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Lie symmetry method is performed for the nonlinear Jaulent-Miodek equation. We will find the symmetry group and optimal
systems of Lie subalgebras. The Lie invariants associated with the symmetry generators as well as the corresponding similarity
reduced equations are also pointed out. And conservation laws of the J-M equation are presented with two steps: firstly, finding
multipliers for computation of conservation laws and, secondly, symbolic computation of conservation laws will be applied.

1. Introduction

The Jaulent-Miodek equation (J-M) is given by
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The coupled system of (1) is associated with the J-
M spectral problem [1]. The relation between this system
and Euler-Darboux equation was found by Matsuno [2]. In
recent years, much work associated with the J-M equation
has been done [3–5]. The symmetry group method plays a
fundamental role in the analysis of differential equations.The
theory of Lie symmetry groups of differential equations called
classical Lie method was first developed by Lie [6] at the end
of the nineteenth century. Nowadays, the application of Lie
transformations group theory for constructing the solutions
of nonlinear partial differential equations (PDEs) is regarded
as one of the most active fields of research in the theory of
nonlinear PDEs and applications.

Many PDEs in the applied sciences and engineering are
continuity equations which express conservation of mass,
momentum, energy, or electric charge. Such equations occur

in, for example, fluid mechanics, particle and quantum
physics, plasma physics, elasticity, gas dynamics, electromag-
netism, magnetohydrodynamics, nonlinear optics, and so
forth. In the study of PDEs, conservation laws are important
for investigating integrability and linearizationmappings and
for establishing existence and uniqueness of solutions. They
are also used in the analysis of stability and global behavior of
solutions [7–10].

The present paper is organized as follows. In Section 1,
we obtain the symmetry of (1) and Lie symmetry groups
of J-M equation are found. In Section 2, we construct the
optimal system of one-dimensional subalgebras of (1). Lie
invariants and similarity reduced equations corresponding to
the infinitesimal symmetries of (1) are obtained in Section 3.
In Section 4, the conservation laws of (1) are obtained with
finding multipliers, and finally some new conservation laws
of (1) are obtained with symbolic computation of conserva-
tion laws.

2. Lie Symmetries of the J-M Equation

In this section, we draw your attention to the general
procedure for determining symmetries for J-M equation;
see [11–13]. We consider the one parameter Lie group of
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Table 1: The commutator table.
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infinitesimal transformations on (𝑥1 = 𝑥, 𝑥2 = 𝑡, 𝑢
1
= 𝑢, 𝑢

2
=

V),

𝑥 = 𝑥 + 𝑠𝜉
1
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2
) ,
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2
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2
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(2)

where 𝑠 is the group parameter and 𝜉1, 𝜉2, 𝜑1, and 𝜑2 are the
infinitesimals of the transformations for the independent and
dependent variables, respectively. The associated vector field
is in the following form:

𝑉 = 𝜉
1
(𝑡, 𝑥, 𝑢, V) 𝜕

𝑡
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2
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(3)

The Lie algebra g of infinitesimal symmetry of (1) is spanned
by three vector fields:
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The commutation relations of the 3-dimensional Lie algebra g
spanned by the vector fields𝑋

1
, 𝑋
2
, 𝑋
3
are shown in Table 1.

Theorem 1. If 𝑢 = 𝑓(𝑡, 𝑥) and V = 𝑔(𝑡, 𝑥) are a solution of (1),
then so are the functions

𝐺
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(5)

3. Optimal System of the
Jaulent-Miodek Equation

In this section, we obtain the optimal system and reduced
forms of (1) by using symmetry group properties obtained in

Table 2: Adjoint representation of the infinitesimal generators.
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previous section. Since the original partial differential equa-
tion has two independent variables, this partial differential
equation transforms into the ordinary differential equation
after reduction.

A well-known standard procedure [11] allows us to
classify all the one-dimensional subalgebras into subsets of
conjugate subalgebras. This involves constructing the adjoint
representation group, which introduces a conjugate relation
in the set of all one-dimensional subalgebras. In fact, for
one-dimensional subalgebras, the classification problem is
essentially the same as the problem of classifying the orbits
of the adjoint representation. Since each one-dimensional
subalgebra is determined by nonzero vector in g, this problem
is attacked by the naive approach of taking a general element
𝑉 in g and subjecting it to various adjoint transformations so
as to “simplify” it as much as possible.Thus, we will deal with
the construction of the optimal system of subalgebras of g. To
compute the adjoint representation, we use the Lie series

Ad (exp (𝜀 (𝑋
𝑖
))𝑋
𝑗
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𝑗
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(6)

where [𝑋
𝑖
, 𝑋
𝑗
] is the commutator for the Lie algebra, 𝜀 is a

parameter, and 𝑖, 𝑗 = 1, 2, 3. Then we have Table 2.

Theorem 2. An optimal system of one-dimensional Lie alge-
bras of the J-M equation is provided by (1) 𝑋

3
, (2) 𝛼𝑋

1
+ 𝑋
2
,

and (3) 𝑋
1
, where 𝛼 ∈ R and 𝛼 ̸= 0.

Proof. Let g be the symmetry group of (1), with adjoint
representation determined in Table 2, and

𝑋 = 𝑎
1
𝑋
1
+ 𝑎
2
𝑋
2
+ 𝑎
3
𝑋
3

(7)

is a nonzero vector field of g. We will simplify as many of
the coefficients of 𝑎

𝑖
, 𝑖 = 1, 2, 3, as possible through judicious

applications of adjoint maps to𝑋.

