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This paper analyzes the firm bond valuation and credit spread with an endogenous model for the pure default and callable default
corporate bond. Regarding the stochastic instantaneous forward rates and the firm value as an infinite dimensional Poisson process,
we provide some analytical results for the embedded American options and firm bond valuations.

1. Introduction

Corporate bonds trade at higher yield than the comparable
government bonds due to default risk and embedded Amer-
ican options such as call, put, and convertibility. However,
even accounts for the effect of embedded options, it has been
difficult to reconcile the observed spread with credit risk and
reasonable parameters and is thus frequently referred to as
the “credit spread puzzle” [1]. Wide range models typically
explain only 20%–30% of the observed credit spreads. The
credit quality of bond, downward jump risk of the issuers’
value, and the bond maturity have some explaining power
to the observed spreads. For junk bonds, the credit risk
accounts for much larger fraction of observed spreads than
investment grade bonds do [2]. For long-maturity bonds,
Collin-Dufresne et al. [3] have argued that firms with good
credit quality are likely to issue more debt, which leads to
higher yield spreads. The authors in [4–7] have shown that
models with incorporating jump risk explain a significant
part of observed credit spreads. Liquidity risk is an important
element of spreads, if the debt market is of lower liquidity.
It is shown in [8] by Longstaff et al. that liquidity risk may
not construct the majority of corporate spreads as in the
frictionless credit-default swaps market.

Since the structural approach is one of the most widely
employed frameworks of credit risk valuation, by incorporat-
ing jump risk into the structural framework, this paper ana-
lyzes the valuation of callable corporate bond and embedded

options. Allowing the economic variables driven by its own
risk resource as in [9–12], we emphasize that the state nature
of different maturities is an important determinant factor
to the assets pricing. For the instantaneous forward interest
rates, the risk resource depends not only on time 𝑡 but also
on the time-to-maturity. Therefore, we expand the dynamics
of the instantaneous forward rates as an infinite dimensional
jump-diffusion process. This expansion has three features:
(1) the model could flexibly capture the covariation and the
term structure of correlation between different firm bonds
and government bonds in a parsimonious way than their
multifactor counterparts. (2) Any observed data set of bond
prices is fully compatiblewith the expanding randomprocess.
(3) It is unnecessary to add an error term in the econometric
model to calculate the parameters.

For the corporate bond valuation, based on different
assumptions about the bankruptcy rules, exogenous and
endogenous models have different implication and lead to
different risk management behaviours. In the exogenous
model, bankruptcy liquidation is made by the outside
investors when the firm value reaches the trigger value such
as bond par value [13–16]. For some exogenous bankruptcy
models, there is arbitrage opportunity due to the negative
spreads. In the endogenous model, the bankruptcy decision
depends on the issuers who endogenously optimally exercise
the embedded options [17–20]. We conduct our analysis
within the endogenous bankruptcy framework.
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To examine the corporate bond valuation and the interac-
tionwith embedded options, we introduce a benchmark bond
which is a risk-free comparable government bond as in [21].
Treating the corporate bond as the benchmark bond minus
the embedded options, we could easily clarify the interaction
between call provisions and default risk.

In this paper, we first analyze the impact of benchmark
bond price and firm value to the embedded option as well
as the corporate bond valuation. It shows that credit spread
is positively related with the benchmark bond price and
negatively related with firm value. For the callable corporate
bond, the embedded options value is higher than that of the
pure default bond. The increment can be decomposed as the
“American premium” part and the “call option” part. Sec-
ondly, we consider the embedded American options exercise
boundaries and show that, for the callable corporate bond,
the relationship between the firm values and the boundaries
ismore complicated than that of pure default bond.When the
firm value is lower than the call price, the exercise boundaries
are higher for higher firmvalue.When the firmvalue is higher
than the call price, the strike boundary decreases with the
firm value. Similar results are obtained in [21]. But our results
are more accurate. Finally, we emphasize the effect of the
exogenous shock and firm procyclicality to the credit spread.
If the exogenous shock is negative to the benchmark bond
and positive to the firm value, the credit spread depends on
the total effect.

The remainder of this paper is organized as follows.
Section 2 presents the basic valuation framework for the
corporate bond. Section 3 derives the valuation model for
the pure default corporate bond and analyzes the effecting
factors. Section 4 examines the impact of benchmark bond
price, firm value, and their covariation to the credit spread
for the default and callable corporate bond. The conclusion
follows in Section 5.

2. The Preliminary of Valuation Model

Let (Ω,Ψ, 𝑃) be a probability space with a stochastic process
𝐵(𝑡, 𝑥) and let𝑁

1
(𝑡), . . . , 𝑁

𝑀
(𝑡) be independent Poisson pro-

cesses, where Ψ is a filtration. Assume that the instantaneous
forward rates follow the dynamics

𝑑
𝑡
𝑓 (𝑡, 𝑥) = 𝛼 (𝑡, 𝑥) 𝑑𝑡 + 𝛽 (𝑡, 𝑥) 𝑑

1
𝐵 (𝑡, 𝑥) + 𝛾 (𝑡, 𝑥) 𝑑𝐽 (𝑡) ,

(1)

where the stochastic process 𝐵(𝑡, 𝑥) is a generalization of
the one-dimensional Brownian motion, which depends on
both time 𝑡 and maturity 𝑥. Given time-to-maturity 𝑥,
the stochastic perturbation 𝐵(𝑡, 𝑥) is a standard Brownian
motion. 𝐵(𝑡, 𝑥) describes at time 𝑡 the different magnitude’s
stochastic perturbation to the forward rates with different
time-to-maturity. The instantaneous forward rates constitute
a continuum. Such generalization is natural and acceptable.
The generalized Brownian motion exists and can be obtained
by solving SPDEs as in [12]. This model is different from
that of [21] in three aspects. (1)We model the instantaneous
forward rates rather than the interest rates. (2) The con-
tinuous stochastic risk source is infinite dimension. (3) We

incorporate the compound jumpprocess in themodel.𝐵(𝑡, 𝑥)
satisfies the following requirements.

(1) 𝐵(𝑡, 𝑥) is continuous on 𝑡 and 𝑥.
(2) 𝐵(𝑡, 𝑥) is amartingale in time 𝑡; that is,𝐸

𝑡
[𝐵(𝑡, 𝑥)] = 0,

for all 𝑥.
(3) The variance of the increments with respect to time is

equal to the time change; namely, Var[𝑑
1
𝐵(𝑡, 𝑥)] = 𝑑𝑡,

for all 𝑥.
(4) The correlation of the increments, corr[𝑑

1
𝐵(𝑡, 𝑥),

𝑑
1
𝐵(𝑡, 𝑦)] = 𝜌(𝑥, 𝑦), does not depend on time 𝑡.

At the same time, the correlation coefficient 𝜌(𝑥, 𝑦) satisfies
the following requirements.

(1) Symmetric, 𝜌(𝑥, 𝑦) = 𝜌(𝑦, 𝑥).
(2) 𝜌(𝑥, 𝑦) takes values between −1 and 1.
(3) 𝜌(𝑥, 𝑥) = 1.
(4) The correlation coefficient matrix is positive semidef-

inite.

The notation 𝑑
1
𝐵(𝑡, 𝑥) means that the increment is taken

with respect to the first element time 𝑡. 𝐽(𝑡) is a compound
Poisson process; 𝐽(𝑡) = ∑𝑁(𝑡)

𝑗=1
𝑌
𝑗
. Poisson process𝑁(𝑡) counts

the number of jumps that occur at or before time 𝑡 with
the intensity 𝜆. 𝑌

𝑗
(𝑗 = 1, 2, . . .) are independent identi-

cally distributed discrete random variables with finite values
𝑎
1
, 𝑎
2
, . . . 𝑎

𝑀
; the probability 𝑃(𝑌

𝑗
= 𝑎

𝑖
) = 𝑝

𝑖
, ∑

𝑀

𝑖=1
𝑝
𝑖
= 1.

