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This study considers the spatiotemporal dynamics of a reaction-diffusion phytoplankton-zooplankton system with a double Allee
effect on prey under a homogeneous boundary condition. The qualitative properties are analyzed, including the local stability of
all equilibria and the global asymptotic property of the unique positive equilibrium. We also discuss the Hopf bifurcation and the
steady state bifurcation of the system. These results are expected to help understand the complexity of the Allee effect and the
interaction between phytoplankton and zooplankton.

1. Introduction

The upper layer of the ocean contains large volumes of
drifting plankton, which can be divided into phytoplankton
and zooplankton. Phytoplankton is the autotrophic com-
ponent of the plankton community, which is consumed
by zooplankton, most of which are too small to observe
individually with the naked eye. Zooplankton, which are
heterotrophic organisms in oceans, are also mostly invisible
to the naked eye. Therefore, it is difficult and expensive
to quantify plankton directly. Plankton not only play an
important role in the marine system because they are at the
bottom level of the food chain that supports commercial
fisheries, but also play important roles in the cycling of many
chemical elements, such as carbon, which may affect climate
change [1]. Furthermore, when plankton such as blue algae
and dinoflagellates are present in large concentrations, the
water appears to be discolored or murky, which is known
as a red tide, and this can result in the death of marine and
coastal species of fish, mammals, and other organisms [1].
Thus, analyzing the dynamics of plankton using mathemat-
ical models is beneficial for understanding the features of
plankton populations, which have enormous economic and
ecological value.

However, the mechanism that leads to the occurrence of
red tides is still an unsolved issue. Many models and theories
have been proposed by mathematicians and ecologists to
explain this phenomenon, but a general and correct expla-
nation still remains a distant goal [2–5].

The popular mathematical model called a Gause-type
predator-prey model is used to consider the phytoplankton-
zooplankton interaction in the following form:

𝑑𝑝

𝑑𝑡
= 𝑓 (𝑝,𝐾) 𝑝 − 𝑔 (𝑝) 𝑧,

𝑑𝑧

𝑑𝑡
= 𝑒𝑔 (𝑝) 𝑧 − 𝜇𝑧,

(1)

where 𝑝 = 𝑝(𝑡) and 𝑧 = 𝑧(𝑡) are the population densities
or biomass of phytoplankton and zooplankton at time 𝑡,
respectively.𝑓(𝑝,𝐾) describes the intrinsic per capita growth
rate of the phytoplankton, which may be a logistic growth
function, exponential growth function, or other functions,
where 𝐾 is known as the environmental carrying capacity.
𝑔(𝑝) is the per unit-predator consumption rate of prey,
which is commonly called the functional response. Some
conventional forms of functional response include Holling
types I, II, III, and IV and Ivlev type [6–8]. 𝑒 (0 < 𝑒 < 1)
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is the conversion coefficient and 𝜇 represents the per capita
predator mortality, which is assumed to have a linear form,
although other forms are possible [9, 10].The global dynamics
of model (1) with a logistic growth rate have been studied
during the last three decades based on theoretical analysis and
numerical simulations, and many results have been reported
[11–15].

In recent years, the Allee effect has been the focus of
increasing interest and it is recognized to be an important
phenomenon in many fields of ecology and conservation
biology by more and more people [16–21]. The Allee effect
is named after W.C. Allee [22] and it describes a positive
correlation between the density or number of population
and individual fitness of population [16]. Standard population
models assume that the fitness of population increases as the
population density or size declines [11–15, 23, 24], whereas
Allee effect states that when a population is below a critical
density or size, the population cannot sustain itself and this
leads to extinction. Thus, the Allee effect increases the likeli-
hood of extinction [25]. Stephens et al. distinguished between
a component Allee effect and a demographic Allee effect [17].
However, conservation biologists are usually more interested
in the demographic Allee effect because it ultimately governs
the probability of the extinction or recovery of populations
with low abundances [16].

Very recent ecological research has shown that two or
more Allee effects can act on a single population simultane-
ously, which is known as the multiple (double) Allee effect
[26, 27].

There are many ways of describing the Allee effect [28],
including the following differential equation:

𝑑𝑝

𝑑𝑡
= 𝑟 (1 −

𝑝

𝐾
)(1 −

𝑚 + 𝑛

𝑝 + 𝑛
)𝑝, (2)

where 𝑟 describes the growth rate and 𝑛 is an auxiliary
parameter where 𝑛 > 0, 𝑚 + 𝑛 > 0. Indeed, it is considered
that 𝑝 represents the size of a fertile population and 𝑛 is the
nonfertile population, such as juvenile or oldest individuals
[29]. In this case, 𝑚 (−𝐾 < 𝑚 < 𝐾) is called the
Allee threshold because when the population density or
size is below this threshold, the population is destined for
extinction.When𝑚 > 0, (2) describes a strong Allee effect [8,
30, 31]. In this case, the population growth rate decreases if the
population size is below the threshold 𝑚 and the population
goes to extinction [29]. In addition, (2) describes a weakAllee
effect [29, 31–33] for𝑚 < 0.

It is obvious that (2) is equal to

𝑑𝑝

𝑑𝑡
=
𝑟𝑝

𝑝 + 𝑛
(1 −

𝑝

𝐾
) (𝑝 − 𝑚) . (3)

González-Olivares et al. [29] state that (3) describes a double
Allee effect, that is, once in the factor 𝑚(𝑝) = 𝑝 − 𝑚 and the
second time in the term 𝑟(𝑝) = 𝑟𝑝/(𝑝 + 𝑛) [34, 35].