Case 1. Suppose first that 𝑎
3

̸= 0. Scaling 𝑋 if necessary, we
can assume that 𝑎

3
= 1. Referring to Table 2, if we act on such

a 𝑋 by Ad(exp(𝑎
1
𝑋
1
)) and Ad(exp(3𝑎

2
𝑋
2
)), respectively, we

can make the coefficients of V
1
and 𝑋

2
vanish. Thus, every

one-dimensional subalgebra generated by a 𝑋 with 𝑎
3

̸= 0 is
equivalent to the subalgebra spanned by𝑋

3
.

Case 2. The remaining one-dimensional subalgebras are
spanned by vectors of the above form with 𝑎

3
= 0. If 𝑎

2
̸= 0,

we can scale to make 𝑎
2

= 1. Referring to Table 2, we
cannot do anything in this case.Thus, every one-dimensional
subalgebra generated by a V with 𝑎

3
= 0 and 𝑎

2
̸= 0 is
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equivalent to the subalgebra spanned by 𝛼𝑋
1
+ 𝑋
2
, where 𝛼

is arbitrary constant.

Case 3. Consider 𝑎
3
= 0, 𝑎

2
= 0, and 𝑎

1
̸= 0. Thus, every one-

dimensional subalgebra generated by 𝑋 is equivalent to the
subalgebra spanned by𝑋

1
.

4. Symmetry Reduction of the J-M Equation

We can now compute the invariants associated with the sym-
metry operators by integrating the characteristic equations.
For example, for the operator characteristic equation 𝑋

3
=

𝑡𝜕
𝑡
+ (1/3)𝑥𝜕

𝑥
− (2/3)𝑢𝜕
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=
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The corresponding invariants are 𝜆 = 𝑥𝑡
−1/3, 𝑈 = 𝑢𝑡

2/3, and
𝑉 = V𝑡1/3. Therefore, solution of our equation in this case is
𝑢 = 𝑈𝑡

−2/3
, V = 𝑉𝑡

−1/3. Substituting derivatives of 𝑢 and V in
terms of 𝜆, 𝑈, and 𝑉 into (1), the coupled system of ordinary
differential equation is obtained as follows:

4𝑈 + 2𝜆𝑈
𝜆
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𝜆𝜆𝜆
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𝜆𝜆𝜆
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2
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+
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𝜆
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𝑉
2
𝑉
𝜆
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and the corresponding invariants associated with the above
operator are 𝜆 = 𝑥 − 𝛼𝑡, 𝑈 = 𝑢, and 𝑉 = V.

5. Conservation Laws for the J-M Equation

To deal with the conservation laws, many methods, such
as the method based on the Noethers theorem and the
multiplier method, are derived by the relationship between
the conserved vector of the PDE and the Lie-Bäcklund
symmetry generators of the PDE, the direct method, and so
forth [7, 8, 11].

Definition 3. A local conservation law of the PDE system

Δ ] (𝑥, 𝑢
(𝑛)
) = 0, ] = 1, . . . , 𝑙, (11)

involving 𝑥 = 𝑥(𝑥
1
, . . . , 𝑥

𝑝
), 𝑢̃ = (𝑢

1
, . . . , 𝑢

𝑞
), and the

derivatives of 𝑢with respect to𝑥 up to 𝑛, where𝑢(𝑛) represents
all the derivatives of 𝑢 of all orders from 0 to 𝑛, is a divergence
expression

𝐷
𝑖
Φ
𝑖
[𝑢] = 𝐷

1
Φ
1
[𝑢] + ⋅ ⋅ ⋅ + 𝐷

𝑛
Φ
𝑛
[𝑢] = 0 (12)

holding for all solutions of the system (11). Φ
𝑖
[𝑢] =

Φ
𝑖
(𝑥, 𝑢, 𝜕𝑢, . . . , 𝜕

𝑟

𝑢
), 𝑖 = 1, . . . , 𝑛, are called fluxes of the

conservation law, and the highest-order derivative (r) present
in the fluxesΦ𝑖[𝑢] is called the order of a conservation law [8].

Remark 4. If one of the independent variables of (11) is time
t, the conservation law (12) takes the form

𝐷
𝑡
Ψ [𝑢] + divΦ [𝑢] = 0, (13)

where divΦ[𝑢] = 𝐷
𝑖
Φ
𝑖
[𝑢] = 𝐷

1
Φ
1
[𝑢] + ⋅ ⋅ ⋅ + 𝐷

𝑛
Φ
𝑛
[𝑢] is

a spatial divergence and 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛−1
) are 𝑛 − 1 spatial

variables. Here Ψ[𝑢] is referred to as a density, and Φ𝑖[𝑢] as
spatial fluxes of the conservation law (13).

5.1. Computation of Conservation Laws with Finding Multi-
plier. In this study, we derive the conservation law from the
multipliermethod. In particular, a set ofmultipliers {Λ ]}

𝑙

]=1 =

{Λ ](𝑥, 𝑈, 𝜕𝑈, . . . , 𝜕
𝑟

𝑈
)}
𝑙

]=1 yields a divergence expression for
the system (11) if the identity

Λ ] [𝑈] Δ ] [𝑈] ≡ 𝐷
𝑖
Φ
𝑖
[𝑈] (14)

holds identically for arbitrary functions 𝑈(𝑥). Then, on the
solutions 𝑈(𝑥) = 𝑢(𝑥) of the system (11), if Δ ][𝑈] is
nonsingular, one has local conservation law Λ ][𝑢]Δ ][𝑢] ≡

𝐷
𝑖
Φ
𝑖
[𝑢] = 0.