Here, we allow that the impacts of exogenous shock to the
economic basis are time-variable and assume that the jump
size is finite. 𝛼(𝑡, 𝑥), 𝛽(𝑡, 𝑥), and 𝛾(𝑡, 𝑥) are nonrandom func-
tions and satisfy Lipschitz linear growth conditions. That is,
for some constant 𝐿, 𝛼, 𝛽, and 𝛾 satisfy

󵄨󵄨󵄨󵄨
𝛼 (𝑡, 𝑥) − 𝛼 (𝑡, 𝑦)

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝛽 (𝑡, 𝑥) − 𝛽 (𝑡, 𝑦)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨
𝛾 (𝑡, 𝑥) − 𝛾 (𝑡, 𝑦)

󵄨󵄨󵄨󵄨
≤ 𝐿
󵄨󵄨󵄨󵄨
𝑥 − 𝑦

󵄨󵄨󵄨󵄨
,

|𝛼 (𝑡, 𝑥)| +
󵄨󵄨󵄨󵄨
𝛽 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝛾 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨
≤ 𝐿 (1 + |𝑥|) ,

(2)

for all 𝑥, 𝑦, 𝑡 ∈ R+. In the filtration Ψ
𝑡
, the compound jump

is independent of the stochastic string process 𝐵(𝑡, 𝑥).
The decomposition theorem of a compound Poisson pro-

cess (see [22]) shows that 𝐽(𝑡) = ∑𝑁(𝑡)
𝑚=1
𝑌
𝑚
could be rewritten

as 𝐽(𝑡) = ∑𝑀
𝑖=1
𝑎
𝑖
𝑁
𝑖
(𝑡). So the dynamics of instantaneous

forward rates can be written in the integral form

𝑓 (𝑡, 𝑥) = 𝑓 (0, 𝑥) + ∫

𝑡

0

𝛼 (𝑢, 𝑥) 𝑑𝑢 + ∫

𝑡

0

𝛽 (𝑢, 𝑥) 𝑑
1
𝐵 (𝑢, 𝑥)

+

𝑀

∑

𝑖=1

∫

𝑡

0

𝛾 (𝑢, 𝑥) 𝑎
𝑖
𝑑𝑁

𝑖
(𝑢) .

(3)

The price at time 𝑡 of a zero coupon bond with maturity 𝑠 is
expressed as

𝑃 (𝑡, 𝑠) = exp [−∫
𝑠−𝑡

0

𝑓 (𝑡, 𝑥) 𝑑𝑥] . (4)
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Now, we consider a firm with one single bond to be
outstanding. The bond has a series coupons paid 𝑐

𝑗
at each

time 𝑡
𝑗
, 0 < 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑛
= 𝑇, and maturity at time 𝑇. In

order to analyze the effect of the embedded default and call
options on the corporate bond, we introduce a benchmark
bond which is noncallable nondefault with the same coupon
and maturity as the corporate bond. Corporate bond can be
viewed as the benchmark bond minus a default and/or call
option. The benchmark bond with maturity 𝑇(= 𝑡

𝑛
) can be

expressed as

𝑃 (𝑡) =

𝑛

∑

𝑗

𝑐
𝑗
𝑃 (𝑡, 𝑡

𝑗
) =

𝑛

∑

𝑗

𝑐
𝑗
exp [−∫

𝑡𝑗−𝑡

0

𝑓 (𝑡, 𝑥) 𝑑𝑥] ,

for 𝑡
𝑗−1
≤ 𝑡 < 𝑡

𝑗
, 𝑗 = 1, 2, . . . , 𝑛.

(5)

Assume that the market is complete. By the second
fundamental theorem of asset pricing (see [22]), there exists
an unique risk-neutral measure 𝑃̃. Under the risk-neutral
measure 𝑃̃, for each fixedmaturity𝑥, define𝐵(𝑡, 𝑥) = 𝐵(𝑡, 𝑥)+
∫
𝑡

0
∫
∞

0
𝜃(𝑢, 𝑦)𝑐(𝑥, 𝑦)𝑑𝑦 𝑑𝑢, where 𝜃(𝑢, 𝑦) is the market price

of risk. 𝐵(𝑡, 𝑥) is the counterpart of 𝐵(𝑡, 𝑥) under the actual
probability measure 𝑃. For each maturity 𝑥, 𝐵(𝑡, 𝑥) is still a
Brownian motion. 𝐽(𝑡) = ∑𝑁̃(𝑡)

𝑗=1
𝑌
𝑗
is a compound Poisson

process with intensity 𝜆̃, where 𝑁̃(𝑡) is the number of jumps
till time 𝑡 under the risk-neutral measure 𝑃̃. The jump sizes
𝑌
1
, 𝑌
2
. . . are still I.I.D. random variables, while the jump

intensity satisfies 𝑃̃(𝑌
𝑗
= 𝑎

𝑖
) = 𝑝(𝑎

𝑖
) = 𝜆̃

𝑖
/𝜆̃, (𝑖 = 1, 2, . . . ,𝑀)

for arbitrary 𝑗, where∑𝑀
𝑖=1
𝜆
𝑖
= 𝜆̃ and each𝜆

𝑖
(𝑖 = 1, 2, . . . ,𝑀)

is a positive constant. Notice that, under the measure 𝑃̃,
𝐵(𝑡, 𝑥) is still independent of 𝑁̃

𝑖
(𝑡) (𝑖 = 1, 2, . . . ,𝑀). Under

the risk-neutral measure 𝑃̃, the price at time 𝑡 of a zero
coupon bond with maturity 𝑠 can be expressed as (see [23])

𝑃 (𝑡, 𝑠)

= 𝑃 (0, 𝑠) exp [∫
𝑡

0

𝑟 (𝑢) 𝑑𝑢

− ∫

𝑡

0

∫

𝑠−𝑢

0

𝜎 (𝑢, 𝑥) 𝑑𝑥 𝑑
1
𝐵 (𝑢, 𝑥)

−
1

2
∫

𝑡

0

𝑑𝑢∫

𝑠−𝑢

0

𝜎 (𝑢, 𝑥)

× ∫

𝑠−𝑢

0

𝜎 (𝑢, 𝑦)

× 𝜌 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

−

𝑀

∑

𝑖=1

∫

𝑡

0

[exp [(−𝑎
𝑖
∫

𝑠−𝑢

0

𝛾 (𝑢, 𝑥) 𝑑𝑥)

−1] 𝜆
𝑖
𝑑𝑢]

× exp[−
𝑀

∑

𝑖=1

∫

𝑡

0

∫

𝑠−𝑢

0

𝛾 (𝑢, 𝑥) 𝑑𝑥𝑎
𝑖
𝑑𝑁̃

𝑖
(𝑢)] ,

(6)

where 𝜎(𝑡, 𝑥) is a nonrandom function and satisfies
𝐸∫

𝑡

0
∫
∞

0
|𝜎(𝑢, 𝑥)| ∫

∞

0
|𝜎(𝑢, 𝑦)|𝜌(𝑥, 𝑦)𝑑𝑦 𝑑𝑥 𝑑𝑢 < ∞, for all

𝑡 ≥ 0. 𝛾(𝑡, 𝑥) is a left-continuous nonrandom function and
satisfies 𝐸∫𝑡

0
∫
∞

0
|𝛾(𝑢, 𝑥)| ∫

∞

0
|𝛾(𝑢, 𝑦)|𝜌(𝑥, 𝑦)𝑑𝑦 𝑑𝑥 𝑑𝑢 < ∞,

for all 𝑡 ≥ 0.The discounted zero bond is amartingale. Notice
that 𝑃(𝑠, 𝑠) = 1. We rewrite the value of zero coupon bond as

𝑃 (𝑡, 𝑠) = exp{ − ∫
𝑠

𝑡

𝑟 (𝑢) 𝑑𝑢

+ ∫

𝑠

𝑡

∫

𝑠−𝑢

0

𝜎 (𝑢, 𝑥) 𝑑𝑥 𝑑
1
𝐵 (𝑢, 𝑥)

+
1

2
𝜎
2

𝑓
(𝑡, 𝑠)

+

𝑀

∑

𝑖=1

∫

𝑠

𝑡

[exp(−𝑎
𝑖
∫

𝑠−𝑢

0

𝛾 (𝑢, 𝑥) 𝑑𝑥) − 1]

× 𝜆
𝑖
𝑑𝑢

+

𝑀

∑

𝑖=1

∫

𝑠

𝑡

∫

𝑠−𝑢

0

𝛾 (𝑢, 𝑥) 𝑑𝑥𝑎
𝑖
𝑑𝑁̃

𝑖
(𝑢)} ,

(7)

where

𝜎
2

𝑓
(𝑡, 𝑠) = ∫

𝑠

𝑡

𝑑𝑢∫

𝑠−𝑢

0

𝜎 (𝑢, 𝑥) ∫

𝑠−𝑢

0

𝜎 (𝑢, 𝑦) 𝜌 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥.

(8)

Assume that the value of the firm 𝑆 is independent of its
capital structure and is a jump diffusion given by

𝑑𝑆 (𝑡) = (𝑎 (𝑡) − ℎ (𝑡)) 𝑆 (𝑡) 𝑑𝑡

+ 𝑆 (𝑡) ∫

𝑇

0

𝑏 (𝑡, 𝑥) 𝑑
1
𝐵 (𝑡, 𝑥) 𝑑𝑥

+ 𝑆 (𝑡
−
) 𝑐 (𝑡) 𝑑𝐽 (𝑡) ,

(9)

where 𝑇 (0 < 𝑇 < ∞) is the survival period of the
firm, 𝐸∫𝑇

0
∫
∞

0
|𝑏(𝑡, 𝑥)| ∫

∞

0
|𝑏(𝑡, 𝑦)|𝜌(𝑥, 𝑦)𝑑𝑦𝑑𝑥𝑑𝑡 < ∞, 𝑎(𝑡),

𝑏(𝑡, 𝑥), and 𝑐(𝑡) satisfy Lipschitz conditions, 𝑐(𝑡) is a left-
continuous nonrandom function and satisfies, for all jump
size 𝑎

𝑖
, 𝑐(𝑡) > max

𝑖
{−1/𝑎

𝑖
} a.s., and ℎ(𝑡) ≥ 0 is the firm’s

payout rate.
Under the risk-neutral measure 𝑃̃, we have

𝑑𝐽 (𝑡) =

𝑀

∑

𝑖=1

𝑎
𝑖
𝑑𝑁̃

𝑖
(𝑡) ,

𝑑
1
𝐵 (𝑡, 𝑥) = 𝑑

1
𝐵 (𝑡, 𝑥) − ∫

∞

0

𝜃 (𝑡, 𝑦) 𝜌 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑡.

