝐴
𝑖 𝑖−1

𝑃
𝑖
𝐴
𝑖 𝑖+1

⋅ ⋅ ⋅ 𝑃
𝑖
𝐴
𝑖𝑁
] ,

Ξ
𝑖

33
= diag {−𝐺

𝑖1
, . . . , −𝐺

𝑖 𝑖−1
, −𝐺
𝑖 𝑖+1

, . . . , −𝐺
𝑖𝑁
} ,

Ξ
𝑖

34

= [−𝐴
𝑇

𝑖𝜂𝑖
𝑃𝑖𝐴𝑖1 ⋅ ⋅ ⋅ −𝐴

𝑇

𝑖𝜂𝑖
𝑃𝑖𝐴𝑖 𝑖−1 −𝐴

𝑇

𝑖𝜂𝑖
𝑃𝑖𝐴𝑖 𝑖+1 ⋅ ⋅ ⋅ −𝐴

𝑇

𝑖𝜂𝑖
𝑃𝑖𝐴𝑖𝑁]
𝑇

.

(12)

By the Schur Complement formula, it is easy to see that
LMI (5) implies thatΞ

𝑖
+2𝑀
𝑇

𝑖
𝑀
𝑖
< 0.Thenwe can obtain that

�̇�(𝑡) < 0 for all 𝛼
𝑖
(𝑡) ̸= 0 when 𝜔

𝑖
(𝑡) = 0. Therefore, under the

condition of Assumption 1, system (1) is asymptotically stable.
Next, consider the 𝐻

∞
performance of system (1) under

the zero initial condition. To this end, we introduce the
following index:

𝐽 =

𝑁

∑

𝑖=1

∫

∞

0

[𝑧
𝑇

𝑖
(𝑡) 𝑧
𝑖
(𝑡) − 𝛾

2

𝑖
𝜔
𝑇

𝑖
(𝑡) 𝜔
𝑖
(𝑡)] 𝑑𝑡. (13)

In view of the zero initial condition, it is easy to obtain
that

𝐽 =

𝑁

∑

𝑖=1

∫

∞

0

[𝑧
𝑇

𝑖
(𝑡) 𝑧
𝑖
(𝑡) − 𝛾

2

𝑖
𝜔
𝑇

𝑖
(𝑡) 𝜔
𝑖
(𝑡) + �̇�

𝑖
(𝑥
𝑡
)] 𝑑𝑡

+ 𝑉 (𝑥
𝑡
)



𝑡=0

−𝑉 (𝑥
𝑡
)



𝑡=∞

,

≤

𝑁

∑

𝑖=1

𝜉
𝑇

𝑖
(𝑡) [Π

𝑖
+ 2𝑀

𝑇

𝑖
𝑀
𝑖
] 𝜉
𝑖
(𝑡) ,

(14)

where

Π
𝑖
=

[

[

[

[

[

[

[

Π
𝑖

11
𝑃
𝑖
𝐴
𝑖𝜎𝑖

Ξ
𝑖

13
−𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖𝜂𝑖

Π
𝑖

15

∗ −𝑄
𝑖1

0 −𝐴
𝑇

𝑖𝜎𝑖

𝑃
𝑖
𝐴
𝑖𝜂𝑖

0

∗ ∗ Ξ
𝑖

33
Ξ
𝑖

34
0

∗ ∗ ∗ Ξ
𝑖

44
Π
𝑖

45

∗ ∗ ∗ ∗ Π
𝑖

55

]

]

]

]

]

]

]

,

𝜉
𝑖
= [

𝛼
𝑖
(𝑡)

𝜔
𝑖
(𝑡)
] , 𝑀

𝑖
= [𝑀
𝑖
0] ,

Π
𝑖

11
= 𝑃
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
+

1

1 − 𝑓
𝑖

𝑄
𝑖1
+

1

1 − 𝑔
𝑖

𝑄
𝑖2

+

1

1 − 𝑙
𝑗

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐺
𝑗𝑖
+ 𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
+ 𝐶
𝑇

𝑖1
𝐶
𝑖1
,

Π
𝑖

15
= 𝑃
𝑖
𝐵
𝑖1
+ 𝐶
𝑇

𝑖1
𝐷
𝑖11
, Π

𝑖

45
= −𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐵
𝑖1
,

Π
𝑖

55
= −𝛾
2

𝑖
𝐼 + 𝐷
𝑇

𝑖11
𝐷
𝑖11
.

(15)

It is obvious that Π
𝑖
+ 2𝑀

𝑇

𝑖
𝑀
𝑖
< 0 implies that 𝐽 < 0,

that is, ‖𝑇
𝑧𝑖𝜔𝑖
‖
∞

< 𝛾
𝑖
. By the Schur Complement formula, the

inequality Π
𝑖
+ 2𝑀

𝑇

𝑖
𝑀
𝑖
< 0 is equivalent to LMI (5). This

completes the proof.