In a marine environment, the plankton populations tend
to move in horizontal and vertical directions due to the
strong water current. This movement is usually modeled by
a reaction-diffusion equation. In this study, we consider the
following reaction-diffusion model with constant diffusion

coefficient as well as a strong Allee effect in different spatial
locations within a fixed smooth bounded domainΩ ∈ 𝑅𝑛.We
assume that the response function of the zooplankton follows
the law of mass action [15]:

𝜕𝑝 (𝑥, 𝑡)

𝜕𝑡
= 𝑟 (1 −

𝑝 (𝑥, 𝑡)

𝐾
)(1 −

𝑚 + 𝑛

𝑝 (𝑥, 𝑡) + 𝑛
)𝑝 (𝑥, 𝑡)

− 𝑎𝑝 (𝑥, 𝑡) 𝑧 (𝑥, 𝑡) + 𝑑
1
Δ𝑝 (𝑥, 𝑡) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑧 (𝑥, 𝑡)

𝜕𝑡
= 𝑒𝑎𝑝 (𝑥, 𝑡) 𝑧 (𝑥, 𝑡) − 𝜇𝑧 (𝑥, 𝑡) + 𝑑

2
Δ𝑧 (𝑥, 𝑡) ,

𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑝 (𝑥, 𝑡)

𝜕𝑛
=
𝜕𝑧 (𝑥, 𝑡)

𝜕𝑛
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑝 (𝑥, 0) = 𝑝
0
(𝑥) ≥ 0, 𝑧 (𝑥, 0) = 𝑧

0
(𝑥) ≥ 0, 𝑥 ∈ Ω,

(4)

where 𝑚 (0 < 𝑚 < 𝐾) is the Allee threshold, 𝑑
1
, 𝑑
2
are

the diffusion coefficients of phytoplankton and zooplankton,
respectively, Δ is the Laplacian operator, and 𝑥 is the spatial
habitat of two species, andwe assume that the system is a close
ecosystem and with a no-flux boundary condition.

This paper is structured as follows. In Section 2, we
analyze the basic dynamics of (4) including estimates of the
solution and the local and global stability of equilibria. In
Section 3, we provide the analysis of the Hopf bifurcation and
the steady state bifurcation. A brief discussion and summary
are given in Section 4.

2. Main Results

2.1. Basic Dynamics. Suppose that 𝑛, 𝑎, 𝜇, 𝑑
1
, 𝑑
2
> 0, 0 < 𝑒 <

1, 0 < 𝑚 < 𝐾, and Ω is a bounded domain; then we obtain
the following results.

Theorem 1. The system (4) has a unique solution and the
solution is bounded. Furthermore, the solution (𝑝, 𝑧) of (4)
satisfies

lim
𝑡→∞

sup𝑝 (𝑥, 𝑡) ≤ 𝐾,

lim
𝑡→∞

sup∫
Ω

𝑧 (𝑥, 𝑡) 𝑑𝑥 ≤ 𝐾[𝑒 +
𝑒𝑟

𝐾𝑛𝜇
(
𝐾 − 𝑚

2
)

2

] |Ω|

(5)

if𝑑
1
= 𝑑
2
, lim
𝑡→∞

sup 𝑧(𝑥, 𝑡) ≤ 𝐾[𝑒+(𝑒𝑟/𝐾𝑛𝜇)((𝐾−𝑚)/2)2].

Proof. Let

𝑀(𝑝, 𝑧) = 𝑟 (1 −
𝑝

𝐾
)(1 −

𝑚 + 𝑛

𝑝 + 𝑛
)𝑝 − 𝑎𝑝𝑧,

𝑁 (𝑝, 𝑧) = 𝑒𝑎𝑝𝑧 − 𝜇𝑧;

(6)

then 𝜕𝑀/𝜕𝑧 = −𝑎𝑝 ≤ 0, 𝜕𝑁/𝜕𝑝 = 𝑒𝑎𝑧 ≥ 0 for {𝑝 ≥
0, 𝑧 ≥ 0}, which implies that (4) is a mixed quasi-
monotone system [36]. We define (𝑝(𝑥, 𝑡), 𝑧(𝑥, 𝑡)) = (0, 0),
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Figure 1: Time evolution of (4) around (0, 0). Phytoplankton is in (a) and zooplankton is in (b). The parameter values are 𝑑
1
= 0.001,

𝑑
2
= 0.004, 𝑒 = 0.5, 𝑎 = 1, 𝑛 = 0.5,𝑚 = 0.5, 𝜇 = 0.4, 𝑟 = 2, and 𝐾 = 10.
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Figure 2: Solution to (𝑝(𝑥, 𝑡), 𝑧(𝑥, 𝑡)) for (4). Phytoplankton is in (a) and zooplankton is in (b). The parameter values are the same as those
given in Figure 1.

(𝑝(𝑥, 𝑡), 𝑧(𝑥, 𝑡)) = (𝑝
∗

(𝑡), 𝑧
∗

(𝑡)), where (𝑝∗(𝑡), 𝑧∗(𝑡)) is the
solution of the system

𝑑𝑝

𝑑𝑡
= 𝑟 (1 −

𝑝

𝐾
)(1 −

𝑚 + 𝑛

𝑝 + 𝑛
)𝑝,

𝑑𝑧

𝑑𝑡
= 𝑒𝑎𝑝𝑧 − 𝜇𝑧,

𝑝 (0) = 𝑝
∗

, 𝑧 (0) = 𝑧
∗

,

(7)

where 𝑝∗ = sup
Ω
𝑝
0
(𝑥), 𝑧∗ = sup

Ω
𝑧
0
(𝑥). We find that

𝜕𝑝 (𝑥, 𝑡)

𝜕𝑡
− Δ𝑝 (𝑥, 𝑡) − 𝑀 (𝑝 (𝑥, 𝑡) , 𝑧 (𝑥, 𝑡)) = 0,

𝜕𝑝 (𝑥, 𝑡)

𝜕𝑡
− Δ𝑝 (𝑥, 𝑡) − 𝑀(𝑝 (𝑥, 𝑡) , 𝑧 (𝑥, 𝑡)) = 0.

(8)

Therefore,

𝜕𝑝 (𝑥, 𝑡)

𝜕𝑡
− Δ𝑝 (𝑥, 𝑡) − 𝑀 (𝑝 (𝑥, 𝑡) , 𝑧 (𝑥, 𝑡))

≥

𝜕𝑝 (𝑥, 𝑡)

𝜕𝑡
− Δ𝑝 (𝑥, 𝑡) − 𝑀(𝑝 (𝑥, 𝑡) , 𝑧 (𝑥, 𝑡)) .

(9)

Similarly,

𝜕𝑧 (𝑥, 𝑡)

𝜕𝑡
− Δ𝑧 (𝑥, 𝑡) − 𝑁 (𝑝 (𝑥, 𝑡) , 𝑧 (𝑥, 𝑡))

≥
𝜕𝑧 (𝑥, 𝑡)

𝜕𝑡
− Δ𝑧 (𝑥, 𝑡) − 𝑁 (𝑝 (𝑥, 𝑡) , 𝑧 (𝑥, 𝑡)) .