(10)

By the market price of risk equation

𝑎 (𝑡) − 𝑟 (𝑡) = ∫

𝑇

0

𝑏 (𝑡, 𝑥) ∫

∞

0

𝜃 (𝑡, 𝑦) 𝜌 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

− 𝑐 (𝑡)

𝑀

∑

𝑖=1

𝑎
𝑖
𝜆̃
𝑖
,

(11)
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the dynamics of the firm value is rewritten as

𝑑𝑆 (𝑡) = [𝑟 (𝑡) − ℎ (𝑡)] 𝑆 (𝑡) 𝑑𝑡

+ 𝑆 (𝑡) ∫

𝑇

0

𝑏 (𝑡, 𝑥) 𝑑
1
𝐵 (𝑡, 𝑥) 𝑑𝑥

+ 𝑆 (𝑡
−
)

𝑀

∑

𝑖=1

𝑎
𝑖
𝑐 (𝑡) 𝑑 (𝑁̃

𝑖
(𝑡) − 𝜆̃

𝑖
𝑡) ,

(12)

where 𝑁̃
𝑖
(𝑡) − 𝜆̃

𝑖
𝑡 is a compensated Poisson process.

Theorem 1. Under the risk-neutral measure 𝑃̃, the firm value
is

𝑆 (𝑡) = 𝑠 (0) exp{∫
𝑡

0

[𝑟 (𝑢) − ℎ (𝑢)

−
1

2
∫

𝑇

0

𝑏 (𝑢, 𝑥) 𝑑𝑥

× ∫

𝑇

0

𝑏 (𝑢, 𝑦) 𝜌 (𝑥, 𝑦) 𝑑𝑦

−

𝑀

∑

𝑖=1

𝑐 (𝑢) 𝑎
𝑖
𝜆
𝑖
] 𝑑𝑢

+∫

𝑡

0

∫

𝑇

0

𝑏 (𝑢, 𝑥) 𝑑
1
𝐵 (𝑢, 𝑥) 𝑑𝑥}

× exp{
𝑀

∑

𝑖=1

∫

𝑡

0

ln (𝑎
𝑖
𝑐 (𝑢) + 1) 𝑑𝑁̃

𝑖
(𝑢)} .

(13)

Proof. We prove that (13) is the solution of (12). Let 𝑆(𝑡) =
𝑆(0) exp[𝑋(𝑡)]. Denote

𝑋
𝑐
(𝑡) = ∫

𝑡

0

[𝑟 (𝑢) − ℎ (𝑢)

−
1

2
∫

𝑇

0

𝑏 (𝑢, 𝑥) 𝑑𝑥

× ∫

𝑇

0

𝑏 (𝑢, 𝑦) 𝜌 (𝑥, 𝑦) 𝑑𝑦

−

𝑀

∑

𝑖=1

𝑐 (𝑢) 𝑎
𝑖
𝜆
𝑖
]𝑑𝑢

+ ∫

𝑡

0

∫

𝑇

0

𝑏 (𝑢, 𝑥) 𝑑
1
𝐵 (𝑢, 𝑥) 𝑑𝑥

𝑋
𝐽
(𝑡) =

𝑀

∑

𝑖=1

∫

𝑡

0

ln (𝑎
𝑖
𝑐 (𝑢) + 1) 𝑑𝑁̃

𝑖
(𝑢) .

(14)

By Itô formula for jump process, we have

𝑑𝑆 (𝑡) = 𝑆 (𝑡) 𝑑𝑋
𝑐
(𝑡) +

1

2
𝑆 (𝑡) 𝑑𝑋

𝑐
(𝑡) 𝑑𝑋

𝑐
(𝑡)

+ 𝑆 (𝑡) − 𝑆 (𝑡
−
)

= 𝑆 (𝑡) {[𝑟 (𝑡) − ℎ (𝑡) −

𝑀

∑

𝑖=1

𝑐 (𝑡) 𝑎
𝑖
𝜆̃
𝑖

−
1

2
∫

𝑇

0

𝑏 (𝑡, 𝑥) 𝑑𝑥∫

𝑇

0

𝑏 (𝑡, 𝑦) 𝜌 (𝑥, 𝑦) 𝑑𝑦]𝑑𝑡

+ ∫

𝑇

0

𝑏 (𝑡, 𝑥) 𝑑
1
𝐵 (𝑡, 𝑥) 𝑑𝑥}

+
1

2
𝑆 (𝑡) ∫

𝑇

0

𝑏 (𝑡, 𝑥) 𝑑𝑥∫

𝑇

0

𝑏 (𝑡, 𝑦) 𝜌 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑡

+ 𝑆 (𝑡
−
) {exp[

𝑀

∑

𝑖=1

ln (𝑎
𝑖
𝑐 (𝑡) + 1) 𝑑𝑁̃

𝑖
(𝑡)] − 1} .

(15)

Rearranging it, we obtain

𝑑𝑆 (𝑡) = 𝑆 (𝑡) {[𝑟 (𝑡) − ℎ (𝑡) −

𝑀

∑

𝑖=1

𝑐 (𝑡) 𝑎
𝑖
𝜆̃
𝑖
]𝑑𝑡

+ ∫

𝑇

0

𝑏 (𝑡, 𝑥) 𝑑
1
𝐵 (𝑡, 𝑥) 𝑑𝑥}

+ 𝑆 (𝑡
−
)

𝑀

∑

𝑖=1

𝑐 (𝑡) 𝑎
𝑖
𝑑𝑁̃

𝑖
(𝑡) .

(16)

It completes the proof.

For 𝑡 ≤ 𝜏 ≤ 𝑇, the value of corporate bond can be
rewritten as

𝑆 (𝜏) = 𝑠 (𝑡) exp{∫
𝜏

𝑡

[𝑟 (𝑢) − ℎ (𝑢) −

𝑀

∑

𝑖=1

𝑐 (𝑢) 𝑎
𝑖
𝜆
𝑖
]𝑑𝑢

−
1

2
𝜎
2

𝑆
(𝑡, 𝜏) + ∫

𝜏

𝑡

∫

𝑇

0

𝑏 (𝑢, 𝑥) 𝑑
1
𝐵 (𝑢, 𝑥) 𝑑𝑥

+

𝑀

∑

𝑖=1

∫

𝜏

𝑡

ln (𝑎
𝑖
𝑐 (𝑢) + 1) 𝑑𝑁̃

𝑖
(𝑢)} ,

(17)

where

𝜎
2

𝑆
(𝑡, 𝜏) = ∫

𝜏

𝑡

𝑑𝑢∫

𝑇

0

𝑏 (𝑢, 𝑥) 𝑑𝑥∫

𝑇

0

𝑏 (𝑢, 𝑦) 𝜌 (𝑥, 𝑦) 𝑑𝑦. (18)

3. Valuing Defaultable Bond

In the endogenous bankruptcy model, the bankruptcy deci-
sion is optimally done by the bond issuers’ themselves. For the
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pure default noncallable bond, when the embedded default
option arrives at its maximum, the issuer would give up the
firm to exempt its debt.The value of the pure defaultable bond
with embedded default option is

𝑃
𝐷
(𝑡) = 𝑃 (𝑡) − 𝑓

𝐷
(𝑡) , (19)

where 𝑓
𝐷
(𝑡) is the embedded default option value at time 𝑡.

Consider

𝑓
𝐷
(𝑡) ≡ sup

𝑡≤𝜏≤𝑇

𝐸 {𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢

[𝑃(𝜏) − 𝑆(𝜏)]
+
| Ψ

𝑡
} , (20)

where Ψ
𝑡
, 0 ≤ 𝑡 ≤ 𝑇 is the filtration; 𝑓

𝐷
(𝑡) satisfies

𝑓
𝐷
(𝑡) ≥ (𝑃(𝑡) − 𝑆(𝑡))

+
. (21)

The yield spread of a given bond over its benchmark bond
is a straightforward transformation of the bond’s embedded
option value. Define

𝜏
∗
= inf {𝑡 ≥ 0 : 𝑓

𝐷
(𝑡) = (𝑃(𝑡) − 𝑆(𝑡))

+
} , (22)

as the optimal stopping time based on the state 𝑆(𝑡) = 𝑠∗ at
time 𝑡, which is the first time the default option value 𝑓

𝐷
(𝑡)

reaches the level (𝑃(𝑡) − 𝑆(𝑡))+.