3.2. 𝐻
∞

Output Feedback Synthesis. Consider the following
uncertain neutral interconnected systems composed of 𝑁
subsystems:

�̇�
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
�̇�
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))

= [𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)] 𝑥
𝑖
(𝑡)

+ [𝐴
𝑖𝜎𝑖
+ Δ𝐴
𝑖𝜎𝑖
(𝑡)] 𝑥
𝑖
(𝑡 − 𝜎

𝑖
(𝑡))

+ 𝐵
𝑖1
𝜔
𝑖
(𝑡) +

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

[𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
] 𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))

+ [𝐵
𝑖2
+ Δ𝐵
𝑖2
] 𝑢
𝑖
(𝑡) ,

𝑧
𝑖
(𝑡) = 𝐶

𝑖1
𝑥
𝑖
(𝑡) + 𝐷

𝑖11
𝜔
𝑖
(𝑡) + 𝐷

𝑖12
𝑢
𝑖
(𝑡) ,

𝑦
𝑖
(𝑡) = 𝐶

𝑖2
𝑥
𝑖
(𝑡) + 𝐷

𝑖21
𝜔
𝑖
(𝑡) ,

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , 𝑡 ∈ [−𝑙, 0] , 𝑖 = 1, 2, . . . , 𝑁,

(16)

where 𝑢
𝑖
(𝑡) ∈ R𝑚𝑖 and 𝑦

𝑖
(𝑡) ∈ R𝑞𝑖 are the control

input and the measurement output. 𝐵
𝑖2
, 𝐶
𝑖2
, 𝐷
𝑖12
, and 𝐷

𝑖21
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are known constant matrices of appropriate dimensions.
Δ𝐵
𝑖2
(𝑡) is the unknown matrix satisfying 𝐵

𝑖2
(𝑡) = 𝐷

𝑖
𝐹
𝑖
(𝑡)𝐸
𝑖2
,

where 𝐸
𝑖2

is the known constant matrix with appropriate
dimensions. The other signals are the same with system
(1).

Consider the following output feedback controller for
system (16):

̇
�̂�
𝑖
(𝑡) = 𝐴

𝑖𝐾
𝑥
𝑖
(𝑡) + 𝐵

𝑖𝐾
𝑦
𝑖
(𝑡) ,

𝑢
𝑖𝐾
(𝑡) = 𝐶

𝑖𝐾
𝑥
𝑖
(𝑡) ,

(17)

where 𝑥
𝑖
(𝑡) ∈ R𝑛𝑖×𝑛𝑖 is the controller state, and 𝐴

𝑖𝐾
, 𝐵
𝑖𝐾
, and

𝐶
𝑖𝑘
are the gains to be designed.
Then the closed-loop system composed of system (16)

with the controller (17) can be written as

̇
𝑥
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
�̇�
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))

= [𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)] 𝑥
𝑖
(𝑡)

+ [𝐴
𝑖𝜎𝑖
+ Δ𝐴
𝑖𝜎𝑖
(𝑡)] 𝑥
𝑖
(𝑡 − 𝜎

𝑖
(𝑡)) + 𝐵

𝑖1
𝜔
𝑖
(𝑡)

+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

[𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
] 𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) ,

𝑧
𝑖
(𝑡) = 𝐶

𝑖1
𝑥
𝑖
(𝑡) + 𝐷

𝑖11
𝜔
𝑖
(𝑡) ,

(18)

where

𝐴
𝑖
= [

𝐴
𝑖

𝐵
𝑖2
𝐶
𝑖𝑘

𝐵
𝑖𝐾
𝐶
𝑖2

𝐴
𝑖𝐾

] , 𝐴
𝑖𝜎𝑖
= [

𝐴
𝑖𝜎𝑖

0

0 0

] ,

𝐴
𝑖𝑗
= [

𝐴
𝑖𝑗
0

0 0

] , 𝐴
𝑖𝜂𝑖
= [

𝐴
𝑖𝜂𝑖

0

0 0

] ,

𝐴
𝑖
(𝑡) = [

Δ𝐴
𝑖
(𝑡) Δ𝐵

𝑖2
𝐶
𝑖𝐾

0 0
] = 𝐷

𝑖
𝐹
𝑖
(𝑡) 𝐸
𝑖1

= [

𝐷
𝑖

0
] 𝐹
𝑖
(𝑡) [𝐸
𝑖1
𝐸
𝑖2
𝐶
𝑖𝐾
] ,

Δ𝐴
𝑖𝜎𝑖
(𝑡) = [

Δ𝐴
𝑖𝜎𝑖
(𝑡) 0

0 0

] = 𝐷
𝑖
𝐹
𝑖
(𝑡) 𝐸
𝑖𝜎𝑖

= [

𝐷
𝑖

0
] 𝐹
𝑖
(𝑡) [𝐸
𝑖𝜎𝑖

0] ,

Δ𝐴
𝑖𝑗
(𝑡) = [

Δ𝐴
𝑖𝑗
(𝑡) 0

0 0

] = 𝐷
𝑖
𝐹
𝑖
(𝑡) 𝐿
𝑖𝑗

= [

𝐷
𝑖

0
]𝐹
𝑖
(𝑡) [𝐿 𝑖𝑗

0] ,

𝐵
𝑖1
= [

𝐵
𝑖1

𝐵
𝑖𝐾
𝐷
𝑖21

] , 𝐶
𝑖1
= [𝐶
𝑖1
𝐷
𝑖12
𝐶
𝑖𝐾
] ,

𝑥
𝑖
(𝑡) = [

𝑥
𝑖
(𝑡)

𝑥
𝑖
(𝑡)
] , 𝑧

𝑖
(𝑡) = 𝑧

𝑖
(𝑡) .