Definition 5. The Euler operator with respect to 𝑈
𝑗 is the

operator defined by

𝐸
𝑈
𝑗 =

𝜕

𝜕𝑈
𝑗
− 𝐷
𝑖

𝜕

𝜕𝑈
𝑗

𝑖

+ ⋅ ⋅ ⋅ + (−1)
𝑠
𝐷
𝑖1
⋅ ⋅ ⋅ 𝐷
𝑖𝑠

𝜕

𝜕𝑈
𝑗

𝑖1⋅⋅⋅𝑖𝑠

+ ⋅ ⋅ ⋅

(15)

for 𝑗 = 1, . . . , 𝑞 [8].

Theorem 6. A set of nonsingular local multipliers
{Λ ](𝑥, 𝑈, 𝜕𝑈, . . . , 𝜕

𝑟

𝑈
)}
𝑙

]=0 yields a local conservation law
for the system Δ ](𝑥, 𝑢

(𝑛)
) if and only if the set of identities

𝐸
𝑈
𝑗 (Λ ] (𝑥, 𝑈, 𝜕𝑈, . . . , 𝜕

𝑟
𝑈)Δ ] (𝑥, 𝑢

(𝑛)
)) = 0, 𝑗 = 1, . . . , 𝑞,

(16)

holds for arbitrary functions 𝑈(𝑥) (Theorem 1.3.3, [8]).

The set of (16) yields the set of linear determining
equations to find all sets of local conservation
law multipliers of the system (11). Now, we
consider all local conservation law multipliers of the
forms Λ

1
= 𝛼(𝑡, 𝑥, 𝑢, V, 𝑢

𝑡
, V
𝑡
, 𝑢
𝑥
, V
𝑥
, 𝑢
𝑡𝑡
, V
𝑡𝑡
, 𝑢
𝑥𝑥
, V
𝑥𝑥
) and
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Λ
2

= 𝛽(𝑡, 𝑥, 𝑢, V, 𝑢
𝑡
, V
𝑡
, 𝑢
𝑥
, V
𝑥
, 𝑢
𝑡𝑡
, V
𝑡𝑡
, 𝑢
𝑥𝑥
, V
𝑥𝑥
) of (1). The

determining equation (16) for J-M equation is

𝐸
𝑢
[ Λ
1
(𝑢
𝑡
+ 𝑢
𝑥𝑥𝑥

+

3

2

VV
𝑥𝑥𝑥

+

9

2

V
𝑥
V
𝑥𝑥

−6𝑢𝑢
𝑥
− 6𝑢VV

𝑥
−

3

2

V2𝑢
𝑥
)

+Λ
2
(V
𝑡
+ V
𝑥𝑥𝑥

− 6V𝑢
𝑥
− 6𝑢V

𝑥
−

15

2

V2V
𝑥
)] ≡ 0,

𝐸V [Λ 1 (𝑢𝑡 + 𝑢𝑥𝑥𝑥 +
3

2

VV
𝑥𝑥𝑥

+

9

2

V
𝑥
V
𝑥𝑥

− 6𝑢𝑢
𝑥
− 6𝑢VV

𝑥
−

3

2

V2𝑢
𝑥
)

+ Λ
2
(V
𝑡
+ V
𝑥𝑥𝑥

− 6V𝑢
𝑥
− 6𝑢V

𝑥
−

15

2

V2V
𝑥
)] ≡ 0,

(17)

where 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡) are arbitrary functions. Equation (17)
splits with respect to third order derivatives of 𝑢 to yield the
determining PDE system whose solutions are the sets of local
multipliers of all nontrivial local conservation laws of the J-M
equation.

The solution of the determining system (17) for J-M
equation is given by

𝛼 = 𝑐
1
𝑥 + 6𝑐

1
𝑡𝑢 +

9

2

𝑐
1
𝑡V2 + 𝑐

2
𝑢V + 𝑐

3
𝑢
1/6
𝑐
2
V
𝑥𝑥

+

5

12

𝑐
2
V3 +

3

4

𝑐
3
V2 + 𝑐
4
V + 𝑐
5
,

𝛽 = −

1

6

𝑐
2
𝑢
𝑥𝑥
+

1

2

𝑐
1
𝑥V −

5

24

𝑐
2
V2
𝑥
−

5

12

V
𝑥𝑥
− 𝑐
2
𝑉 −

3

2

𝑐
1
𝑡V
𝑥𝑥

−

1

4

𝑐
3
V
𝑥𝑥
+

15

4

𝑐
1
𝑡V3 + 9𝑐

1
𝑡𝑢V +

1

2

𝑐
2
𝑢
2
+

5

4

𝑐
2
𝑢V2

+

3

2

𝑐
3
𝑢V + 𝑐

4
𝑢 +

35

96

𝑐
2
V4 +

5

8

𝑐
3
V3 +

3

4

𝑐
4
V2 +

1

2

𝑐
5
V + 𝑐
6
,

(18)

where 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑐
5
, and 𝑐

6
are arbitrary constants. So local

multipliers are given by

(1) 𝛼 = 0, 𝛽 = 1,

(2) 𝛼 = 1, 𝛽 =

1

2

V,

(3) 𝛼 = V, 𝛽 = 𝑢 +

3

4

V2,

(4) 𝛼 = 𝑢 +

3

4

V2, 𝛽 = −

1

4

V
𝑥𝑥
+

3

2

𝑢V +
5

8

V3,

(5) 𝛼 = 𝑥 + 6𝑡𝑢 +

9

2

𝑡V2,

𝛽 =

1

2

𝑥V −
3

2

𝑡V
𝑥𝑥
+

15

4

𝑡V3 + 9𝑡𝑢V,

(6) 𝛼 = 𝑢V −
1

6

V
𝑥𝑥
+

5

12

V3,

𝛽 = −

1

6

𝑢
𝑥𝑥
−

5

24

V2
𝑥
−

5

12

VV
𝑥𝑥
+

1

2

𝑢
2
+

5

4

𝑢V2 +
35

96

V4.