Theorem 2. For different initial firm values and benchmark
bond prices, the following properties hold.

(1) 𝐼𝑓 𝑆
𝑥
(0) > 𝑆

𝑦
(0) , 𝑡ℎ𝑒𝑛

− 𝑝
𝑠
[𝑆
𝑥
(𝑡) − 𝑆

𝑦
(𝑡)] ≤ 𝑓

𝑥

𝐷
(𝑡) − 𝑓

𝑦

𝐷
(𝑡) ≤ 0.

(2) 𝐼𝑓 𝑆
𝑥
(0) > 𝑆

𝑦
(0) , 𝑡ℎ𝑒𝑛 𝑃

𝑥

𝐷
(𝑡) ≤ 𝑃

𝑦

𝐷
(𝑡) .

(3) 𝐼𝑓 𝑃
𝑥
(0) > 𝑃

𝑦
(0) , 𝑡ℎ𝑒𝑛

0 ≤ 𝑓
𝑥

𝐷
(𝑡) − 𝑓

𝑦

𝐷
(𝑡) ≤ 𝑝

𝑝
[𝑃
𝑥
(𝑡) − 𝑃

𝑦
(𝑡)] .

(4) 𝐼𝑓 𝑃
𝑥
(0) > 𝑃

𝑦
(0) , 𝑡ℎ𝑒𝑛 𝑃

𝑥

𝐷
(𝑡) ≥ 𝑃

𝑦

𝐷
(𝑡) .

(23)

Here 𝑝𝑠 = 𝑃̃{𝑃(𝜏𝑦) > 𝑆𝑦(𝜏𝑦) | 𝑆(𝑡) = 𝑠𝑦} is the risk-neutral
default probability under the condition that the firm value at
time 𝑡 is 𝑆(𝑡) = 𝑠 and 𝑝𝑝 = 𝑃̃{𝑃𝑥(𝜏𝑥) > 𝑆(𝜏𝑥) | 𝑃(𝑡) = 𝑝𝑥} is
the risk-neutral default probability under the state in which the
benchmark bond price at time 𝑡 is 𝑃(𝑡) = 𝑝.

Remark 3. These results are consistent with those of [21], but
our results are more accurate by providing closer embedded
options spread.

Proof. Due to 𝑐(𝑡)𝑎
𝑖
> −1, 𝑖 = 1, 2, . . . ,𝑀, by the no-crossing

properties for jump-diffusion process, we have

𝑆
𝑥
(0) > 𝑆

𝑦
(0) 󳨐⇒ 𝑆

𝑥
(𝑡) ≥ 𝑆

𝑦
(𝑡) ,

𝑃̃ − a.s. ∀0 < 𝑡 < ∞.
(24)

(1) Given that the state at time 𝑡 is 𝑃(𝑡) = 𝑝 and
𝑆(𝑡) = 𝑠

𝑥, assume that its optimal stopping time is 𝜏𝑥 and
its associated embedded default options value is 𝑓𝑥

𝐷
(𝑡). Thus

𝑓
𝑥

𝐷
(𝑡) = 𝐸{𝑒

−∫
𝜏
𝑥

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃(𝜏

𝑥
) − 𝑆

𝑥
(𝜏
𝑥
)]
+
| Ψ

𝑡
}. Similarly, 𝑓𝑦

𝐷
(𝑡)

is the embedded options value when 𝑆(𝑡) = 𝑠𝑦 at time 𝑡. Thus

𝑓
𝑦

𝐷
(𝑡) − 𝑓

𝑥

𝐷
(𝑡)

= sup
𝑡≤𝜏≤𝑇

𝐸{𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃 (𝜏) − 𝑆

𝑦
(𝜏)]

+

| Ψ
𝑡
}

− 𝐸{𝑒
−∫
𝜏
𝑥

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃(𝜏

𝑥
) − 𝑆

𝑥
(𝜏
𝑥
)]
+

| Ψ
𝑡
}

≥ 𝐸{𝑒
−∫
𝜏
𝑥

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃(𝜏

𝑥
) − 𝑆

𝑦
(𝜏
𝑥
)]
+

− 𝑒
−∫
𝜏
𝑥

𝑡
𝑟(𝑢)𝑑𝑢

[𝑃(𝜏
𝑥
) − 𝑆

𝑥
(𝜏
𝑥
)]
+

| Ψ
𝑡
}

≥ 0.

(25)

For 𝑆(𝑡) = 𝑠𝑦, assume that its optimal stopping time is 𝜏𝑦. We
have

𝑓
𝑦

𝐷
(𝑡) − 𝑓

𝑥

𝐷
(𝑡)

≤ 𝐸{𝑒
−∫
𝜏
𝑦

𝑡
𝑟(𝑢)𝑑𝑢

(𝑃 (𝜏
𝑦
) − 𝑆

𝑦
(𝜏
𝑦
))
+

− 𝑒
−∫
𝜏
𝑦

𝑡
𝑟(𝑢)𝑑𝑢

(𝑃 (𝜏
𝑦
) − 𝑆

𝑥
(𝜏
𝑦
))
+

| Ψ
𝑡
}

= 𝐸{[𝑒
−∫
𝜏
𝑦

𝑡
𝑟(𝑢)𝑑𝑢

(𝑃 (𝜏
𝑦
) − 𝑆

𝑦
(𝜏
𝑦
))

−𝑒
−∫
𝜏
𝑦

𝑡
𝑟(𝑢)𝑑𝑢

(𝑃(𝜏
𝑦
) − 𝑆

𝑥
(𝜏
𝑦
))
+

]

× 𝐼
{𝑃(𝜏
𝑦
)>𝑆
𝑦
(𝜏
𝑦
)}
| Ψ

𝑡
}

≤ 𝐸{[𝑒
−∫
𝜏
𝑦

𝑡
𝑟(𝑢)𝑑𝑢

(𝑃 (𝜏
𝑦
) − 𝑆

𝑦
(𝜏
𝑦
))

−𝑒
−∫
𝜏
𝑦

𝑡
𝑟(𝑢)𝑑𝑢

(𝑃(𝜏
𝑦
) − 𝑆

𝑥
(𝜏
𝑦
))
+

]

×𝐼
{𝑃(𝜏
𝑦
)>𝑆
𝑦
(𝜏
𝑦
)}
| Ψ

𝑡
}

= 𝐸{𝑒
−∫
𝜏
𝑦

𝑡
𝑟(𝑢)𝑑𝑢

[𝑆
𝑥
(𝜏
𝑦
) − 𝑆

𝑦
(𝜏
𝑦
)] | Ψ

𝑡
} 𝑃̃

× {𝑃 (𝜏
𝑦
) > 𝑆

𝑦
(𝜏
𝑦
)}

= [𝑆
𝑥
(𝑡) − 𝑆

𝑦
(𝑡)] 𝑝

𝑠
,

(26)

where 𝐼
𝐴
denotes the indicator function of the set 𝐴. In the

second last equation, we use the fact that𝐸{𝑋𝐼
𝐴
| Ψ

𝑡
} = 𝐸(𝑋 |

Ψ
𝑡
)𝑃̃(𝐴) (by the same token, (30), (40), and (47) also hold).
(2) Note that 𝑃

𝐷
(𝑡) = 𝑃(𝑡) − 𝑓

𝐷
(𝑡). For firm value 𝑆𝑥(𝑡) >

𝑆
𝑦
(𝑡), we have

𝑃
𝑥

𝐷
(𝑡) = 𝑃 (𝑡) − 𝑓

𝑥

𝐷
(𝑡) ≤ 𝑃 (𝑡) − 𝑓

𝑦

𝐷
(𝑡) = 𝑃

𝑦

𝐷
(𝑡) . (27)
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(3) By the no-crossing properties for the jump-diffusion
process, for 𝑃𝑥(0) > 𝑃𝑦(0), we have

𝑃
𝑥
(0) > 𝑃

𝑦
(0)

󳨐⇒ 𝑟
𝑥
(0) ≤ 𝑟

𝑦
(0)

󳨐⇒ 𝑟
𝑥
(𝑡) ≤ 𝑟

𝑦
(𝑡)

󳨐⇒ 𝑒
−∫
𝑡

0
𝑟
𝑥
(𝑢)𝑑𝑢
≥ 𝑒

−∫
𝑡

0
𝑟
𝑦
(𝑢)𝑑𝑢
,

𝑃̃ − a.s. ∀0 < 𝑡 < ∞,

𝑃
𝑥
(0) > 𝑃

𝑦
(0) 󳨐⇒ 𝑃

𝑥
(𝑡) ≥ 𝑃

𝑦
(𝑡) ,

𝑃̃ − a.s. ∀0 < 𝑡 < ∞.