(10)

This implies that (𝑝(𝑥, 𝑡), 𝑧(𝑥, 𝑡)) = (0, 0) and (𝑝(𝑥, 𝑡), 𝑧(𝑥, 𝑡))
= (𝑝
∗

(𝑡), 𝑧
∗

(𝑡)) are the lower solution and upper solution to
(4), respectively (Figure 2). Therefore, Theorem 5.3.3 in [36]
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shows that system (4) has a unique solution ((𝑝(𝑥, 𝑡), 𝑧(𝑥, 𝑡))
that satisfies

0 ≤ 𝑝 (𝑥, 𝑡) ≤ 𝑝
∗

(𝑡) , 0 ≤ 𝑧 (𝑥, 𝑡) ≤ 𝑧
∗

(𝑡) . (11)

According to the strong maximum principle and the bound-
ary condition, 𝑝(𝑥, 𝑡) > 0, 𝑧(𝑥, 𝑡) > 0 for 𝑡 > 0 and 𝑥 ∈ Ω.

From the first equation of (7), we can see that 𝑝∗(𝑡) → 0
for 𝑝∗ < 𝑚 and 𝑝∗(𝑡) → 𝐾 for 𝑝∗ > 𝑚. Thus,
lim
𝑡→∞

sup𝑝(𝑥, 𝑡) ≤ 𝐾. To estimate 𝑧(𝑥, 𝑡), let
∫
Ω

𝑝(𝑥, 𝑡)𝑑𝑥 = 𝑃(𝑡), ∫
Ω

𝑧(𝑥, 𝑡)𝑑𝑥 = 𝑍(𝑡); then

𝑑𝑃

𝑑𝑡
= ∫
Ω

𝑝
𝑡
𝑑𝑥

= ∫
Ω

[𝑟 (1 −
𝑝

𝐾
)(1 −

𝑚 + 𝑛

𝑝 + 𝑛
)𝑝 − 𝑎𝑝𝑧] 𝑑𝑥

+ ∫
Ω

𝑑
1
Δ𝑝𝑑𝑥,

(12)

𝑑𝑍

𝑑𝑡
= ∫
Ω

𝑒𝑎𝑝𝑧𝑑𝑥 − 𝜇𝑍 + ∫
Ω

𝑑
2
Δ𝑧𝑑𝑥, (13)

(12) ∗ 𝑒 + (13) and with boundary conditions, we obtain

(𝑒𝑃 + 𝑍)
𝑡
= 𝑒∫
Ω

𝑟 (1 −
𝑝

𝐾
)
𝑝 − 𝑚

𝑝 + 𝑛
𝑝𝑑𝑥 − 𝜇𝑍

= 𝑒∫
Ω

𝑟 (1 −
𝑝

𝐾
)
𝑝 − 𝑚

𝑝 + 𝑛
𝑝𝑑𝑥 − 𝜇 (𝑒𝑃 + 𝑍) − 𝜇𝑒𝑃

≤ −𝜇 (𝑒𝑃 + 𝑍) + [𝜇𝑒 +
𝑒𝑟

𝐾𝑛
(
𝐾 − 𝑚

2
)

2

]𝑃.

(14)

From the proof above, we know that lim
𝑡→∞

sup𝑃(𝑡) ≤ 𝐾 ⋅
|Ω|. Thus, for any 𝜀 > 0, ∃𝑇

1
> 0, when 𝑡 > 𝑇

1

(𝑒𝑃 + 𝑍)
𝑡

≤ −𝜇 (𝑒𝑃 + 𝑍) + [𝜇𝑒 +
𝑒𝑟

𝐾𝑛
(
𝐾 − 𝑚

2
)

2

] (𝐾 + 𝜀) |Ω| .

(15)

By integrating (15), ∃𝑇
2
> 𝑇
1
, we have

∫
Ω

𝑧 (𝑥, 𝑡) 𝑑𝑥

= 𝑍 (𝑡) < 𝑒𝑃 (𝑡) + 𝑍 (𝑡)

≤
𝐾 + 𝜀

𝜇
[𝜇𝑒 +

𝑒𝑟

𝐾𝑛
(
𝐾 − 𝑚

2
)

2

] |Ω| + 𝜀 for 𝑡 > 𝑇
2
.

(16)

This implies that lim
𝑡→∞

sup∫
Ω

𝑧(𝑥, 𝑡)𝑑𝑥 ≤ 𝐾[𝑒 + (𝑒𝑟/𝐾𝑛𝜇)

((𝐾 − 𝑚)/2)
2

]|Ω|.

If 𝑑
1
= 𝑑
2
, we can add the two equations in (4) and we

have

𝜕𝑤

𝜕𝑡
= 𝑒𝑟 (1 −

𝑝

𝐾
)(1 −

𝑚 + 𝑛

𝑝 + 𝑛
)𝑝 − 𝜇𝑧 + 𝑑

1
Δ𝑤,

𝑥 ∈ Ω, 𝑡 > 𝑇,

𝜕𝑤

𝜕𝑛
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 𝑇,

𝑤 (𝑥, 𝑇) = 𝑒𝑝 (𝑥, 𝑇) + 𝑧 (𝑥, 𝑇) , 𝑥 ∈ Ω.

(17)

Since

𝑒𝑟 (1 −
𝑝

𝐾
)
𝑝 − 𝑚

𝑝 + 𝑛
𝑝 − 𝜇𝑧

= 𝑒𝑟 (1 −
𝑝

𝐾
)
𝑝 − 𝑚

𝑝 + 𝑛
𝑝 − 𝜇𝑤 + 𝜇𝑒𝑝

≤ [
𝑒𝑟

𝐾𝑛
(
𝐾 − 𝑚

2
)

2

+ 𝜇𝑒] 𝑝 − 𝜇𝑤

≤ [
𝑒𝑟

𝐾𝑛
(
𝐾 − 𝑚

2
)

2

+ 𝜇𝑒] (𝐾 + 𝜀) − 𝜇𝑤,

(18)

we know that the solution of the equation

𝜕Φ

𝜕𝑡
= [
𝑒𝑟

𝐾𝑛
(
𝐾 − 𝑚

2
)

2

+ 𝜇𝑒] (𝐾 + 𝜀) − 𝜇V + 𝑑
1
ΔV,

𝑥 ∈ Ω, 𝑡 > 𝑇,

𝜕Φ

𝜕𝑛
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 𝑇

(19)

is Φ(𝑥, 𝑡) → (1/𝜇)[(𝑒𝑟/𝐾𝑛)((𝐾 − 𝑚)/2)
2

+ 𝜇𝑒](𝐾 + 𝜀) for
𝑡 → ∞. The comparison argument implies that lim

𝑡→∞
sup

𝑧(𝑥, 𝑡) ≤ lim
𝑡→∞

sup𝑤(𝑥, 𝑡) ≤ (1/𝜇)[(𝑒𝑟/𝐾𝑛)((𝐾 −𝑚)/2)2 +
𝜇𝑒](𝐾 + 𝜀).