(19)

Multipliers 𝛼 and 𝛽 determine a nontrivial local conservation
law𝐷

𝑡
Ψ + 𝐷

𝑥
Φ = 0 with the characteristic form

𝐷
𝑡
Ψ + 𝐷

𝑥
Φ ≡ 𝛼(𝑢

𝑡
+ 𝑢
𝑥𝑥𝑥

+

3

2

VV
𝑥𝑥𝑥

+

9

2

V
𝑥
V
𝑥𝑥

− 6𝑢𝑢
𝑥
− 6𝑢VV

𝑥
−

3

2

V2𝑢
𝑥
)

+ 𝛽(V
𝑡
+ V
𝑥𝑥𝑥

− 6V𝑢
𝑥
− 6𝑢V

𝑥
−

15

2

V2V
𝑥
) .

(20)

The total divergence operator must be inverted to calculate
the conserved quantities Φ and Ψ. To do this, we need to
integrate (by parts) one of the expressions inmultidimensions
involving arbitrary functions and its derivatives, which is a
difficult task. The homotopy operator [14] is a powerful and
useful algorithmic tool (explicit formula) that originates from
homological algebra and variational bicomplexes.

Definition 7. The 2-dimensional homotopy operator is a
vector operator with two components, (𝐻(𝑥)u(𝑥,𝑡)𝑓,𝐻

(𝑡)

u(𝑥,𝑡)𝑓),
where

𝐻
(𝑥)

u(𝑥,𝑡)𝑓 = ∫

1

0

(

𝑞

∑

𝑗=0

𝐼
(𝑥)

𝑢
𝑗 𝑓) [𝜆u] 𝑑𝜆

𝜆

,

𝐻
(𝑡)

u(𝑥,𝑡)𝑓 = ∫

1

0

(

𝑞

∑

𝑗=0

𝐼
(𝑡)

𝑢
𝑗 𝑓) [𝜆u] 𝑑𝜆

𝜆

.

(21)

The x-integrand, 𝐼(𝑥)
𝑢(𝑥,𝑡)

𝑗𝑓, is given by

𝐼
(𝑥)

𝑢
𝑗 𝑓 =

𝑀
𝑗

1

∑

𝑘1=1

𝑀
𝑗

2

∑

𝑘2=0

(

𝑘1−1

∑

𝑖1=0

𝑘2

∑

𝑖2=0

𝐵
(𝑥)
𝑢
𝑗

𝑥
𝑖1𝑥
𝑖2
(−𝐷
𝑥
)
𝑘1−𝑖1−1

× (−𝐷
𝑡
)
𝑘2−𝑖2

)

𝜕𝑓

𝜕𝑢
𝑗

𝑥
𝑘1 𝑡
𝑘2

,

(22)

where𝑀𝑗
1
,𝑀
𝑗

2
are the order of 𝑓 in 𝑢 to 𝑥 and 𝑡, respectively,

with combinatorial coefficient 𝐵(𝑥) = 𝐵(𝑖
1
, 𝑖
2
, 𝑘
1
, 𝑘
2
), where

𝐵 (𝑖
1
, 𝑖
2
, 𝑘
1
, 𝑘
2
) =

(
𝑖1+𝑖2

𝑖1
) (
𝑘1+𝑘2−𝑖1−𝑖2−1

𝑘1−𝑖1−1
)

(
𝑘1+𝑘𝑖2

𝑘1
)

. (23)

Similarly, t-integrand, 𝐼(𝑡)
𝑢(𝑥,𝑡)

𝑗𝑓, defined as

𝐼
(𝑡)

𝑢
𝑗 𝑓 =

𝑀
𝑗

1

∑

𝑘1=0

𝑀
𝑗

2

∑

𝑘2=1

(

𝑘1

∑

𝑖1=0

𝑘2−1

∑

𝑖2=0

𝐵
(𝑡)
𝑢
𝑗

𝑥
𝑖1𝑥
𝑖2
(−𝐷
𝑥
)
𝑘1−𝑖1

× (−𝐷
𝑡
)
𝑘2−𝑖2−1

)

𝜕𝑓

𝜕𝑢
𝑗

𝑥
𝑘1 𝑡
𝑘2

,

(24)

where 𝐵(𝑡) = 𝐵(𝑖
2
, 𝑖
1
, 𝑘
2
, 𝑘
1
).
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We apply homotopy operator to find conserved quantities
Ψ and Φ which yield multipliers 𝛼 = 0 and 𝛽 = 1. We have

𝑓 = 𝛼(𝑢
𝑡
+ 𝑢
𝑥𝑥𝑥

+

3

2

VV
𝑥𝑥𝑥

+

9

2

V
𝑥
V
𝑥𝑥

− 6𝑢𝑢
𝑥
− 6𝑢VV

𝑥
−

3

2

V2𝑢
𝑥
)

+ 𝛽(V
𝑡
+ V
𝑥𝑥𝑥

− 6V𝑢
𝑥
− 6𝑢V

𝑥
−

15

2

V2V
𝑥
)

= V
𝑡
+ V
𝑥𝑥𝑥

− 6V𝑢
𝑥
− 6𝑢V

𝑥
−

15

2

V2V
𝑥
.