(19)

The following theorempresents the solvingmethod of the
dynamic 𝐻

∞
output feedback controller gains for uncertain

neutral interconnected systems (16).

Theorem 4. For given 𝛾
𝑖
> 0, consider system (16) with (2)

and (3). Under the condition of Assumption 1, if there exist
matrices 𝑋

𝑖
> 0, 𝑌

𝑖
> 0, 𝑄

𝑖1
> 0, 𝑄

𝑖2
> 0, 𝐺

𝑖𝑗
> 0, 𝐺

𝑗𝑖
> 0

and invertible matrices𝑁
𝑖
, matrices 𝐴

𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, such that Ψ

𝑖
=

[
𝑋𝑖 𝐼

∗ 𝑌𝑖

] > 0 and the following LMI holds,

Ωi

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω
i
11

Ω
i
12

Ω
i
13

Ω
i
14

Ω
i
15

Ω
i
16

Ω
i
17

Ω
i
18

Ω
i
19

Ω
i
110

∗ Ω
i
22

Ω
i
23

Ω
i
24

0 0 0 0 0 0

∗ ∗ Ω
i
33

Ω
i
34

0 0 0 0 0 0

∗ ∗ ∗ Ω
i
44

Ω
i
45

Ω
i
46

0 0 0 0

∗ ∗ ∗ ∗ Ω
i
55

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ω
i
66

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω
i
77

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω
i
88

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω
i
99

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −

1

2

I

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0

(20)

then there exists a dynamic output feedback controller such that
the closed-loop system (18) is asymptotically stable and satisfies
‖𝑇
𝑧𝑖𝜔𝑖
‖ < 𝛾