(28)

Given that the state at time 𝑡 is 𝑃(𝑡) = 𝑝𝑦 with the optimal
stopping time 𝜏𝑦, we have

𝑓
𝑥

𝐷
(𝑡) − 𝑓

𝑦

𝐷
(𝑡)

≥ 𝐸{𝑒
−∫
𝜏
𝑦

𝑡
𝑟
𝑥
(𝑢)𝑑𝑢
[𝑃
𝑥
(𝜏
𝑦
) − 𝑆(𝜏

𝑦
)]
+

| Ψ
𝑡
}

− 𝐸{𝑒
−∫
𝜏
𝑦

𝑡
𝑟
𝑦
(𝑢)𝑑𝑢
[𝑃
𝑦
(𝜏
𝑦
) −𝑆 (𝜏

𝑦
)]
+

| Ψ
𝑡
}

= 𝐸{𝑒
−∫
𝜏
𝑦

𝑡
𝑟
𝑥
(𝑢)𝑑𝑢
[𝑃
𝑥
(𝜏
𝑦
) − 𝑆(𝜏

𝑦
)]
+

− 𝑒
−∫
𝜏
𝑦

𝑡
𝑟
𝑦
(𝑢)𝑑𝑢
[𝑃
𝑦
(𝜏
𝑦
) −𝑆 (𝜏

𝑦
)]
+

| Ψ
𝑡
}

≥ 0.

(29)

For the state of the value 𝑃(𝑡) = 𝑝𝑥 with the optimal stopping
time 𝜏𝑥, we have

𝑓
𝑥

𝐷
(𝑡) − 𝑓

𝑦

𝐷
(𝑡)

≤ 𝐸{𝑒
−∫
𝜏
𝑥

𝑡
𝑟
𝑥
(𝑢)𝑑𝑢
[𝑃
𝑥
(𝜏
𝑥
) − 𝑆(𝜏

𝑥
)]
+

− 𝑒
−∫
𝜏
𝑥

𝑡
𝑟
𝑦
(𝑢)𝑑𝑢
[𝑃
𝑦
(𝜏
𝑥
) − 𝑆 (𝜏

𝑥
)]
+

| Ψ
𝑡
}

= 𝐸{[𝑒
−∫
𝜏
𝑥

𝑡
𝑟
𝑥
(𝑢)𝑑𝑢
[𝑃
𝑥
(𝜏
𝑥
) − 𝑆 (𝜏

𝑥
)]

− 𝑒
−∫
𝜏
𝑥

𝑡
𝑟
𝑦
(𝑢)𝑑𝑢
(𝑃
𝑦
(𝜏
𝑥
) − 𝑆(𝜏

𝑥
))
+

]

⋅ 𝐼
{𝑃
𝑥
(𝜏
𝑥
)>𝑆(𝜏

𝑥
)}
| Ψ

𝑡
}

≤ 𝐸{[𝑒
−∫
𝜏
𝑥

𝑡
𝑟
𝑥
(𝑢)𝑑𝑢
[𝑃
𝑥
(𝜏
𝑥
) − 𝑆 (𝜏

𝑥
)]

− 𝑒
−∫
𝜏
𝑥

𝑡
𝑟
𝑦
(𝑢)𝑑𝑢
(𝑃
𝑦
(𝜏
𝑥
) − 𝑆 (𝜏

𝑥
))]

⋅ 𝐼
{𝑃
𝑥
(𝜏
𝑥
)>𝑆(𝜏

𝑥
)}
| Ψ

𝑡
}

≤ 𝐸{𝑒
−∫
𝜏
𝑥

𝑡
𝑟
𝑥
(𝑢)𝑑𝑢
[𝑃
𝑥
(𝜏
𝑥
) − 𝑆 (𝜏

𝑥
)]

− 𝑒
−∫
𝜏
𝑥

𝑡
𝑟
𝑦
(𝑢)𝑑𝑢
[𝑃
𝑦
(𝜏
𝑥
) − 𝑆 (𝜏

𝑥
)] | Ψ

𝑡
}

× 𝑃̃ {𝑃
𝑥
(𝜏
𝑥
) > 𝑆 (𝜏

𝑥
)}

≤ 𝐸{𝑒
−∫
𝜏
𝑥

𝑡
𝑟
𝑥
(𝑢)𝑑𝑢
𝑃
𝑥
(𝜏
𝑥
)

− 𝑒
−∫
𝜏
𝑥

𝑡
𝑟
𝑦
(𝑢)𝑑𝑢
𝑃
𝑦
(𝜏
𝑥
) | Ψ

𝑡
}𝑝

𝑝

= [𝑃
𝑥
(𝑡) − 𝑃

𝑦
(𝑡)] 𝑝

𝑝
.

(30)

(4) Note that 𝑃
𝐷
(𝑡) = 𝑃(𝑡) − 𝑓

𝐷
(𝑡). For 𝑃𝑥(𝑡) ≥ 𝑃𝑦(𝑡), we

have

𝑃
𝑥

𝐷
(𝑡) = 𝑃

𝑥
(𝑡) − 𝑓

𝑥

𝐷
(𝑡) ≥ 𝑃

𝑦
(𝑡) − 𝑓

𝑦

𝐷
(𝑡) = 𝑃

𝑦

𝐷
(𝑡) . (31)

This completes the proof.

4. Valuing Callable Defaultable Bond

For the callable defaultable bond, when the firm value falls far
below its obligation such that the default option arrives at its
maximum, the issuers would exempt its obligation by giving
up the firm. When the benchmark bond exceeds the preset
provisional call price schedule𝐾

𝑡
, which is the strike price to

call the debt, the issuers intend to exercise the call option to
buy back the bond or reissue a bond with lower interest rates.
The value of the callable corporate bond is

𝑃
𝐶𝐷
(𝑡) = 𝑃 (𝑡) − 𝑓

𝐶𝐷
(𝑡) , (32)

where 𝑓
𝐶𝐷
(𝑡) is the embedded option value at time 𝑡,

𝑓
𝐶𝐷
(𝑡)

≡ sup
𝑡≤𝜏≤𝑇

𝐸{exp [−∫
𝜏

𝑡

𝑟 (𝑢) 𝑑𝑢] [𝑃 (𝜏) − 𝐾
𝜏
∧ 𝑆 (𝜏)]

+

| Ψ
𝑡
} .

(33)

The embedded option 𝑓
𝐶𝐷
(𝑡) satisfies

𝑓
𝐶𝐷
(𝑡) ≥ (𝑃(𝑡) − 𝐾

𝑡
∧ 𝑆(𝑡))

+

. (34)

The optimal stopping time is

𝜏 = inf {𝑡 ≥ 0 : 𝑓
𝐶𝐷
(𝑡) = (𝑃 (𝑡) − 𝐾

𝑡
∧ 𝑆 (𝑡))

+

} . (35)

Similarly, we have the following theorem.
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Theorem 4. For the different initial value of firm value and
benchmark bond, the following properties hold.

(1) 𝐼𝑓 𝑆
𝑥
(0) > 𝑆

𝑦
(0) , 𝑡ℎ𝑒𝑛

− [𝑆
𝑥
(𝑡) − 𝑆

𝑦
(𝑡)] 𝑝

𝑠
≤ 𝑓

𝑥

𝐶𝐷
(𝑡) − 𝑓

𝑦

𝐶𝐷
(𝑡) ≤ 0.

(2) 𝐼𝑓 𝑆
𝑥
(0) > 𝑆

𝑦
(0) , 𝑡ℎ𝑒𝑛 𝑃

𝑥

𝐶𝐷
≤ 𝑃

𝑦

𝐶𝐷
(𝑡) .

(3) 𝐼𝑓 𝑃
𝑥
(0) > 𝑃

𝑦
(0) , 𝑡ℎ𝑒𝑛

− [𝑆
𝑥
(𝑡) − 𝑆

𝑦
(𝑡)] 𝑝

𝑝
≤ 𝑓

𝑥

𝐶𝐷
(𝑡) − 𝑓

𝑦

𝐶𝐷
(𝑡) ≤ 0.

(4) 𝐼𝑓 𝑃
𝑥
(0) > 𝑃

𝑦
(0) , 𝑡ℎ𝑒𝑛 𝑃

𝑥

𝐶𝐷
≥ 𝑃

𝑦

𝐶𝐷
(𝑡) .

(36)

Proof. It is similar with the case of the pure default corporate
bond. By the no-crossing properties for jump-diffusion pro-
cess, we have

𝑆
𝑥
(0) > 𝑆

𝑦
(0)

󳨐⇒ 𝑆
𝑥
(𝑡) ≥ 𝑆

𝑦
(𝑡)

󳨐⇒ 𝐾
𝑡
∧ 𝑆

𝑥
(𝑡) ≥ 𝐾

𝑡
∧ 𝑆

𝑦
(𝑡) ,

𝑃̃ − a.s. ∀0 < 𝑡 < ∞.