(25)

The integrands (22) and (24) are

𝐼
(𝑡)

𝑢
𝑓 = 0, 𝐼

(𝑥)

𝑢
𝑓 = −6𝑢V, 𝐼

(𝑡)

V 𝑓 = V,

𝐼
(𝑥)

V 𝑓 = −6𝑢V −
15

2

V3 + V
𝑥𝑥
.

(26)

Apply (21) to the integrands (26); therefore

Φ = 𝐻
(𝑥)

u(𝑥,𝑡)𝑓 = 6𝑢V − V
𝑥𝑥
+

5

2

V3,

Ψ = 𝐻
(𝑡)

u(𝑥,𝑡)𝑓 = −V.
(27)

So, we have the conservation law of the J-M equation with
respect to multipliers 𝛼 = 0 and 𝛽 = 1:

𝐷
𝑡
(−V) + 𝐷

𝑥
(6𝑢V − V

𝑥𝑥
+

5

2

V3) = 0. (28)

And similarly, conservation laws with respect to other multi-
pliers are given as follows:

(1) 𝛼 = 1 and 𝛽 = (1/2)V:

Φ = −

1

4

V2 − 𝑢,

Ψ =

15

16

V4 +
9

2

𝑢V2 − 2VV
𝑥𝑥
−

5

4

V2
𝑥
+ 3𝑢
2
− 𝑢
𝑥𝑥
;

(29)

(2) 𝛼 = V and 𝛽 = 𝑢 + (3/4)V2:

Φ = −

1

4

V3 − 𝑢V,

Ψ =

9

8

V5 + 6𝑢V3 −
9

4

V2V
𝑥𝑥
+ 6𝑢
2V − 𝑢V

𝑥𝑥
− V𝑢
𝑥𝑥
+ 𝑢
𝑥
V
𝑥
;

(30)

(3) 𝛼 = 𝑢+(3/4)V2 and 𝛽 = −(1/4)V
𝑥𝑥
+(3/2)𝑢V+(5/8)V3:

Φ = −

5

32

V4 −
3

4

𝑢V2 +
1

8

VV
𝑥𝑥
−

1

2

𝑢
2
,

Ψ =

25

32

V6 +
39

8

𝑢V4 −
7

8

V3V
𝑥𝑥
+

15

2

V2𝑢2 −
3

2

𝑢V2
𝑥

− 3𝑢VV
𝑥𝑥
−

3

4

V2𝑢
𝑥𝑥
+

3

2

V𝑢
𝑥
V
𝑥
+ 2𝑢
3
+

1

2

𝑢
2

𝑥
+

1

8

V2
𝑥𝑥

− 𝑢𝑢
𝑥𝑥
−

1

8

VV
𝑡𝑥
+

1

8

V
𝑡
V
𝑥
;

(31)

(4) 𝛼 = 𝑢V − (1/6)V
𝑥𝑥

+ (5/12)V3 and 𝛽 = −(1/6)𝑢
𝑥𝑥

−

(5/24)V2
𝑥
−(5/12)VV

𝑥𝑥
+(1/2)𝑢

2
+(5/4)𝑢V2+(35/96)V4:

Φ = −

7

96

V5 −
5

12

𝑢V3 +
5

72

VV2
𝑥
−

1

2

V𝑢2

+

5

36

V2V
𝑥𝑥

=

1

12

V𝑢
𝑥𝑥
+

1

12

𝑢V
𝑥𝑥
,

Ψ =

25

64

V7 +
45

16

𝑢V5 −
25

48

V3V2
𝑥
+

23

4

V3𝑢2 −
95

96

V4V
𝑥𝑥

−

11

4

𝑢V2V
𝑥𝑥
−

5

12

V3𝑢
𝑥𝑥
+ 3V𝑢3 −

5

4

𝑢VV2
𝑥
−

1

2

𝑢
2V
𝑥𝑥

−

5

36

V2V
𝑡𝑥
+

5

36

VV
𝑡
V
𝑥
+

1

3

VV2
𝑥𝑥
+

5

24

V2
𝑥
V
𝑥𝑥
− 𝑢V𝑢

𝑥𝑥

+

1

12

𝑢
𝑡
V
𝑥
−

1

12

V𝑢
𝑡𝑥
+

1

12

V
𝑡
𝑢
𝑥
+

1

6

𝑢
𝑥𝑥
V
𝑥𝑥
−

1

12

𝑢V
𝑡𝑥
;

(32)

(5) 𝛼 = 𝑥 + 6𝑡𝑢 + (9/2)𝑡V2 and 𝛽 = (1/2)𝑥V − (3/2)𝑡V
𝑥𝑥
+

(15/4)𝑡V3 + 9𝑡𝑢V:

Φ = −

15

16

𝑡V4 −
9

2

𝑡𝑢V2 +
3

4

𝑡VV
𝑥𝑥
−

1

4

𝑥V2 − 3𝑡𝑢2 − 𝑥𝑢,

Ψ =

75

16

𝑡V6 +
117

4

𝑡𝑢V4 +
15

16

𝑥V4 + 45𝑡𝑢2V2 −
21

2

𝑡V3V
𝑥𝑥

+ 9𝑡V𝑢
𝑥
V
𝑥
− 9𝑡𝑢V2

𝑥
+

9

2

𝑥𝑢V2 − 18𝑡𝑢VV
𝑥𝑥
−

9

2

𝑡V2𝑢
𝑥𝑥

+ 12𝑡𝑢
3
+

5

4

VV
𝑥
+

3

4

𝑡V2
𝑥𝑥
− 2𝑥VV

𝑥𝑥
+

3

4

𝑡V
𝑡
V
𝑥
− 6𝑡𝑢𝑢

𝑥𝑥

+ 3𝑥𝑢
2
−

5

4

𝑥V2
𝑥
+ 3𝑡𝑢
2

𝑥
−

3

4

𝑡VV
𝑡𝑥
− 𝑥𝑢
𝑥𝑥
+ 𝑢
𝑥
.

(33)

5.2. Symbolic Computation for Finding Conservation Laws
Equation. This subsection covers the application of the
homotopy operator to the computation of conservation laws
of J-Mequation. Finding a conservation lawneeds computing
the density Ψ first, followed by computing of the flux Φ.
Computing flux Φ will require using homotopy operator.
Following the approach by Hereman et al. [9, 14, 15], a
candidate density is built as a linear combination (with
undetermined coefficients of differential terms) which is
invariant under the scaling symmetry of the given PDE. By
determining Ψ we can compute 𝐷

𝑡
Ψ and remove all time

derivatives; 𝐷
𝑡
Ψmust be a divergence. Thus, using Theorem

4.4 of [10], one requires that

𝐸
𝑈
𝑗 (𝐷
𝑡
Ψ) = 0, 𝑗 = 1, . . . , 𝑁. (34)

This leads to a linear system for the undetermined coeffi-
cients. Substituting its solution into the candidate forΨ gives
the actual density. Finally, the Φ = div−1(𝐷

𝑡
Ψ) is computed

with the homotopy operator.
Jaulent-Miodek equation is invariant under the scaling

(dilation) symmetry (4):

(𝑡, 𝑥, 𝑢, V) 󳨀→ (𝜆
3
𝑡, 𝜆𝑥, 𝜆

−2
𝑢, 𝜆
−1V) . (35)
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Conservation law (13) must hold on solutions of (1). There-
fore, we search for polynomial conservation laws that obey
the scaling symmetry of the PDE. Indeed, we have to find
a polynomial conservation law that does not adhere to the
scaling symmetry. We choose a scaling factor for one of
the components of (13). The selected scaling factor will be
called the rank (R) of that component. Then, we construct
a candidate for that component as a linear combination of
monomial terms (all of rank R) with undetermined coeffi-
cients. If we remove divergence and divergence-equivalent
terms dynamically that candidate will be shorted and of low
order.

For J-M equation we will compute the densityΨ of a fixed
rank; for example, 𝑅 = −3. We construct a list of differential
terms which contains all powers of dependent variables and
their derivatives and products of them of rank −3:

𝑄 = {𝑢
3

𝑥
, V3, 𝑡𝑢3, 𝑥𝑢2, 𝑢𝑢

𝑥
, 𝑢V, 𝑢2𝑢

𝑥𝑥𝑥
, 𝑢
3

𝑥
𝑢
𝑥𝑥
, V3𝑢
𝑥𝑥
, V𝑢2
𝑥
,

V
𝑥
𝑢
3

𝑥
, V3V
𝑥
, 𝑡𝑢
3
𝑢
𝑥𝑥
, 𝑥𝑢
2
𝑢
𝑥𝑥
, 𝑢𝑢
𝑥
𝑢
𝑥𝑥
, 𝑢V𝑢
𝑥𝑥
,

𝑢
2
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥

, V𝑢2𝑢
𝑥𝑥
, V2𝑢
𝑥
𝑢
𝑥𝑥
, 𝑡𝑢
3V
𝑥
, 𝑥𝑢
2V
𝑥
, 𝑢V
𝑥
𝑢
𝑥
,

𝑢VV
𝑥
, 𝑢
2V
𝑥
𝑢
𝑥𝑥𝑥

, VV
𝑥
𝑢
2

𝑥
, V2𝑢
𝑥
V
𝑥
} .

(36)

By removing all terms that are divergences or divergence-
equivalent to other terms in 𝑄, we have

𝑄 = {𝑢
3

𝑥
, V3, 𝑡𝑢3, 𝑥𝑢2, V2𝑢

𝑥
, V3𝑢
𝑥𝑥
, V𝑢2
𝑥
, V
𝑥
𝑢
3

𝑥
,

𝑡𝑢
3
𝑢
𝑥𝑥
, 𝑥𝑢
2
𝑢
𝑥𝑥
, 𝑢V𝑢
𝑥𝑥
, 𝑢
2
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥

, V𝑢2
𝑥
𝑢
𝑥𝑥
,

V2𝑢
𝑥
𝑢
𝑥𝑥
, 𝑡𝑢
3V
𝑥
, 𝑥𝑢
2V
𝑥
, 𝑢𝑢
𝑥
V
𝑥
, 𝑢
2V
𝑥
𝑢
𝑥𝑥𝑥

,

VV
𝑥
𝑢
2

𝑥
, V2V
𝑥
𝑢
𝑥
} .