𝑖
with 𝐴

𝑖𝐾
= 𝑁
−1

𝑖
(𝐴
𝑖
− 𝑌
𝑖
𝐴
𝑖
𝑋
𝑖
− 𝑁
𝑖
𝐵
𝑖𝐾
𝐶
𝑖2
𝑋
𝑖
−

𝑌
𝑖
𝐵
𝑖2
𝐶
𝑖𝐾
𝑀
𝑇

𝑖
)𝑀
−𝑇

𝑖
, 𝐵
𝑖𝐾
= 𝑁
−1

𝑖
𝐵
𝑖
, 𝐶
𝑖𝐾
= 𝐶
𝑖
𝑀
−𝑇

𝑖
, where
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𝑀
𝑖
= (𝐼 − 𝑋

𝑖
𝑌
𝑖
)𝑁
−𝑇

𝑖
,

Ω
𝑖

11
= [

𝐴
𝑖
𝑋
𝑖
+ 𝑋
𝑖
𝐴
𝑇

𝑖
+ 𝐵
𝑖2
𝐶
𝑖
+ 𝐶
𝑇

𝑖
𝐵
𝑇

𝑖2
𝐴
𝑇

𝑖
+ 𝐴
𝑖

∗ 𝑌
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑌
𝑖
+ 𝐵
𝑖
𝐶
𝑖2
+ 𝐶
𝑇

𝑖2
𝐵
𝑇

𝑖

] ,

Ω
𝑖

12
= [

A
𝑖𝜎𝑖
+ 2𝑋
𝑖
𝐸
𝑇

𝑖1
𝐸
𝑖𝜎𝑖
+ 2𝐶
𝑇

𝑖
𝐸
𝑇

𝑖2
𝐸
𝑖𝜎𝑖

0

𝑌
𝑖
𝐴
𝑖𝜎𝑖
+ 2𝐸
𝑇

𝑖1
𝐸
𝑖𝜎𝑖

0

] ,

Ω
𝑖

13
= [

𝐴
𝑖1
+ 2𝑋
𝑖
𝐸
𝑇

𝑖1
𝐿
𝑖1
+ 2𝐶
𝑇

𝑖
𝐸
𝑇

𝑖2
𝐿
𝑖1
0 ⋅ ⋅ ⋅ 𝐴

𝑖 𝑖−1
+ 2𝑋
𝑖
𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖−1

+ 2𝐶
𝑇

𝑖
𝐸
𝑇

𝑖2
𝐿
𝑖 𝑖−1

0

𝑌
𝑖
𝐴
𝑖1
+ 2𝐸
𝑇

𝑖1
𝐿
𝑖1

0 ⋅ ⋅ ⋅ 𝑌
𝑖
𝐴
𝑖 𝑖−1

+ 2𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖−1

0

𝐴
𝑖 𝑖+1

+ 2𝑋
𝑖
𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖+1

+ 2𝐶
𝑇

𝑖
𝐸
𝑇

𝑖2
𝐿
𝑖 𝑖+1

0 ⋅ ⋅ ⋅ 𝐴
𝑖𝑁
+ 2𝑋
𝑖
𝐸
𝑇

𝑖1
𝐿
𝑖𝑁
+ 2𝐶
𝑇

𝑖
𝐸
𝑇

𝑖2
𝐿
𝑖𝑁

0

𝑌
𝑖
𝐴
𝑖 𝑖+1

+ 2𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖+1

0 ⋅ ⋅ ⋅ 𝑌
𝑖
𝐴
𝑖𝑁
+ 2𝐸
𝑇

𝑖1
𝐿
𝑖𝑁

0

] ,

Ω
𝑖

14
= −[

𝐴
𝑇

𝑖
𝐴
𝑖𝜂𝑖

0

𝐴
𝑇

𝑖
𝑌
𝑖
𝐴
𝑖𝜂𝑖
+ 𝐶
𝑇

𝑖2
𝐵
𝑇

𝑖
𝐴
𝑖𝜂𝑖

0

] , Ω
𝑖

15
= [

𝐵
𝑖1

𝑋
𝑖
𝐶
𝑇

𝑖1
+ 𝐶
𝑇

𝑖
𝐷
𝑇

𝑖12

𝑌
𝑖
𝐵
𝑖1
+ 𝐵
𝑖
𝐷
𝑖21

𝐶
𝑇

𝑖1

] ,

Ω
𝑖

16
= [

𝐷
𝑖
0

𝑌
𝑖
𝐷
𝑖
0
] , Ω

𝑖

17
= Ψ
𝑖
, Ω

𝑖

18
=
[

[

Ψ
𝑖
⋅ ⋅ ⋅ Ψ

𝑖
Ψ
𝑖
⋅ ⋅ ⋅ Ψ

𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁−1

]

]