Theorem 2. If 𝑝
0
(𝑥) ≤ 𝑚, then (𝑝(𝑥, 𝑡), 𝑧(𝑥, 𝑡)) → (0, 0) or

(𝑝(𝑥, 𝑡), 𝑧(𝑥, 𝑡)) → (𝑚, 0) as 𝑡 → ∞.

Proof. From the proof of Theorem 1, if 𝑝
0
(𝑥) ≤ 𝑝

∗

< 𝑚, then
𝑝
∗

(𝑡) → 0 and consequently 𝑧∗(𝑡) → 0 as 𝑡 → ∞. This
completes the proof.

From a biological viewpoint, this implies that if the
initial population density is below the threshold 𝑚, the
phytoplankton become extinct so the zooplankton would
become extinct.

2.2. Local and Global Stability of Equilibria. System (4) has
four nonnegative steady state solutions: (0, 0), (𝑚, 0), (𝐾, 0),
and (𝑢, V

𝑢
), where 𝑢 = 𝜇/𝑒𝑎, V

𝑢
= (𝑟/𝑎)(1 − (𝑢/𝐾))((𝑢 −

𝑚)/(𝑢 + 𝑛)).
The local stability of the steady state solutions can be

analyzed as follows.
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Theorem 3. (1) (0, 0) is locally asymptotically stable.
(2) (𝐾, 0) is unstable.
(3) (𝑚, 0) is locally asymptotically stable when 𝑒𝑎𝐾−𝜇 < 0

and is unstable for 𝑒𝑎𝐾 − 𝜇 > 0.
(4) (𝑢, V

𝑢
) is locally asymptotically stable for 𝑢 < 𝑢 < 𝐾

and is unstable for 𝑢 < 𝑢 < 𝐾, where

𝑢 =
2𝑛 − √4𝑛2 + 4 (𝑚𝑛 + 𝑚𝐾 + 𝑛𝐾)

−2
. (20)

Proof. The linearization of (4) at solution (𝑝, 𝑧) can be
expressed as

𝜕𝑈

𝜕𝑡
= (𝐷Δ + 𝐽

(𝑝,𝑧)
)𝑈, (21)

where

𝑈 = (𝑝 (𝑥, 𝑡) , 𝑧 (𝑥, 𝑡))
𝑇

,

𝐷 = diag (𝑑
1
, 𝑑
2
) ,

𝐽
(𝑝,𝑧)
= (
𝐴 (𝑝, 𝑧) 𝐵 (𝑝, 𝑧)

𝐶 (𝑝, 𝑧) 𝐷 (𝑝, 𝑧)
) ,

𝐴 (𝑝, 𝑧) = 𝑟 (1 −
𝑝

𝐾
)(1 −

𝑚 + 𝑛

𝑝 + 𝑛
) −
𝑟

𝐾
𝑝(1 −

𝑚 + 𝑛

𝑝 + 𝑛
)

+ 𝑟 (1 −
𝑝

𝐾
)𝑝
𝑚 + 𝑛

(𝑝 + 𝑛)
2
− 𝑎𝑧,

𝐵 (𝑝, 𝑧) = −𝑎𝑝, 𝐶 (𝑝, 𝑧) = 𝑒𝑎𝑧, 𝐷 (𝑝, 𝑧) = 𝑒𝑎𝑝 − 𝜇.

(22)

According to Theorems 5.1.1 and 5.1.3 from [37], we know
that if all the eigenvalues of the operator 𝐿 have negative
real parts, then the solution (𝑝, 𝑧) is asymptotically stable; if
there is at least one eigenvalue with a positive real part, then
the solution (𝑝, 𝑧) is unstable; if some eigenvalues have zero
real parts, then the stability cannot be determined using this
method.

Let 𝜆
𝑖
(𝑖 = 0, 1, 2, . . .) be the eigenvalues of −Δ on Ω

under a homogeneous Neumann boundary condition and
0 = 𝜆

0
< 𝜆
1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ , lim

𝑖→∞
𝜆
𝑖
= ∞. Thus, it is known

that 𝜉 is an eigenvalue of 𝐿 if and only if 𝜉 is the eigenvalue of
the matrix 𝐽

𝑖
= −𝜆
𝑖
𝐷 + 𝐽
(𝑝,𝑧)

for some 𝑖 ≥ 0.
Consider the characteristic equation

det (𝜉𝐼 − 𝐽
𝑖
) = 𝜉
2

− trace𝐽
𝑖
𝜉 + det 𝐽

𝑖
, (23)

where
trace𝐽

𝑖
= −𝜆
𝑖
(𝑑
1
+ 𝑑
2
) + 𝐴 (𝑝, 𝑧) + 𝐷 (𝑝, 𝑧) ,

det 𝐽
𝑖
= 𝑑
1
𝑑
2
𝜆
2

𝑖
− (𝐴 (𝑝, 𝑧) 𝑑

2
+ 𝐷 (𝑝, 𝑧) 𝑑

1
) 𝜆
𝑖
+ det 𝐽

(𝑝,𝑧)
.

(24)

(1) If (𝑝, 𝑧) = (0, 0), then 𝐽
(0,0)
= (
𝑟⋅(−(𝑚/𝑛)) 0

0 −𝜇
)

trace𝐽
𝑖
= −𝜆
𝑖
(𝑑
1
+ 𝑑
2
) − (

𝑟𝑚

𝑛
+ 𝜇) < 0,

det 𝐽
𝑖
= 𝑑
1
𝑑
2
𝜆
2

𝑖
+ (
𝑟𝑚

𝑛
𝑑
2
+ 𝜇𝑑
1
)𝜆
𝑖
+
𝑟𝑚𝜇

𝑛
> 0.

(25)

This implies that (0, 0) is locally asymptotically stable.