(37)

So, replacing the strike price 𝑆𝑥(𝑡) by 𝐾
𝑡
∧ 𝑆

𝑥
(𝑡) and 𝑆𝑦(𝑡) by

𝐾
𝑡
∧ 𝑆

𝑦
(𝑡) in the proof of Theorem 2, we obtain the results of

Theorem 4.

Theorem 5. 𝑓
𝐶𝐷
(𝑡) satisfies

(1) 𝑓
𝐶𝐷
(𝑡) − 𝑓

𝐷
(𝑡)

= 𝐴𝑃 (𝑡) + 𝐸 {𝑒
−∫
𝜏𝑑

𝑡
𝑟(𝑢)𝑑𝑢

[𝑃(𝜏
𝑑
) ∧ 𝑆(𝜏

𝑑
) − 𝐾

𝜏𝑑
]
+

| Ψ
𝑡
}

(2) 𝑓
𝐶𝐷
(𝑡) − 𝑓

𝐷
(𝑡) ≤ 𝑓

𝐶
(𝑡) ,

(38)

where

𝐴𝑃 (𝑡) = 𝐸 {𝑒
−∫
𝜏𝑐𝑑

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃(𝜏

𝑐𝑑
) − 𝐾

𝜏𝑐𝑑
∧ 𝑆(𝜏

𝑐𝑑
)]
+

− 𝑒
−∫
𝜏𝑑

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃 (𝜏

𝑑
) − 𝐾

𝜏𝑑
∧ 𝑆 (𝜏

𝑑
)]
+

| Ψ
𝑡
} ,

𝑓
𝐶
(𝑡) = sup

𝑡≤𝜏≤𝑇

𝐸{𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃 (𝜏) − 𝐾

𝜏
]
+

| Ψ
𝑡
} ,

(39)

where 𝜏
𝑑
is the optimal stopping time for the pure default cor-

porate bond and 𝜏
𝑐𝑑
is the optimal stopping time for the callable

default corporate bond.

Remark 6. Due to the embedded call option, 𝑓
𝐶𝐷
(𝑡) is worth

more than 𝑓
𝐷
(𝑡). The increment of 𝑓

𝐶𝐷
(𝑡) over 𝑓

𝐷
(𝑡) can be

decomposed into two parts.

(1) The part of the “American premium” (AP(𝑡)). That is,
the firmhas the right to exercise the embedded option
at the optimal stopping time.

(2) The part of the “call option”
𝐸{exp[− ∫𝜏𝑑

𝑡
𝑟(𝑢)𝑑𝑢][𝑃(𝜏

𝑑
) ∧ 𝑆(𝜏

𝑑
) − 𝐾

𝜏𝑑
]
+
| Ψ

𝑡
}.

Due to the call provision, the firm has the option
either to buy back the debt when the firm works
well (𝐾

𝜏𝑑
≤ 𝑃(𝜏

𝑑
) < 𝑆(𝜏

𝑑
)) or to keep the firm when

the firm value is less than the benchmark bond but
before bankruptcy (𝐾

𝜏𝑑
≤ 𝑆(𝜏

𝑑
) ≤ 𝑃(𝜏

𝑑
)).

From the second part of Theorem 4, the increment of
𝑓
𝐶𝐷
(𝑡) over 𝑓

𝐷
(𝑡) is less than that of embedded pure call

option𝑓
𝐶
(𝑡) due to the interaction between the default option

and call option.

Proof. (1) Notice that 𝑆(𝑡) ≥ 𝐾
𝑡
∧ 𝑆(𝑡). Let 𝜏

𝑐𝑑
be the optimal

stopping time of 𝑓
𝐶𝐷
(𝑡), and let 𝜏

𝑑
be the optimal stopping

time of 𝑓
𝐷
(𝑡),

𝑓
𝐶𝐷
(𝑡) − 𝑓

𝐷
(𝑡)

= 𝐸 {𝑒
−∫
𝜏𝑐𝑑

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃(𝜏

𝑐𝑑
) − 𝐾

𝜏𝑐𝑑
∧ 𝑆(𝜏

𝑐𝑑
)]
+

| Ψ
𝑡
}

− 𝐸 {𝑒
−∫
𝜏𝑑

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃 (𝜏

𝑑
) − 𝑆 (𝜏

𝑑
)]
+

| Ψ
𝑡
}

= 𝐸 {𝑒
−∫
𝜏𝑐𝑑

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃(𝜏

𝑐𝑑
) − 𝐾

𝜏𝑐𝑑
∧ 𝑆(𝜏

𝑐𝑑
)]
+

− 𝑒
−∫
𝜏𝑑

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃 (𝜏

𝑑
) − 𝐾

𝜏𝑑
∧ 𝑆 (𝜏

𝑑
)]
+

| Ψ
𝑡
}

+ 𝐸 {𝑒
−∫
𝜏𝑑

𝑡
𝑟(𝑢)𝑑𝑢
(𝑃 (𝜏

𝑑
) − 𝐾

𝜏𝑑
)
+

| Ψ
𝑡
} 𝑃̃

× [𝐾
𝜏𝑑
≤ 𝑃 (𝜏

𝑑
) < 𝑆 (𝜏

𝑑
)]

+ 𝐸 {𝑒
−∫
𝜏𝑑

𝑡
𝑟(𝑢)𝑑𝑢
(𝑆(𝜏

𝑑
) − 𝐾

𝜏𝑑
)
+

| Ψ
𝑡
}

1 × 𝑃̃ [𝐾
𝜏𝑑
≤ 𝑆 (𝜏

𝑑
) ≤ 𝑃 (𝜏

𝑑
)]

= AP (𝑡) + 𝐸 {𝑒−∫
𝜏𝑑

𝑡
𝑟(𝑢)𝑑𝑢

× [𝑃(𝜏
𝑑
) ∧ 𝑆(𝜏

𝑑
) − 𝐾

𝜏𝑑
]
+

| Ψ
𝑡
} .

(40)

(2) On the other hand, we have

𝑓
𝐶𝐷
(𝑡) − 𝑓

𝐷
(𝑡)

= sup
𝑡≤𝜏≤𝑇

𝐸{𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃(𝜏) − 𝐾

𝜏
∧ 𝑆(𝜏)]

+

| Ψ
𝑡
}

− sup
𝑡≤𝜏≤𝑇

𝐸 {𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃 (𝜏) − 𝑆 (𝜏)]

+
| Ψ

𝑡
}

≤ sup
𝑡≤𝜏≤𝑇

𝐸{𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃(𝜏) − 𝐾

𝜏
]
+

+ [𝑃(𝜏) − 𝑆(𝜏)]
+
| Ψ

𝑡
}

− sup
𝑡≤𝜏≤𝑇

𝐸 {𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢

[𝑃 (𝜏) − 𝑆 (𝜏)]
+
| Ψ

𝑡
}

≤ sup
𝑡≤𝜏≤𝑇

𝐸{𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃 (𝜏) − 𝐾

𝜏
]
+

| Ψ
𝑡
} .

(41)

This completes the proof.
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For the embedded options exercise boundaries, denote
𝑃
∗

𝐷𝐵
as the exercise boundary of the pure defaultable corpo-

rate bond, when 𝑆(𝑡) = 𝑠∗ at time 𝑡, which means that as soon
as the benchmark bond price reaches 𝑃∗

𝐷𝐵
, the firm should

exercise options; that is, the firm should default. Denote 𝑃∗
𝐶𝐷𝐵

as the exercise boundary of the callable defaultable corporate
bond, when 𝑆(𝑡) = 𝑠∗ at time 𝑡, which means that, in the case
𝐾
𝑡
> 𝑆(𝑡), the firm would default as soon as the benchmark

bond price reaches𝑃∗
𝐶𝐷𝐵

; in the case𝐾
𝑡
≤ 𝑆(𝑡), the firmwould

call back its debt as soon as the benchmark bond price reaches
𝑃
∗

𝐶𝐷𝐵
. In terms of the benchmark bond price, we have the

following theorem.

Theorem 7. For each 𝑡 ∈ [0, 𝑇), it holds that

(1) 𝑖𝑓 𝑆
𝑥
(𝑡) > 𝑆

𝑦
(𝑡) , 𝑡ℎ𝑒𝑛 𝑃

𝑥

𝐷𝐵
(𝑡) ≥ 𝑃

𝑦

𝐷𝐵
(𝑡) ,

(2) 𝑤ℎ𝑒𝑛 𝐾
𝑡
> 𝑆 (𝑡) , 𝑖𝑓 𝑆

𝑥
(𝑡) > 𝑆

𝑦
(𝑡) , 𝑡ℎ𝑒𝑛

𝑃
𝑥

𝐶𝐷𝐵
(𝑡) ≥ 𝑃

𝑦

𝐶𝐷𝐵
(𝑡) ,

(3) 𝑤ℎ𝑒𝑛 𝐾
𝑡
≤ 𝑆 (𝑡) , 𝑖𝑓 𝑆

𝑥
(𝑡) > 𝑆

𝑦
(𝑡) , 𝑡ℎ𝑒𝑛

𝑃
𝑥

𝐶𝐷𝐵
(𝑡) ≤ 𝑃

𝑦

𝐶𝐷𝐵
(𝑡) ,

(4) 𝑖𝑓 𝑆 (𝑡) ≤ 𝐾
𝑡
, 𝑡ℎ𝑒𝑛 𝑃

𝐶𝐷𝐵
(𝑡) ≥ 𝑃

𝐷𝐵
(𝑡) .