, Ω
𝑖

19
= Ψ
𝑖
,

Ω
𝑖

110
= [

𝑋
𝑖
𝐸
𝑇

𝑖1
+ 𝐶
𝑇

𝑖
𝐸
𝑇

𝑖2

𝐸
𝑇

𝑖1

] , Ω
𝑖

22
= −𝑄
𝑖1
+ [

2𝐸
𝑇

𝑖𝜎𝑖

𝐸
𝑖𝜎𝑖

0

0 0

] , Ω
𝑖

24
= −[

𝐴
𝑇

𝑖𝜎𝑖

𝑌
𝑖
𝐴
𝑖𝜂𝑖

0

0 0

] ,

Ω
𝑖

23
= [

2𝐸
𝑇

𝑖𝜎𝑖

𝐿
𝑖1
0 ⋅ ⋅ ⋅ 2𝐸

𝑇

𝑖𝜎𝑖

𝐿
𝑖 𝑖−1

0 2𝐸
𝑇

𝑖𝜎𝑖

𝐿
𝑖 𝑖+1

0 ⋅ ⋅ ⋅ 2𝐸
𝑇

𝑖𝜎𝑖

𝐿
𝑖𝑁

0

0 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0

] ,

Ω
𝑖

33
= diag{−𝐺

𝑖1
+ [

2𝐿
𝑇

𝑖1
𝐿
𝑖1
0

0 0

] , . . . , −𝐺
𝑖 𝑖−1

+ [
2𝐿
𝑇

𝑖 𝑖−1
𝐿
𝑖 𝑖−1

0

0 0

] ,

−𝐺
𝑖 𝑖+1

+ [
2𝐿
𝑇

𝑖 𝑖+1
𝐿
𝑖 𝑖+1

0

0 0

] , . . . , −𝐺
𝑖𝑁
+ [

2𝐿
𝑇

𝑖𝑁
𝐿
𝑖𝑁

0

0 0

]} ,

Ω
𝑖

34
= −[

𝐴
𝑇

𝑖𝜂𝑖

𝑌
𝑖
𝐴
𝑖1
0 ⋅ ⋅ ⋅ 𝐴

𝑇

𝑖𝜂𝑖

𝑌
𝑖
𝐴
𝑖 𝑖−1

0 𝐴
𝑇

𝑖𝜂𝑖

𝑌
𝑖
𝐴
𝑖 𝑖+1

0 ⋅ ⋅ ⋅ 𝐴
𝑇

𝑖𝜂𝑖

𝑌
𝑖
𝐴
𝑖𝑁

0

0 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0

] ,

Ω
𝑖

44
= −𝑄
𝑖2
, Ω

𝑖

45
= −[

𝐴
𝑇

𝑖𝜂𝑖

𝑌
𝑖
𝐵
𝑖1
+ 𝐴
𝑇

𝑖𝜂𝑖

𝐵
𝑖
𝐷
𝑖21

0

0 0

] , Ω
𝑖

46
= −[

0 𝐴
𝑇

𝑖𝜂𝑖

𝑌
𝑖
𝐷
𝑖

0 0

] ,

Ω
𝑖

55
= [

−𝛾
2

𝑖
𝐼 𝐷
𝑇

𝑖11

∗ −𝐼

] , Ω
𝑖

66
= [

−𝐼

∗ −𝐼
] , Ω

𝑖

77
= 𝑄
𝑖1
− (1 − 𝑓

𝑖
) [

2𝐼 𝑌
𝑖

∗ 𝑁
𝑖
+ 𝑁
𝑇

𝑖

] ,

Ω
𝑖

88
= diag{𝐺

1𝑖
− (1 − 𝑙

1
) [

2𝐼 𝑌
𝑖

∗ 𝑁
𝑖
+ 𝑁
𝑇

𝑖

] , . . . , 𝐺
𝑖−1 𝑖

− (1 − 𝑙
𝑖−1
) [

2𝐼 𝑌
𝑖

∗ 𝑁
𝑖
+ 𝑁
𝑇

𝑖

] ,

𝐺
𝑖+1 𝑖

− (1 − 𝑙
𝑖+1
) [

2𝐼 𝑌
𝑖

∗ 𝑁
𝑖
+ 𝑁
𝑇

𝑖

] , . . . , 𝐺
𝑁𝑖
− (1 − 𝑙

𝑁
) [

2𝐼 𝑌
𝑖

∗ 𝑁
𝑖
+ 𝑁
𝑇

𝑖

]} ,

Ω
𝑖

99
= 𝑄
𝑖2
− (1 − 𝑔

𝑖
) [

2𝐼 𝑌
𝑖

∗ 𝑁
𝑖
+ 𝑁
𝑇

𝑖

] .

(21)

Applying Theorem 3 to the closed-loop system (18), then
system (18) is robustly asymptotically stable and satisfies
‖𝑇
𝑧𝑖𝜔𝑖
‖
∞

< 𝛾
𝑖
under the condition of Assumption 1, if there

exist matrices 𝑃
𝑖
> 0, 𝑄

𝑖1
> 0, 𝑄

𝑖2
> 0, 𝐺

𝑖𝑗
> 0, and 𝐺

𝑗𝑖
> 0

such that the LMI (5) holds, where𝐴
𝑖
, 𝐴
𝑖𝜎𝑖
, 𝐴
𝑖𝜂𝑖
, 𝐵
𝑖1
,𝐴
𝑖𝑗
,𝐶
𝑖1
,

𝐷
𝑖11
, 𝐷
𝑖
, 𝐸
𝑖𝜎𝑖
, and 𝐿

𝑖𝑗
are substituted with 𝐴

𝑖
, 𝐴
𝑖𝜎𝑖
, 𝐴
𝑖𝜂𝑖
, 𝐵
𝑖1
,

𝐴
𝑖𝑗
, 𝐶
𝑖1
,𝐷
𝑖11
,𝐷
𝑖
, 𝐸
𝑖𝜎𝑖
, and 𝐿

𝑖𝑗
, respectively.
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Firstly, decompose matrix 𝑃
𝑖
and its inverse as

𝑃
𝑖
= [

𝑌
𝑖
𝑁
𝑖

∗ 𝑊
𝑖

] , 𝑃
−1

𝑖
= [

𝑋
𝑖
𝑀
𝑖

∗ 𝑍
𝑖

] , (22)

where 𝑌
𝑖
, 𝑋
𝑖
∈ R𝑛𝑖 are positive definite matrices, and𝑀

𝑖
and

𝑁
𝑖
are invertible matrices. According to 𝑃−1

𝑖
𝑃
𝑖
= 𝐼, we have

𝑀
𝑖
𝑁
𝑇

𝑖
= 𝐼 − 𝑋

𝑖
𝑌
𝑖
. (23)

Define 𝐹
𝑖1
= [

𝑋𝑖 𝐼

𝑀
𝑇

𝑖
0
], 𝐹
𝑖2
= [
𝐼 𝑌𝑖

0 𝑁
𝑇 ], then it follows that

𝑃
𝑖
𝐹
𝑖1
= 𝐹
𝑖2
, 𝐹

𝑇

𝑖1
𝑃
𝑖
𝐹
𝑖1
= 𝐹
𝑇

𝑖2
𝐹
𝑖1
= [

𝑋
𝑖
𝐼

∗ 𝑌
𝑖

] > 0. (24)

Next, pre- and postmultiply the substitute of LMI (5) by
the matrix

diag {𝐹𝑇
𝑖1
, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼} (25)

and its transpose, respectively. By the Schur Complement
formula, the following LMI can be obtained:

Φ
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
𝑖

11
Φ
𝑖

12
Φ
𝑖

13
Φ
𝑖

14
Φ
𝑖

15
Φ
𝑖

16
Φ
𝑖

17
0 Φ

𝑖

19
Φ
𝑖

110
Φ
𝑖

111
Φ
𝑖

112

∗ Φ
𝑖

22
Φ
𝑖

23
Φ
𝑖

24
0 0 0 0 0 0 0 0

∗ ∗ Φ
𝑖

33
Φ
𝑖

34
0 0 0 0 0 0 0 0

∗ ∗ ∗ Φ
𝑖

44
Φ
𝑖

45
0 0 Φ

𝑖

48
0 0 0 0

∗ ∗ ∗ ∗ Φ
𝑖

55
Φ
𝑖

56
0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
𝑖

99
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
𝑖

1010
0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
𝑖

1111
0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −

1

2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (26)