(2) If (𝑝, 𝑧) = (𝑚, 0), then 𝐽
(𝑚,0)

=

(
𝑟⋅(1−(𝑚/𝐾))(𝑚/(𝑚+𝑛)) −𝑎𝑚

0 𝑒𝑎𝑚−𝜇
).

For 𝑖 = 0, one of the eigenvalues is 𝑟(1 − (𝑚/𝐾))(𝑚/(𝑚 +
𝑛)) > 0, which implies that (𝑚, 0) is an unstable point.

(3) If (𝑝, 𝑧) = (𝐾, 0), then 𝐽
(𝐾,0)
= (
−𝑟((𝐾−𝑚)/(𝐾+𝑛)) −𝑎𝐾

0 𝑒𝑎𝐾−𝜇
).

When 𝑒𝑎𝐾 − 𝜇 < 0,

trace𝐽
𝑖
= −𝜆
𝑖
(𝑑
1
+ 𝑑
2
) − 𝑟
𝐾 − 𝑚

𝐾 + 𝑛
+ 𝑒𝑎𝐾 − 𝜇 < 0,

det 𝐽
𝑖
= 𝑑
1
𝑑
2
𝜆
2

𝑖
+ (−𝑟

𝐾 − 𝑚

𝐾 + 𝑛
𝑑
2
+ (𝑒𝑎𝐾 − 𝜇) 𝑑

1
)𝜆
𝑖

− 𝑟
𝐾 − 𝑚

𝐾 + 𝑛
(𝑒𝑎𝐾 − 𝜇) > 0.

(26)

This implies that (𝐾, 0) is locally asymptotically stable.
When 𝑒𝑎𝐾 − 𝜇 > 0, for 𝑖 = 0, det 𝐽

𝑖
= −𝑟((𝐾 − 𝑚)/(𝐾 +

𝑛))(𝑒𝑎𝐾 − 𝜇) < 0, which implies that 𝐽
𝑖
has at least one

eigenvalue with positive real part. This implies that (𝐾, 0) is
unstable.

(4) If (𝑝, 𝑧) = (𝑢, V
𝑢
), then 𝐽

(𝑢,V
𝑢
)
= (
𝐴(𝑢) 𝐵(𝑢)

𝐶(𝑢) 0
), where

𝐴 (𝑢) = 𝑟 (1 −
𝑢

𝐾
)𝑢
𝑚 + 𝑛

(𝑢 + 𝑛)
2
−
𝑟

𝐾
𝑢
𝑢 − 𝑚

𝑢 + 𝑛
, 𝐵 (𝑢) = −

𝜇

𝑒
,

𝐶 (𝑢) = 𝑒𝑟 (1 −
𝑢

𝐾
)
𝑢 − 𝑚

𝑢 + 𝑛

(27)

and V > 0 implies that𝑚 < 𝑢 < 𝐾. Let 𝑢 be the largest root of
𝐴(𝑢) = 0.

When 𝑢 < 𝑢 < 𝐾, then 𝐴(𝑢) < 0 and

trace (𝐽
𝑖
) = −𝜆

𝑖
(𝑑
1
+ 𝑑
2
) + 𝐴 (𝑢) < 0,

det 𝐽
𝑖
= 𝑑
1
𝑑
2
𝜆
2

𝑖
− 𝐴 (𝑢) 𝑑

2
𝜆
𝑖
− 𝐵 (𝑢) 𝐶 (𝑢) > 0.

(28)

This implies that (𝑢, V
𝑢
) is locally asymptotically stable.

When 𝑚 < 𝑢 < 𝑢, then 𝐴(𝑢) > 0 and trace (𝐽
𝑖
) = 𝐴(𝑢) >

0 for 𝑖 = 0, which implies that 𝐽
𝑖
has at least one eigenvalue

with a positive real part. This implies that (𝑢, V
𝑢
) is unstable.

Theorem 4. If𝐾𝑚+𝑚𝑛+𝐾𝑛−𝑛(𝜇/𝑒𝑎) < 0, then the positive
constant steady state (𝑢, V

𝑢
) is globally asymptotically stable.

Proof. Let us consider a Lyapunov function 𝑉 as

𝑉 = ∫
Ω

𝑊(𝑝 (𝑥, 𝑡) , 𝑧 (𝑥, 𝑡)) 𝑑𝑥, (29)

where

𝑊(𝑝 (𝑥, 𝑡) , 𝑧 (𝑥, 𝑡)) = 𝑐
1
∫

𝑝

𝑢

𝑝 − 𝑢

𝑝
𝑑𝑝 + 𝑐

2
∫

𝑧

V
𝑢

𝑧 − V
𝑢

𝑧
𝑑𝑧

(30)

and 𝑐
𝑖
> 0 (𝑖 = 1, 2) will be determined next.
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By taking the time derivative of 𝑉, we have

𝑑𝑉

𝑑𝑡
= ∫
Ω

(𝑊
𝑝
⋅ 𝑝
𝑡
+𝑊
𝑧
⋅ 𝑧
𝑡
) 𝑑𝑥

= ∫
Ω

(𝑐
1

𝑝 − 𝑢

𝑝

𝜕𝑝

𝜕𝑡
+ 𝑐
2

𝑧 − V
𝑢

𝑧

𝜕𝑧

𝜕𝑡
) 𝑑𝑥

= ∫
Ω

(𝑐
1
(𝑝 − 𝑢) [𝑟 (1 −

𝑥

𝐾
)
𝑝 − 𝑚

𝑝 + 𝑛
− 𝑎𝑧]

+ 𝑐
2
(𝑧 − V

𝑢
) 𝑒𝑎 (𝑝 − 𝑢) ) 𝑑𝑥

+ ∫
Ω

(𝑐
1

𝑝 − 𝑢

𝑝
𝑑
1
Δ𝑝 + 𝑐

2

𝑧 − V
𝑢

𝑧
𝑑
2
Δ𝑧)𝑑𝑥

= 𝐼
1
(𝑡) + 𝐼

2
(𝑡) .