(37)

Now, by forming a candidate density combining the terms in
𝑄 linearly with undetermined coefficients 𝑐

𝑖
,

Ψ = 𝑐
1
𝑢
3

𝑥
+ 𝑐
2
V3 + 𝑐
3
𝑡𝑢
3
+ 𝑐
4
𝑥𝑢
2
+ 𝑐
5
V2𝑢
𝑥
+ 𝑐
6
V3𝑢
𝑥𝑥

+ 𝑐
7
V𝑢2
𝑥
+ 𝑐
8
V
𝑥
𝑢
3

𝑥
+ 𝑐
9
𝑡𝑢
3
𝑢
𝑥𝑥
+ 𝑐
10
𝑥𝑢
2
𝑢
𝑥𝑥

+ 𝑐
11
𝑢V𝑢
𝑥𝑥
+ 𝑐
12
𝑢
2
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥

+ 𝑐
13
V𝑢2
𝑥
𝑢
𝑥𝑥

+ 𝑐
14
V2𝑢
𝑥
𝑢
𝑥𝑥
+ 𝑐
15
𝑡𝑢
3V
𝑥
+ 𝑐
16
𝑥𝑢
2V
𝑥
+ 𝑐
17
𝑢𝑢
𝑥
V
𝑥

+ 𝑐
18
𝑢
2V
𝑥
𝑢
𝑥𝑥𝑥

+ 𝑐
19
VV
𝑥
𝑢
2

𝑥
+ 𝑐
20
V2V
𝑥
𝑢
𝑥
.

(38)

Compute the total derivative with respect to 𝑡 of (38), and set

𝐹 = −𝐷
𝑡
Ψ. (39)

After replacing 𝑢
𝑡
with −𝑢

𝑥𝑥𝑥
− (3/2)VV

𝑥𝑥𝑥
− (9/2)V

𝑥
V
𝑥𝑥

+

6𝑢𝑢
𝑥
+ 6𝑢VV

𝑥
+ (3/2)V2𝑢

𝑥
and V
𝑡
by −V

𝑥𝑥𝑥
+ 6V𝑢

𝑥
+ 6𝑢V

𝑥
+

(15/2)V2V
𝑥
, (39) must be a divergence, use (34), and require

𝐸
𝑢(𝑡,𝑥)

𝐹 = 0, 𝐸V(𝑥,𝑡)𝐹 = 0. (40)

The solution of system (40) is

𝑐
1
= 0, 𝑐

2
= 0, 𝑐

3
= 0, 𝑐

4
= 0,

𝑐
5
= 0, 𝑐

6
= 𝑐
20
, 𝑐
7
= 𝑐
11
, 𝑐
8
=

1

3

𝑐
13
,

𝑐
9
= 0, 𝑐

10
= 0, 𝑐

12
= 0, 𝑐

14
= 𝑐
19
,

𝑐
15
= 0, 𝑐

16
= 0, 𝑐

17
= 𝑐
11
, 𝑐
18
= 0,

(41)

where 𝑐
11
, 𝑐
13
, 𝑐
19
, and 𝑐

20
is arbitrary.

Case 1. Substitute (41) and 𝑐
11
= 1, 𝑐
13
= 0, 𝑐
19
= 0, and 𝑐

20
= 0

into (38) and (39) given Ψ = V𝑢2
𝑥
+ 𝑢V𝑢

𝑥𝑥
+ 𝑢𝑢
𝑥
V
𝑥
and

𝐹 = 𝑢
𝑥
V
𝑥
𝑢
𝑥𝑥𝑥

+ 2V𝑢
𝑥
𝑢
𝑥𝑥𝑥𝑥

+

9

2

𝑢
𝑥
V2
𝑥
V
𝑥𝑥
+ 9V𝑢

𝑥
V2
𝑥𝑥

+ 𝑢𝑢
𝑥
V
𝑥𝑥𝑥𝑥

+ 3V2𝑢
𝑥
V
𝑥𝑥𝑥𝑥

+

9

2

𝑢V
𝑥
V
𝑥𝑥
+ 𝑢V
𝑥
𝑢
𝑥𝑥𝑥𝑥

+ 6𝑢V2
𝑥
V
𝑥𝑥𝑥

+

3

2

𝑢V2V
𝑥𝑥𝑥𝑥𝑥

+

3

2

V2𝑢
𝑥𝑥
V
𝑥𝑥𝑥

+ V𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥

+ V𝑢𝑢
𝑥𝑥𝑥𝑥𝑥

+ 𝑢𝑢
𝑥𝑥
V
𝑥𝑥𝑥

− 12𝑢
2V
𝑥
𝑢
𝑥𝑥
−

9

2

V3𝑢
𝑥
𝑢
𝑥𝑥

−

3

2

𝑢V3𝑢
𝑥𝑥𝑥

− 6𝑢
2V2V
𝑥𝑥𝑥

− 6V𝑢2𝑢
𝑥𝑥𝑥

− 6𝑢
2
𝑢
𝑥
V
𝑥𝑥

− 30𝑢𝑢
2

𝑥
V
𝑥
− 27V2V

𝑥
𝑢
2

𝑥
+ 𝑢
2

𝑥
V
𝑥𝑥𝑥

− 6𝑢
2V3
𝑥
− 18V𝑢3

𝑥

+

27

3

V𝑢
𝑥
V
𝑥
V
𝑥𝑥𝑥

+

9

2

VV
𝑥
V
𝑥𝑥
𝑢
𝑥𝑥
+ 9𝑢VV

𝑥
V
𝑥𝑥𝑥𝑥

+ 15𝑢VV
𝑥𝑥
V
𝑥𝑥𝑥

−

69

2

𝑢V2𝑢
𝑥
V
𝑥𝑥
− 27𝑢V2V

𝑥
𝑢
𝑥𝑥

− 48𝑢V𝑢
𝑥
𝑢
𝑥𝑥
− 57𝑢V𝑢

𝑥
V2
𝑥
− 24V𝑢2V

𝑥
V
𝑥𝑥
.