where

Φ
𝑖

11
= 𝐹
𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖
𝐹
𝑖1
+ 𝐹
𝑇

𝑖1
𝐴

𝑇

𝑖
𝑃
𝑖
𝐹
𝑖1
,

Φ
𝑖

12
= 𝐹
𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖𝜎𝑖
+ 2𝐹
𝑇

𝑖1
𝐸

𝑇

𝑖1
𝐸
𝑖𝜎𝑖
,

Φ
𝑖

13

= [ 𝐹
𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖1
+ 2𝐹
𝑇

𝑖1
𝐸

𝑇

𝑖1
𝐿
𝑖1
⋅ ⋅ ⋅ 𝐹

𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖 𝑖−1

+ 2𝐹
𝑇

𝑖1
𝐸

𝑇

𝑖1
𝐿
𝑖 𝑖−1

𝐹
𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖 𝑖+1

+ 2𝐹
𝑇

𝑖1
𝐸

𝑇

𝑖1
𝐿
𝑖 𝑖+1

⋅ ⋅ ⋅ 𝐹
𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖𝑁
+ 2𝐹
𝑇

𝑖1
𝐸

𝑇

𝑖1
𝐿
𝑖𝑁
] ,

Φ
𝑖

14
= −𝐹
𝑇

𝑖1
𝐴

𝑇

𝑖
𝑃
𝑖
𝐴
𝑖𝜂𝑖
, Φ

𝑖

15
= 𝐹
𝑇

𝑖1
𝑃
𝑖
𝐵
𝑖1
,

Φ
𝑖

16
= 𝐹
𝑇

𝑖1
𝐶

𝑇

𝑖1
, Φ

𝑖

17
= 𝐹
𝑇

𝑖1
𝑃
𝑖
𝐷
𝑖
,

Φ
𝑖

19
= 𝐹
𝑇

𝑖1
, Φ

𝑖

110
= 𝐹
𝑇

𝑖1
,

Φ
𝑖

111
= 𝐹
𝑇

𝑖1
, Φ

𝑖

112
= 𝐹
𝑇

𝑖1
𝐸

𝑇

𝑖1
,

Φ
𝑖

22
= −𝑄
𝑖1
+ 2𝐸

𝑇

𝑖𝜎𝑖

𝐸
𝑖𝜎𝑖
, Φ

𝑖

24
= −𝐴

𝑇

𝑖𝜎𝑖

𝑃
𝑖
𝐴
𝑖𝜂𝑖
,

Φ
𝑖

23
= [2𝐸

𝑇

𝑖𝜎𝑖

𝐿
𝑖1
⋅ ⋅ ⋅ 2𝐸

𝑇

𝑖𝜎𝑖

𝐿
𝑖 𝑖−1

2𝐸

𝑇

𝑖𝜎𝑖

𝐿
𝑖 𝑖+1

⋅ ⋅ ⋅ 2𝐸

𝑇

𝑖𝜎𝑖

𝐿
𝑖𝑁
] ,

Φ
𝑖

33

= diag {−𝐺
𝑖1
+ 2𝐿

𝑇

𝑖1
𝐿
𝑖1
, . . . , −𝐺

𝑖 𝑖−1
+ 2𝐿

𝑇

𝑖 𝑖−1
𝐿
𝑖 𝑖−1
,

−𝐺
𝑖 𝑖+1

+ 2𝐿

𝑇

𝑖 𝑖+1
𝐿
𝑖 𝑖+1

, . . . , −𝐺
𝑖𝑁
+ 2𝐿

𝑇

𝑖𝑁
𝐿
𝑖𝑁
} ,

Φ
𝑖

34

= [−𝐴

𝑇

𝑖𝜂𝑖
𝑃
𝑖
𝐴
𝑖1
⋅ ⋅ ⋅ −𝐴

𝑇

𝑖𝜂𝑖
𝑃
𝑖
𝐴
𝑖 𝑖−1

−𝐴

𝑇

𝑖𝜂𝑖
𝑃
𝑖
𝐴
𝑖 𝑖+1

⋅ ⋅ ⋅ −𝐴

𝑇

𝑖𝜂𝑖
𝑃
𝑖
𝐴
𝑖𝑁
]

𝑇

,

Φ
𝑖

44
= −𝑄
𝑖2
, Φ

𝑖

45
= −𝐴

𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐵
𝑖1
,

Φ
𝑖

48
= −𝐴

𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐷
𝑖
, Φ

𝑖

55
= −𝛾
2

𝑖
𝐼,

Γ
𝑖

56
= 𝐷

𝑇

𝑖11
, Φ

𝑖

99
= − (1 − 𝑓

𝑖
) 𝑄
−1

𝑖1
,

Φ
𝑖

1111
= − (1 − 𝑔

𝑖
) 𝑄
𝑖2
,

Φ
𝑖

1010
= diag {− (1 − 𝑙

1
) 𝐺
1𝑖
, . . . , − (1 − 𝑙

𝑖−1
) 𝐺
𝑖−1 𝑖

,

− (1 − 𝑙
𝑖+1
) 𝐺
𝑖+1 𝑖

, . . . , − (1 − 𝑙
𝑁
) 𝐺
𝑁𝑖
} .