(31)

Due to the Neumann boundary condition, it can easily be
derived that

𝐼
2
(𝑡) = −∫

Ω

(𝑐
1
𝑑
1

𝑢

𝑝2
∇𝑝

2

+ 𝑐
2
𝑑
2

V
𝑢

𝑧2
|∇𝑧|
2

)𝑑𝑥 ≤ 0. (32)

Further,

𝐼
1
(𝑡)

= ∫
Ω

(𝑐
1
(𝑝 − 𝑢) [𝑟 (1 −

𝑝

𝐾
)
𝑝 − 𝑚

𝑝 + 𝑛
− 𝑟 (1 −

𝑢

𝐾
)
𝑢 − 𝑚

𝑢 + 𝑛

+𝑎V
𝑢
− 𝑎𝑧] + 𝑐

2
𝑒𝑎 (𝑝 − 𝑢) (𝑧 − V

𝑢
) ) 𝑑𝑥

= ∫
Ω

(𝑐
1
(𝑝 − 𝑢)

2 𝑟

𝐾
[
−𝑝𝑢 + 𝐾𝑚 − 𝑛 (𝑝 + 𝑢) + 𝑛 (𝑚 + 𝐾)

(𝑝 + 𝑛) (𝑢 + 𝑛)
]

+ (𝑒𝑎𝑐
2
− 𝑎𝑐
1
) (𝑝 − 𝑢) (𝑧 − V

𝑢
) ) 𝑑𝑥.

(33)

If we choose 𝑐
2
> 0 arbitrarily and 𝑐

1
= 𝑒𝑐
2
, thenwe can obtain

𝑑𝑉

𝑑𝑡
= 𝐼
1
(𝑡) + 𝐼

2
(𝑡) ≤ 𝐼

1
(𝑡)

= ∫
Ω

𝑐
1

𝑟

𝐾
[
−𝑝𝑢 + 𝐾𝑚 + 𝑛 (𝑚 + 𝐾) − 𝑛 (𝑝 + 𝑢)

(𝑝 + 𝑛) (𝑢 + 𝑛)
]

× (𝑝 − 𝑢)
2

𝑑𝑥

≤ ∫
Ω

𝑐
1

𝑟

𝐾

𝐾𝑚 + 𝑚𝑛 + 𝐾𝑛 − 𝑛𝑢

𝑛 (𝑢 + 𝑛)
(𝑝 − 𝑢)

2

𝑑𝑥.

(34)

Therefore, if𝐾𝑚 + 𝑚𝑛 + 𝐾𝑛 − 𝑛𝑢 < 0, then 𝑑𝑉/𝑑𝑡 ≤ 0 and
𝑑𝑉/𝑑𝑡 = 0 if 𝑝 = 𝑢, 𝑧 = V

𝑢
. This completes the proof.

3. Bifurcation Analysis

In this section, we mainly analyze the stability of the steady
state (𝑢, V

𝑢
) and take 𝑢 as the bifurcation parameter (or

equivalently take 𝑎 as a parameter). In particular, we assume
that all of the eigenvalues of −Δ are simple.

We know from the proof ofTheorem 2 that the stability of
(𝑢, V
𝑢
) is determined by the trace and determinant of 𝐽

𝑖
. Let

𝑇 (𝑢, 𝜆) = 𝐴 (𝑢) − 𝜆 (𝑑
1
+ 𝑑
2
) ,

𝐷 (𝑢, 𝜆) = 𝑑
1
𝑑
2
𝜆
2

− 𝑑
2
𝐴 (𝑢) 𝜆 − 𝐵 (𝑢) 𝐶 (𝑢) .

(35)

We refer to {(𝑢, 𝜆) ∈ 𝑅2
+
: 𝑇(𝑢, 𝜆) = 0} as the Hopf bifurcation

curve and {(𝑢, 𝜆) ∈ 𝑅2
+
: 𝐷(𝑢, 𝜆) = 0} as the steady state

bifurcation curve [38] (Figures 4 and 5).
First, 𝑇(𝑢, 𝜆) = 0 is equal to 𝜆 = (𝐴(𝑢)/(𝑑

1
+𝑑
2
)). We can

summarize the properties of 𝐴(𝑢) as follows, which are easy
to prove so the proof is omitted.

Lemma 5. Consider𝐴(𝑢) = (𝑟𝑢/𝐾(𝑢+𝑛)2)[−𝑢2−2𝑛𝑢+𝑚𝑛+
𝑚𝐾 + 𝑛𝐾]; then 0 < 𝑢∗ < 𝑢 < 𝐾 exists such that the following
hold.

(1) If 𝑚𝑛 + 𝑚𝐾 + 𝑛𝐾 ≥ 0, then 𝐴(𝑢) > 0 in (0, 𝑢) and
𝐴(0) = 𝐴(𝑢) = 0.

(2) If 𝑚𝑛 + 𝑚𝐾 + 𝑛𝐾 < 0, then ∃𝑢
𝑐
∈ (0, 𝑢

∗

) such that
𝐴(𝑢) > 0 in (𝑢

𝑐
, 𝑢), 𝐴(𝑢) < 0 in (0, 𝑢

𝑐
), and 𝐴(0) =

𝐴(𝑢
𝑐
) = 𝐴(𝑢) = 0.

(3) 𝐴(𝑢) > 0 in (max{0, 𝑢
𝑐
}, 𝑢
∗

), 𝐴(𝑢) > 0 in (𝑢∗, 𝑢),
and 𝐴(𝑢∗) = 0.

Second, 𝐷(𝑢, 𝜆) = 0 is equal to 𝜆
±
(𝑢) = (𝑑

2
𝐴(𝑢) ±

√𝑑2
2
𝐴2(𝑢) + 4𝑑

1
𝑑
2
𝐵(𝑢)𝐶(𝑢))/2𝑑

1
𝑑
2
. Let

𝑆 (𝑢) = 𝑑
2

2
𝐴
2

(𝑢) + 4𝑑
1
𝑑
1
𝐵 (𝑢) 𝐶 (𝑢) . (36)

Since

𝑆 (𝑚) = 𝑑
2

2
𝐴
2

(𝑢) > 0, 𝑆 (𝑢) = 4𝑑
1
𝑑
2
𝐵 (𝑢) 𝐶 (𝑢) < 0

(37)

according to the continuity of 𝑆(𝑢), there exists a 𝑢
𝑠
∈ (𝑚, 𝑢),

such that 𝑆(𝑢
𝑠
) = 0. Thus, we can summarize the properties of

𝜆 as follows.

Lemma 6. If 𝑢∗ ≤ 𝑚, then 𝜆
+
(𝑢) is decreasing and 𝜆

−
(𝑢) is

increasing in 𝑢 ∈ (𝑚, 𝜆
𝑠
).