(42)

Since 𝐹 = divΦ, the flux Φ can be computed with the 1D
homotopy operator which inverts divergences. Applying 1D
homotopy operator formulas in (21) and removing curl term
of fluxΦ yield

Φ = −

3

2

V3𝑢2
𝑥
−

3

2

𝑢V3𝑢
𝑥𝑥
− 6V2𝑢2V

𝑥𝑥
−

45

2

𝑢V2𝑢
𝑥
V
𝑥

− 18𝑢V𝑢2
𝑥
−

3

2

V2𝑢
𝑥
V
𝑥𝑥𝑥

+

9

2

VV
𝑥
𝑢
𝑥
𝑢
𝑥𝑥
+

3

2

𝑢V2V
𝑥𝑥𝑥𝑥

− 6V𝑢2𝑢
𝑥𝑥
+ 6𝑢VV

𝑥
V
𝑥𝑥𝑥

+

9

2

𝑢VV2
𝑥𝑥
− 6𝑢
2
𝑢
𝑥
V
𝑥

+ V𝑢
𝑥
𝑢
𝑥𝑥𝑥

+ 𝑢V𝑢
𝑥𝑥𝑥𝑥

+ 𝑢𝑢
𝑥
V
𝑥𝑥𝑥

.

(43)

Case 2. Substitute𝑐
11

= 0, 𝑐
13

= 1, 𝑐
19

= 0, and 𝑐
20

= 0 into
(38), given

Ψ =

1

3

V
𝑥
𝑢
3

𝑥
+ V𝑢2
𝑥
𝑢
𝑥𝑥
,

Φ = −

1

6

𝑢
2

𝑥
(36𝑢V2V

𝑥𝑥
+ 9V3𝑢

𝑥𝑥
+ 69V2𝑢

𝑥
V
𝑥
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+ 36𝑢VV2
𝑥
− 36VV

𝑥
V
𝑥𝑥𝑥

+ 12𝑢𝑢
𝑥
V
𝑥

− 27VV2
𝑥𝑥
+ 36𝑢V𝑢

𝑥𝑥
+ 48V𝑢2

𝑥

− 9V2V
𝑥𝑥𝑥𝑥

− 6V𝑢
𝑥𝑥𝑥𝑥

− 2𝑢
𝑥
V
𝑥𝑥𝑥

) .

(44)

Case 3. Substitute 𝑐
11
= 0, 𝑐
13
= 0, 𝑐
19
= 1, 𝑐
20
= 0,

Ψ = V2𝑢
𝑥
𝑢
𝑥𝑥
+ VV
𝑥
𝑢
2

𝑥
,

Φ = −

1

2

V𝑢
𝑥
(12𝑢V2V

𝑥𝑥
+ 3V3𝑢

𝑥𝑥
+ 33V2𝑢

𝑥
V
𝑥

+ 12𝑢VV2
𝑥
− 12VV

𝑥
V
𝑥𝑥𝑥

+ 12𝑢V𝑢
𝑥𝑥

+ 12𝑢𝑢
𝑥
V
𝑥
− 3V2V

𝑥𝑥𝑥𝑥
+ 24V𝑢2

𝑥
− 9VV2
𝑥𝑥

− 2V𝑢
𝑥𝑥𝑥𝑥

− 2𝑢
𝑥
V
𝑥𝑥𝑥

) .

(45)

And finally, 𝑐
11
= 0, 𝑐
13
= 0, 𝑐
19
= 0, 𝑐
20
= 1,

Ψ =

1

3

V3𝑢
𝑥𝑥
+ V2𝑢
𝑥
V
𝑥
,

Φ = −

1

6

V2 (3V3𝑢
𝑥𝑥
+ 12𝑢V2V

𝑥𝑥
+ 63V2V

𝑥
𝑢
𝑥

+ 12𝑢VV2
𝑥
+ 48V𝑢2

𝑥
− 9VV2
𝑥𝑥

− 12VV
𝑥
V
𝑥𝑥𝑥

+ 36𝑢𝑢
𝑥
V
𝑥
− 3V2V

𝑥𝑥𝑥𝑥

+ 12𝑢V𝑢
𝑥𝑥
− 2V𝑢

𝑥𝑥𝑥𝑥
− 6𝑢
𝑥
V
𝑥𝑥𝑥

) .

(46)

6. Conclusion

In this paper, we studied Jaulent-Miodek equation using the
Lie symmetry group of infinitesimal transformations of the
equation. We found that the underlying equation admits
a three-dimensional Lie algebra. We obtained the optimal
system of one-dimensional subalgebras of the Lie algebra of
the equation.These subalgebras were then used to reduce the
underlying equation to nonlinear third order ordinary system
of differential equations. Further conservation laws are con-
structed for this equation in twomethods. First, conservation
laws of the equation are obtained by finding multipliers; then
some other conservation laws of J-M equation are obtained
with symbolic computation of conservation laws.
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