(27)
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By Lemma 2, we have

−𝐹
𝑇

𝑖2
𝑄
−1

𝑖1
𝐹
𝑖2
− 𝑄
𝑖1
≤ −𝐹
𝑇

𝑖2
− 𝐹
𝑖2
,

−𝐹
𝑇

𝑖2
𝑄
−1

𝑖2
𝐹
𝑖2
− 𝑄
𝑖2
≤ −𝐹
𝑇

𝑖2
− 𝐹
𝑖2
,

− 𝐹
𝑇

𝑖2
𝐺
−1

𝑗𝑖
𝐹
𝑖2
− 𝐺
𝑗𝑖
≤ −𝐹
𝑇

𝑖2
− 𝐹
𝑖2
,

𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑗 ̸= 𝑖.

(28)

Pre- andpostmultiplying the inequality (26) by thematrix

diag {𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐹𝑇
𝑖2
, 𝐹
𝑇

𝑖2
, 𝐹
𝑇

𝑖2
, 𝐼} , (29)

and its transpose, respectively, and utilizing (28), and denot-
ing

𝐴
𝑖
= 𝑌
𝑖
𝐴
𝑖
𝑋
𝑖
+ 𝑁
𝑖
𝐵
𝑖𝐾
𝐶
𝑖2
𝑋
𝑖
+ 𝑌
𝑖
𝐵
𝑖2
𝐶
𝑖𝐾
𝑀
𝑇

𝑖
+ 𝑁
𝑖
𝐴
𝑖𝐾
𝑀
𝑇

𝑖
,

𝐵
𝑖
= 𝑁
𝑖
𝐵
𝑖𝐾
, 𝐶

𝑖
= 𝐶
𝑖𝐾
𝑀
𝑇

𝑖
,

(30)

one can obtain Theorem 4 immediately. This completes the
proof.

Algorithm 5. Given any solution of the LMI (20) in Theo-
rem 4, a corresponding controller of the form (17) will be
constructed as follows.

(i) Utilizing the two positive definite solutions𝑋
𝑖
, 𝑌
𝑖
and

the invertible matrix 𝑁
𝑖
; compute the invertible 𝑀

𝑖

satisfying (23).

(ii) Utilizing the matrices 𝑀
𝑖
and 𝑁

𝑖
obtained above;

compute the gains 𝐴
𝑖𝐾
, 𝐵
𝑖𝐾
, and 𝐶

𝑖𝐾
according to

(30).

4. Illustrative Example

Consider system (16) composed of a three-order subsystem
and a two-order subsystem with the following parameters:

𝐴
1
=
[

[

0.3 −1.50.8

−0.9 −23.5 5.6

0.5 0.9 −25.3

]

]

, 𝐵
11
=
[

[

−0.1 −0.2

−0.3 0.2

0.1 −0.1

]

]

,

𝐵
12
=
[

[

0.2 0.5

−0.1 −0.7

−0.1 0.2

]

]

, 𝐴
1𝜎1

=
[

[

−0.1 0.3 −0.1

0.1 −0.2 −0.3

0.2 0.4 0.2

]

]

,

𝐴
1𝜂1

=
[

[

0.1 −0.3 −0.1

0.1 0.5 −0.1

0.2 0.1 −0.5

]

]

, 𝐴
12
=
[

[

−0.1 0.1

−0.1 0.2

−0.6 −0.4

]

]

,

𝐷
1
=
[

[

0.01 0.5 −0.01

−0.1 0 0

0 0.1 0

]

]

, 𝐸
11
=
[

[

−0.1 −0.1 0.1

−0.1 0.2 0.1

0.1 −0.1 −0.2

]

]

,

𝐿
12
=
[

[

−0.01 0.1

0.01 −0.2

0.01 −0.2

]

]

, 𝐸
1𝜎1

=
[

[

0.1 0.1 −0.1

−0.1 −0.2 −0.1

−0.1 −0.1 0.1

]

]

,

𝐸
12
=
[

[

−0.1 −0.3

−0.1 0.1

−0.4 0.2

]

]