Proof. Differentiating𝐷(𝑢, 𝜆) = 0 with respect to 𝑢, we have

2𝑑
1
𝑑
2
𝜆 (𝑢) 𝜆



(𝑢) − 𝑑
2
𝐴


(𝑢) 𝜆 (𝑢)

− 𝑑
2
𝐴 (𝑢) 𝜆



(𝑢) − 𝐵 (𝑢) 𝐶


(𝑢) = 0.

(38)

Therefore, 𝜆(𝑢) = (𝐵(𝑢)𝐶(𝑢) + 𝑑
2
𝐴


(𝑢)𝜆(𝑢))/𝑑
2
(2𝑑
1
𝜆(𝑢) −

𝐴(𝑢)). From the definition of 𝜆
±
(𝑢), when 𝑢 ∈ (𝑚, 𝑢

𝑠
),

𝑑
2
(2𝑑
1
𝜆
+
(𝑢) − 𝐴(𝑢)) > 0 and 𝑑

2
(2𝑑
1
𝜆
−
(𝑢) − 𝐴(𝑢)) < 0.
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However, 𝐶(𝑢) = 𝑒𝑟(1 − (𝑢/𝐾))(1 − ((𝑚 + 𝑛)/(𝑢 + 𝑛))),
𝐶


(𝑢) = 𝑒𝑟(−𝑢
2

−2𝑛𝑢+𝑚𝑛+𝑚𝐾+𝑛𝐾)/𝐾(𝑢+𝑛)
2, and 𝐶(𝑢) =

0 imply that 𝑢 = �̃� = (2𝑛 ± √4𝑛2 + 4(𝑚𝑛 + 𝑚𝐾 + 𝑛𝐾))/ − 2,
and

𝐴 (�̃�) = 𝑟 (1 −
�̃�

𝐾
) �̃�
𝑚 + 𝑛

(�̃� + 𝑛)
2
−
𝑟

𝐾
�̃�
�̃� − 𝑚

�̃� + 𝑛

=
𝑟�̃�

𝐾(�̃� + 𝑛)
2
[−�̃�
2

− 2𝑛�̃� + 𝑚𝑛 + 𝑛𝐾 + 𝑚𝐾] = 0.

(39)

Since 𝐴(𝑚) > 0 and 𝑚 < �̃� < 𝐾, then �̃� = 𝑢. Therefore,
𝐵(𝑢) < 0, 𝐶(𝑢) > 0, and 𝜆

±
(𝑢) > 0 when 𝑢 ∈ (𝑚, 𝜆

𝑠
). If

𝑢
∗

≤ 𝑚, then 𝐴(𝑢) ≤ 0 for 𝑢 ∈ (𝑚, 𝜆
𝑠
). Thus, 𝐵(𝑢)𝐶(𝑢) +

𝑑
2
𝐴


(𝑢)𝜆
±
(𝑢) < 0. This implies that 𝜆

+
(𝑢) < 0.

3.1. Hopf Bifurcation Analysis. In this section, we mainly
analyze the properties of the Hopf bifurcation for system (4).
According to [38], we know that a Hopf bifurcation point 𝑢
must satisfy the following conditions.

(A) There exists 𝑖 (𝑖 = 0, 1, 2, . . .) such that

𝑇
𝑖
(𝑢) = 0, 𝐷

𝑖
(𝑢) > 0, 𝑇

𝑗
(𝑢) ̸= 0, 𝐷

𝑗
(𝑢) ̸= 0

for 𝑗 ̸= 𝑖
(40)

and the unique pair of complex eigenvalues 𝛼(𝑢) ±
𝑖𝜔(𝑢), 𝛼(𝑢) = 0, 𝜔(𝑢) > 0 exist and are continuously
differentiable in 𝑢, with 𝛼(𝑢) ̸= 0.

Theorem 7. If 𝑢∗ ≤ 𝑚 holds, then 𝑘 ∈ 𝑁 exists such that the
system (4) undergoes a Hopf bifurcation at 𝑢 = 𝑢

𝑖
(0 ≤ 𝑖 ≤ 𝑘)

and a smooth curve of positive periodic orbits of (4) bifurcates
from (𝑢, 𝑝, 𝑧) = (𝑢

𝑖
, 𝑢
𝑖
, V
𝑢
𝑖

). The bifurcating periodic orbits
from 𝑢 = 𝑢 are spatially homogeneous and theHopf bifurcation
at 𝑢 = 𝑢 is supercritical and backward if 𝑛 > 𝑢.

Proof. It can be verified that 𝑇
𝑖
(𝑢) < 0 and 𝐷

𝑖
(𝑢) > 0 for

𝑢 ∈ (𝑢,𝐾), which implies that the potential Hopf bifurcation
point must be in (𝑚, 𝑢]. However, 𝑇

0
(𝑢) = 0, 𝐷

0
(𝑢) > 0 and

𝑇
𝑗
(𝑢) = −(𝑑

1
+ 𝑑
2
)𝜆
𝑗
< 0, 𝐷

𝑗
(𝑢) > 0 for 𝑗 ≥ 1. Therefore

𝑢
0
= 𝑢 is a Hopf bifurcation point. If 𝑢∗ ≤ 𝑚 holds, we know

that𝐴(𝑢) decreases strictly in (𝑚, 𝑢). For every 𝑖 > 0, let 𝑢
𝑖
be

the solution of 𝐴(𝑢) = (𝑑
1
+ 𝑑
2
)𝜆
𝑖
, so we have

𝑚 < 𝑢
ℎ
< 𝑢
ℎ−1
< ⋅ ⋅ ⋅ < 𝑢

1
< 𝑢, (41)

where 𝜆
ℎ
is the largest eigenvalue for 𝜆

𝑖
< 𝐴(𝑢)/(𝑑

1
+ 𝑑
2
).

Therefore, 𝑇
𝑖
(𝑢
𝑖
) = 0 and 𝑇

𝑗
(𝑢
𝑖
) ̸= 0 for 𝑗 ̸= 𝑖, 1 ≤ 𝑖 ≤ ℎ.