(42)

Proof. (1) When the benchmark bond price 𝑃(𝑡) < 𝑃𝑦
𝐷𝐵
(𝑡),

the firm with 𝑆𝑦(𝑡) would not exercise the embedded default
option. By part 1 of Theorem 2, we have

𝑓
𝑥

𝐷
(𝑡) ≥ 𝑓

𝑦

𝐷
(𝑡) − (𝑆

𝑥
(𝑡) − 𝑆

𝑦
(𝑡))

> 𝑃 (𝑡) − 𝑆
𝑦
(𝑡) − (𝑆

𝑥
(𝑡) − 𝑆

𝑦
(𝑡))

= 𝑃 (𝑡) − 𝑆
𝑥
(𝑡) .

(43)

So the firm with 𝑆𝑥(𝑡) would also not exercise the embedded
default option, which means that the default boundary is no
lower than that of the firm value 𝑆𝑦(𝑡). Thus, 𝑃𝑥

𝐷𝐵
(𝑡) ≥ 𝑃

𝑦

𝐷𝐵
(𝑡).

(2)When 𝐾
𝑡
> 𝑆(𝑡), the firm would consider to exercise

the default option. If 𝑆𝑥(𝑡) > 𝑆𝑦(𝑡), for 𝑃(𝑡) < 𝑃𝑦
𝐶𝐷𝐵
(𝑡), we

have

𝑓
𝑥

𝐶𝐷
(𝑡) ≥ 𝑓

𝑦

𝐶𝐷
(𝑡) − (𝑆

𝑥
(𝑡) − 𝑆

𝑦
(𝑡))

≥ 𝑃 (𝑡) − 𝑆
𝑦
(𝑡) − (𝑆

𝑥
(𝑡) − 𝑆

𝑦
(𝑡))

= 𝑃 (𝑡) − 𝑆
𝑥
(𝑡) .

(44)

So 𝑃𝑥
𝐶𝐷𝐵
(𝑡) ≥ 𝑃

𝑦

𝐶𝐷𝐵
(𝑡).

(3)When 𝐾
𝑡
≤ 𝑆(𝑡), the firm would consider to exercise

the call option. If 𝑆𝑥(𝑡) > 𝑆𝑦(𝑡), which means 𝑃(𝑡) − 𝐾
𝑡
∧

𝑆
𝑦
(𝑡) ≥ 𝑃(𝑡) − 𝐾

𝑡
∧ 𝑆

𝑥
(𝑡), for 𝑃(𝑡) < 𝑃𝑥

𝐶𝐷𝐵
(𝑡), we have

𝑓
𝑦

𝐶𝐷
(𝑡) ≥ 𝑓

𝑥

𝐶𝐷
(𝑡) > (𝑃(𝑡) − 𝐾

𝑡
)
+

. (45)

So 𝑃(𝑡) < 𝑃𝑦
𝐶𝐷𝐵
(𝑡), which means 𝑃𝑥

𝐶𝐷𝐵
(𝑡) ≤ 𝑃

𝑦

𝐶𝐷𝐵
(𝑡).

(4)When 𝑆(𝑡) ≤ 𝐾
𝑡
, for 𝑃(𝑡) < 𝑃

𝐷𝐵
(𝑡), we have

𝑓
𝐶𝐷
(𝑡) ≥ 𝑓

𝐷
(𝑡) ≥ (𝑃(𝑡) − 𝑆(𝑡))

+
> 𝑃 (𝑡) − 𝐾

𝑡
∧ 𝑆 (𝑡) . (46)

So 𝑃(𝑡) < 𝑃
𝐶𝐷𝐵
(𝑡), which means 𝑃

𝐶𝐷𝐵
(𝑡) ≥ 𝑃

𝐷𝐵
(𝑡). This

completes the proof.

For the value of the embedded option, it can be reex-
pressed as

𝑓
𝐶𝐷
(𝑡)

= sup
𝑡≤𝜏≤𝑇

𝐸{𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢
[𝑃 (𝜏) − 𝐾

𝜏
∧ 𝑆 (𝜏)]

+

× 𝐼
𝑃(𝜏)>𝐾𝜏∧𝑆(𝜏)

| Ψ
𝑡
}

= sup
𝑡≤𝜏≤𝑇

𝐸{𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢

[(𝑃 (𝜏) − 𝐾
𝜏
)
+

| 𝐾
𝜏

< 𝑆 (𝜏) , Ψ
𝑡
] × 𝑃̃ (𝐾

𝜏
< 𝑆 (𝜏))

+ 𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢

[(𝑃 (𝜏) − 𝑆 (𝜏))
+
| 𝐾

𝜏
≥ 𝑆 (𝜏) , Ψ

𝑡
]

× 𝑃̃ (𝐾
𝜏
≥ 𝑆 (𝜏)) }

= sup
𝑡≤𝜏≤𝑇

𝐸{𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢

× [(𝑃 (𝜏) − 𝐾
𝜏
) | 𝐾

𝜏
< 𝑆 (𝜏) ,

𝐾
𝜏
< 𝑃 (𝜏) , Ψ

𝑡
] 𝑃̃ (𝐾

𝜏
≥ 𝑆 (𝜏))

× 𝑃̃ (𝐾
𝜏
< 𝑆 (𝜏)) 𝑃̃

+ 𝑒
−∫
𝜏

𝑡
𝑟(𝑢)𝑑𝑢

[(𝑃 (𝜏) − 𝑆 (𝜏)) | 𝐾
𝜏
≥ 𝑆 (𝜏) ,

𝑃 (𝜏) ≥ 𝑆 (𝜏) , Ψ
𝑡
] 𝑃̃ (𝐾

𝜏
≥ 𝑆 (𝜏))

× 𝑃̃ (𝑃 (𝜏) ≥ 𝑆 (𝜏)) } .

(47)

For𝐾
𝜏
< 𝑆(𝜏), we have

𝑃̃ { ln𝐾
𝜏
< ln 𝑆 (𝑡) + ∫

𝜏

𝑡

[𝑟 (𝑢) − ℎ (𝑢)] 𝑑𝑢

+𝐼
𝑆
(𝑡, 𝜏) −

1

2
𝜎
2

𝑆
(𝑡, 𝜏) + 𝐽

𝑆
(𝑡, 𝜏) − 𝐶

𝐽𝑆
(𝑡, 𝜏) }

= 𝑃̃ { ln𝐾
𝜏
− ln 𝑆 (𝑡) − ∫

𝜏

𝑡

[𝑟 (𝑢) − ℎ (𝑢)] 𝑑𝑢

< 𝐼
𝑆
(𝑡, 𝜏) −

1

2
𝜎
2

𝑆
(𝑡, 𝜏) + 𝐽

𝑆
(𝑡, 𝜏) − 𝐶

𝐽𝑆
(𝑡, 𝜏) } ,

(48)

where

𝐼
𝑆
(𝑡, 𝜏) = ∫

𝜏

𝑡

∫

𝑇

0

𝑏 (𝑢, 𝑥) 𝑑𝑥 𝑑
1
𝐵 (𝑢, 𝑥) ,

𝐽
𝑆
(𝑡, 𝜏) =

𝑀

∑

𝑖=1

∫

𝜏

𝑡

ln (𝑎
𝑖
𝑐 (𝑢) + 1) 𝑑𝑁̃

𝑖
(𝑢)

𝐶
𝐽𝑆
(𝑡, 𝜏) =

𝑀

∑

𝑖=1

∫

𝜏

𝑡

𝑐 (𝑢) 𝑎
𝑖
𝜆
𝑖
𝑑𝑢.