, 𝐶
11
= [

−0.4 −0.1 0.1

−0.1 −0.2 0.3
] ,

𝐷
111

= [

−0.1 0.1

0.01 −0.1
] , 𝐷

112
= [

0.1 −0.1

−0.1 0.3
] ,

𝐶
12
= [

−0.1 −0.1 −0.1

0.5 0.3 −1.4
] , 𝐷

121
= [

−0.2 −0.1

0.1 0.1
] ,

𝜎
1
(𝑡) = 0.1 (2 + sin (𝑡)) , 𝜂

1
(𝑡) = 0.2 (1 + cos (𝑡)) ,

𝐴
2
= [

−15.1 0.1

−0.7 −5.4
] , 𝐴

2𝜎2
= [

−0.6 −0.3

−0.4 0.1
] ,

𝐴
2𝜂2

= [

−0.2 0.2

0.1 −0.1
] , 𝐵

21
= [

−0.1

−0.1
] ,

𝐴
21
= [

0.1 −0.1 −0.1

−0.1 0.1 0.1
] , 𝐵

22
= [

0.5

0.1
] ,

𝐷
2
= [

0.1 0.4

−0.1 0.1
] , 𝐸

21
= [

−0.1 0.1

0.2 −0.1
] ,

𝐸
2𝜎2

= [

−0.1 −0.1

−0.1 0.1
] , 𝐸

22
= [

−0.1

0.1
] ,

𝐿
21
= [

−0.01 0.01 −0.01

−0.01 0.02 0.01
] , 𝐶

21
= [−0.1 0.8] ,

𝐷
211

= 0.13, 𝐷
221

= −0.53,

𝐶
22
= [0.1 0.5] , 𝐷

212
= 0.16,

𝜎
2
(𝑡) = 0.2 (1 + cos (𝑡)) ,

𝜂
2
(𝑡) = 0.1 (2 + cos (𝑡)) ,

𝜏
21
(𝑡) = 0.2 (2 + sin (𝑡)) ,

𝜏
12
(𝑡) = 0.1 (1 + cos (𝑡)) ,

𝛾
1
= 0.5, 𝛾

2
= 0.3.

(31)

Using the above parameters and applying Matlab Soft-
ware to solving LMI (20), we can obtain the following results:

𝑋
1
=
[

[

0.0947 0.5569 −0.1173

0.5569 6.1762 0.5942

−0.1173 0.5942 7.2277

]

]

,

𝑌
1
=
[

[

0.2448 −0.0612 0.2138

−0.0612 0.1830 −0.0255

0.2138 −0.0255 0.2034

]

]

,
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𝑁
1
=
[

[

1.2558 −0.0000 0.0000

−0.0000 1.2558 −0.0000

0.0000 −0.0000 1.2558

]

]

× 10
5

,

𝑋
2
= [

4.4043 0.4772

0.4772 1.4044
] , 𝑌

2
= [

1.4996 1.4523

1.4523 8.4219
] ,

𝑁
2
= [

1.2075 0.0001

0.0001 1.2078
] × 10

5

,

𝐴
1
=
[

[

−1.4345 −2.7721 5.7617

−1.2489 −9.1781 1.1119

0.3361 3.1163 −5.0939

]

]

,

𝐶
1
= [

−1.6597 −1.9990 −0.3384

−1.7543 0.5932 1.5744
] ,

𝐵
1
=
[

[

−1.8297 −4.1087

0.3341 −0.3560

−0.9167 −0.6854

]

]

, 𝐴
2
= [

0.5829 −1.2895

1.5056 −5.9999
] ,

𝐵
2
= [

−1.1894

−2.1534
] , 𝐶

2
= [−10.0067 −3.6127] .

(32)

Using the obtained solutions 𝑋
1
, 𝑌
1
, 𝑁
1
, 𝑋
2
, 𝑌
2
, and 𝑁

2

to solve (23), we have

𝑀
1
=
[

[

0.0825 −0.0079 0.0014

0.0091 −0.0064 −0.0066

−0.1178 0.0054 −0.0342

]

]

× 10
−4

,

𝑀
2
= [

−0.5215 −0.8623

−0.2281 −0.9538
] × 10

−4

.

(33)

Using the above solutions𝑀
1
,𝑁
1
,𝑀
2
, and𝑁

2
to compute

𝐴
1𝐾
, 𝐵
1𝐾
, 𝐶
1𝐾
, 𝐴
2𝐾
, 𝐵
2𝐾
, and 𝐶

2𝐾
according to (30), the

following results are obtained:

𝐴
1𝐾
=
[

[

5.6151 65.5141 −14.4781

−33.1939 −343.0572 85.8446

3.9271 29.4768 −64.3063

]

]

,

𝐵
1𝐾
=
[

[

−0.1457 −0.3272

0.0266 −0.0283

−0.0730 −0.0546

]

]

× 10
−4

,

𝐶
1𝐾
= [

0.0683 2.8751 0.3203

−0.4408 −2.2598 0.6995
] × 10

6

,

𝐴
2𝐾
= [

−25.1345 3.8472

−24.1933 −1.0036
] , 𝐵

2𝐾
= [

−0.0985

−0.1783
] × 10

−4

,

𝐶
2𝐾
= [2.1380 −0.1326] × 10

5

.

(34)

When 𝐹
1
(𝑡) = diag{sin(𝑡), sin(𝑡), sin(𝑡)} and 𝐹

2
(𝑡) =

diag{cos(𝑡), cos(𝑡)}, the simulation results are shown in Fig-
ures 1–4 based on the above parameters. From Figures 1 and
2, one can see that the uncertain interconnected systems of
neutral type (16)without controllers are not convergent. From
Figures 3 and 4, one can see that the uncertain interconnected
systems of neutral type (16) are indeed well stabilized.
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Figure 1: State response of the first open-loop subsystem.
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ex
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Figure 2: State response of the second open-loop subsystem.

5. Conclusion

The 𝐻
∞

decentralized control problem via output feedback
for uncertain neutral interconnected systems with time-
varying delays is complex and challenging. Developing a
novel mathematical technique for treating the nonlinear
interconnection variable matrices, a sufficient condition of
existing anticipated controller is obtained in terms of LMIs
based on Lyapunov stability theory, which not only depends
on the sizes of delays but also on the information of deriva-
tives.The illustrative example shows that the results obtained
in this paper are effective.
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Figure 3: State response of the first closed-loop subsystem.
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Figure 4: State response of the second closed-loop subsystem.
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