(49)
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Notice that the price of benchmark bond satisfies

𝑃 (𝑡, 𝜏) 𝑃 (𝜏) = 𝑃 (𝑡) − ∑

𝑡≤𝑡𝑗<𝜏

𝑐
𝑗
𝑃 (𝑡, 𝑡

𝑗
) . (50)

For 𝑃̃(𝐾
𝜏
< 𝑃(𝜏)), we have

𝑃̃

{

{

{

𝐾
𝜏
𝑃 (𝑡, 𝜏) < 𝑃 (𝑡) − ∑

𝑡≤𝑡𝑗<𝜏

𝑐
𝑗
𝑃 (𝑡, 𝑡

𝑗
)

}

}

}

= 𝑃̃

{

{

{

ln𝐾
𝜏
− ∫

𝜏

𝑡

𝑟 (𝑢) 𝑑𝑢 + 𝐼
𝑓
(𝑡, 𝜏)

+
1

2
𝜎
2

𝑓
(𝑡, 𝜏) + 𝐽

𝑓
(𝑡, 𝜏) + 𝐶

𝐽𝑓
(𝑡, 𝜏)

< ln[

[

𝑝 (𝑡) − ∑

𝑡≤𝑡𝑗<𝜏

𝑐
𝑗
𝑃 (𝑡, 𝑡

𝑗
)]

]

}

}

}

= 𝑃̃

{

{

{

𝐼
𝑓
(𝑡, 𝜏) +

1

2
𝜎
2

𝑓
(𝑡, 𝜏) + 𝐽

𝑓
(𝑡, 𝜏) + 𝐶

𝐽𝑓
(𝑡, 𝜏)

< ∫

𝜏

𝑡

𝑟 (𝑢) 𝑑𝑢 − ln𝐾
𝜏

+ ln[

[

𝑝 (𝑡) − ∑

𝑡≤𝑡𝑗<𝜏

𝑐
𝑗
𝑃 (𝑡, 𝑡

𝑗
)]

]

}

}

}

,

(51)

where

𝐼
𝑓
(𝑡, 𝜏) = ∫

𝜏

𝑡

∫

𝜏−𝑢

0

𝜎 (𝑢, 𝑥) 𝑑𝑥 𝑑
1
𝐵 (𝑢, 𝑥) ,

𝐽
𝑓
(𝑡, 𝜏) =

𝑀

∑

𝑖=1

∫

𝜏

𝑡

∫

𝜏−𝑢

0

𝛾 (𝑢, 𝑥) 𝑑𝑥𝑎
𝑖
𝑑𝑁̃

𝑖
(𝑢) ,

𝐶
𝐽𝑓
(𝑡, 𝜏) =

𝑀

∑

𝑖=1

∫

𝜏

𝑡

[exp(−𝑎
𝑖
∫

𝜏−𝑢

0

𝛾 (𝑢, 𝑥) 𝑑𝑥) − 1] 𝜆
𝑖
𝑑𝑢.

(52)

For 𝑃̃(𝑃(𝜏) ≥ 𝑆(𝜏)), we have

𝑃̃ {𝑃 (𝜏) ≥ 𝑆 (𝜏)}

= 𝑃̃

{

{

{

𝑃 (𝑡) − ∑

𝑡≤𝑡𝑗<𝜏

𝑐
𝑗
𝑃 (𝑡, 𝑡

𝑗
)

≥ 𝑆 (𝑡) exp [𝐼
𝑓
(𝑡, 𝜏) +

1

2
𝜎
2

𝑓
(𝑡, 𝜏) + 𝐽

𝑓
(𝑡, 𝜏)

+ 𝐶
𝐽𝑓
(𝑡, 𝜏) − ∫

𝜏

𝑡

ℎ (𝑢) 𝑑𝑢 + 𝐼
𝑆
(𝑡, 𝜏)

−
1

2
𝜎
2

𝑆
(𝑡, 𝜏) + 𝐽

𝑆
(𝑡, 𝜏) − 𝐶

𝐽𝑆
(𝑡, 𝜏)]

}

}

}

= 𝑃̃

{

{

{

𝐼
𝑆𝑓
(𝑡, 𝜏) + 𝜎

2

𝑓
(𝑡, 𝜏) −

1

2
𝜎
2

𝑆𝑓
(𝑡, 𝜏) + 𝑐𝑜V (𝐼

𝑓
, 𝐼
𝑆
)

+ 𝐽
𝑓
(𝑡, 𝜏) + 𝐶

𝐽𝑓
(𝑡, 𝜏) + 𝐽

𝑆
(𝑡, 𝜏) − 𝐶

𝐽𝑆
(𝑡, 𝜏)

≤ ln[

[

𝑃 (𝑡) − ∑

𝑡≤𝑡𝑗<𝜏

𝑐
𝑗
𝑃 (𝑡, 𝑡

𝑗
)]

]

+ ∫

𝜏

𝑡

ℎ (𝑢) 𝑑𝑢 − ln 𝑆 (𝑡)
}

}

}

,

(53)

where

𝐼
𝑆𝑓
(𝑡, 𝜏) = 𝐼

𝑆
(𝑡, 𝜏) + 𝐼

𝑓
(𝑡, 𝜏) ,

𝜎
2

𝑆𝑓
(𝑡, 𝜏) = 𝜎

2

𝑆
(𝑡, 𝜏) + 𝜎

2

𝑓
(𝑡, 𝜏) + 2 cov (𝐼

𝑓
, 𝐼
𝑆
) ,

cov (𝐼
𝑓
, 𝐼
𝑆
) = ∫

𝜏

𝑡

𝑑𝑢∫

𝜏−𝑢

0

𝜎 (𝑢, 𝑥) 𝑑𝑥∫

𝑇

0

𝑏 (𝑢, 𝑦) 𝜌 (𝑥, 𝑦) 𝑑𝑦.

(54)

From (47)–(54), we have the following theorem.

Theorem 8. For the exogenous shock,

(1) 𝑖𝑓 𝐽
𝑓
< 0, 𝑡ℎ𝑒𝑛 𝑓

𝐶𝐷
↑,

(2) 𝑖𝑓 𝐽
𝑆
> 0, 𝑡ℎ𝑒𝑛

𝑃̃ (𝐾
𝜏
< 𝑆 (𝜏)) ↑, 𝑃̃ (𝑃 (𝜏) ≥ 𝑆 (𝜏)) ↓, 𝑃 (𝜏) − 𝑆 (𝜏) ↓,

𝑤ℎ𝑒𝑟𝑒 𝑓
𝐶𝐷
𝑖𝑠 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑎𝑐𝑡,

(3) 𝑖𝑓 𝐽
𝑆
+ 𝐽

𝑓
> 0, 𝑡ℎ𝑒𝑛

(𝑃(𝜏) − 𝑆(𝜏))
+
↓, 𝑃̃ (𝑆 (𝜏) < 𝑃 (𝜏)) ↓, 𝑓

𝐶𝐷
↓,

(4) 𝑖𝑓 𝐽
𝑆
+ 𝐽

𝑓
< 0, 𝑡ℎ𝑒𝑛

(𝑃 (𝜏) − 𝑆 (𝜏))
+
↑, 𝑃̃ (𝑆 (𝜏) < 𝑃 (𝜏)) ↑, 𝑓

𝐶𝐷
↑ .

(55)

For the impact of covariation between 𝐼
𝑆
and 𝐼

𝑓
, we have

(1)when 𝑆 (𝜏) > 𝐾
𝜏
, cov (𝐼

𝑓
, 𝐼
𝑆
) > 0,

if 𝑆 (𝜏) ↑, then 𝑓
𝐶𝐷
↓,

(2)when 𝑆 (𝜏) ≤ 𝐾
𝜏
, cov (𝐼

𝑓
, 𝐼
𝑆
) < 0,

if 𝑆 (𝜏) ↓, then 𝑓
𝐶𝐷
↑ .

(56)

Remark 9. (1)The present default distance ln 𝑆(𝑡) − ln𝑃(𝑡)
is negatively related with the default probability 𝑃

𝑑
(𝑆, 𝑃).

Therefore, it negatively relates with the credit spread.
(2)The covariation between the economic basis and firm

value will affect the default probability and the credit spread.
If the economy is boom and the covariation is negative, then
the credit spread will narrow along with the increasing firm



10 Abstract and Applied Analysis

value. If the economy is recession and the covariation is
positive, then the credit spread would widen along with the
decreasing firm value.
(3)The shocks cause jump in benchmark bond price and

the firm value. When the exogenous shock increases the firm
value, the default probability would decrease. Therefore, the
embedded options and the credit spread tend to decrease.
However, the call provision would offset this effect to some
degree. The effect of exogenous shock depends on the total
impact of 𝐽

𝑓
and 𝐽

𝑆
. As Theorem 8 shows, if 𝐽

𝑆
+ 𝐽

𝑓
> 0, then

the credit spread would narrow. If 𝐽
𝑆
+ 𝐽

𝑓
< 0, then the credit

spread would widen.
(4) Due to the free boundary problems of American

options and the firm’s payout rate, we have not obtained
the accurate pricing for the firm bond and the embedded
American options.

5. Conclusion

We study the valuation of the firm bonds and their embed-
ded options through an infinite dimensional jump-diffusion
process. Some analytical results on corporate bond valua-
tion, embedded options, and their exercise boundaries are
obtained. By decomposing the corporate bond as benchmark
bond minus or plus embedded options, analyzing the credit
spread’s effect factors, and dismantling the comprehensive
effects of the exogenous shock on the embedded options,
we find that the credit spread is affected by the firm value.
Lower initial firm value implies higher credit spread. But the
difference between the spreads is less than the difference of
firm value times the risk-neutral default probability. A formal
empirical test of the model’s implications especially on the
“credit spread puzzle” would be an interesting subject for
future researches.
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