Geometrically, from 𝑇
𝑖
(𝑢) = 0 we can determine that 𝜆 is

a parabola of 𝑢 with 𝜆(𝑢) = 𝜆(𝑢
𝑐
) = 𝜆(0) = 0 in (𝑢, 𝜆)

coordinate system.However,𝑇(𝑚, 𝜆) = 0 implies that 𝜆(𝑚) =
𝐴(𝑚)/(𝑑

1
+ 𝑑
2
) = 𝑟(1 − (𝑚/𝐾))(𝑚/(𝑚+ 𝑛)) > 0,𝐷(𝑚, 𝜆) = 0

implies that 𝜆 = 0 or 𝜆(𝑚) = 𝐴(𝑚)/𝑑
1
> 𝐴(𝑚)/(𝑑

1
+ 𝑑
2
),

and Lemma 6 implies that 𝜆
+
(𝑢) is decreasing and 𝜆

−
(𝑢)

is increasing in 𝑢 ∈ (𝑚, 𝜆
𝑠
) if 𝑢∗ ≤ 𝑚. Thus, the curves

𝑇(𝑚, 𝜆) = 0 and 𝐷(𝑚, 𝜆) = 0 have only one intersection
point, which is noted as (𝑢

𝑙
, 𝜆
𝑙
) in𝑢 ∈ (𝑚, 𝑢).Then,𝐷

𝑖
(𝑢
𝑖
) > 0

if 𝑢
𝑖
> 𝑢
𝑏
and 𝐷

𝑖
(𝑢
𝑖
) < 0 if 𝑢

𝑖
< 𝑢
𝑏
, 1 ≤ 𝑖 ≤ ℎ. According to

Theorem 2.1 in [13], a smooth curve of positive periodic orbits
of (4) bifurcates from (𝑢, 𝑝, 𝑧) = (𝑢

𝑖
, 𝑢
𝑖
, V
𝑢
𝑖

). According to
Theorem 3.1 in [8],

𝑎 (𝑢) =
𝑢𝑓


(𝑢)

16
(
𝑓


(𝑢)

𝑓 (𝑢)
+
2

𝑢
)

=
−𝑢 (𝑛 − 𝑢) (2𝑛

2

+ 𝑚𝑛 + 𝐾𝑛 + 𝐾𝑚)

8(𝑢 + 𝑛)
5

< 0

(42)

if 𝑛 > 𝑢 holds.

3.2. Steady State Bifurcation Analysis. In this section, we
consider the steady state bifurcation of system (4). The
nonnegative steady state solutions of (4) satisfy the following
system:

−𝑑
1
Δ𝑝 = 𝑟 (1 −

𝑝

𝐾
)(1 −

𝑚 + 𝑛

𝑝 + 𝑛
)𝑝 − 𝑎𝑝𝑧, 𝑥 ∈ Ω,

−𝑑
2
Δ𝑧 = 𝑒𝑎𝑝𝑧 − 𝜇𝑧, 𝑥 ∈ Ω,

𝜕𝑝

𝜕𝑛
=
𝜕𝑧

𝜕𝑛
= 0, 𝑥 ∈ 𝜕Ω.

(43)

Apparently (43) has spatially homogeneous solutions (0, 0),
(𝐾, 0), (𝑚, 0), (𝑢, V

𝑢
). First, we discuss the nonnegative steady

state solutions of (4). Recall the maximum principle [13].

Lemma 8. Let Ω be a bounded Lipschitz domain in 𝑅𝑛, and
let 𝑔 ∈ 𝐶(Ω × 𝑅). If 𝑦 ∈ 𝑊1,2(Ω) is a weak solution of the
inequalities

Δ𝑦 + 𝑔 (𝑥, 𝑦 (𝑥)) ≥ 0 𝑖𝑛 Ω,
𝜕𝑦 (𝑥)

𝜕𝑛
≤ 0 𝑜𝑛 𝜕Ω,

(44)

and if there is a constant𝑀 such that 𝑔(𝑥, 𝑦) < 0 for 𝑦 > 𝑀,
then 𝑦 ≤ 𝑀 a.e. in Ω.

From Lemma 8, it can easily be derived that all nontrivial
solutions of equation

𝑟 (1 −
𝑝

𝐾
)(1 −

𝑚 + 𝑛

𝑝 + 𝑛
)𝑝 + 𝑑

1
Δ𝑝 = 0, 𝑥 ∈ Ω,

𝜕𝑝

𝜕𝑛
= 0, 𝑥 ∈ 𝜕Ω

(45)

satisfy 0 ≤ 𝑝(𝑥) ≤ 𝐾.

Theorem 9. The solutions of system (43) are in the form of
either (𝑝(𝑥), 0) or (𝑝(𝑥), 𝑧(𝑥)) satisfying

0 < 𝑝 (𝑥) < 𝐾, 0 < 𝑧 (𝑥) <
𝑒𝑟

𝑛𝜇
(
𝐾 − 𝑚

2
)

2

−
𝑑
1
𝐾

2
≜ 𝐿.

(46)

Proof. If 𝑥
0
∈ Ω exists such that 𝑧(𝑥

0
) = 0, from the strong

maximum principle and the boundary condition 𝜕𝑧/𝜕𝑛 = 0,
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we can derive 𝑧(𝑥) ≡ 0 in Ω, so 𝑝(𝑥) satisfies (45). Similarly,
if 𝑥
0
∈ Ω exists such that 𝑝(𝑥

0
) = 0, we can derive 𝑝(𝑥) ≡

0 and consequently 𝑧(𝑥) ≡ 0. If, for all 𝑥 ∈ Ω, 𝑝(𝑥) > 0
and 𝑧(𝑥) > 0 hold, according to the above discussion and
the strong maximum principle we have 0 < 𝑝(𝑥) < 𝐾 for all
𝑥 ∈ Ω. After adding the two equations in (43), we have

− (𝑒𝑑
1
Δ𝑝 + 𝑑

2
Δ𝑧)

= 𝑒𝑟 (1 −
𝑝

𝐾
)(1 −

𝑚 + 𝑛

𝑝 + 𝑛
)𝑝 − 𝜇𝑧

= 𝑒𝑟 (1 −
𝑝

𝐾
)(1 −

𝑚 + 𝑛

𝑝 + 𝑛
)𝑝 −

𝜇

𝑑
2

(𝑑
1
𝑝 + 𝑑
2
𝑧) +

𝜇𝑑
1

𝑑
2

𝑝

≤ [
𝑒𝑟

𝐾𝑛
(
𝐾 − 𝑚

2
)

2

−
𝜇𝑑
1

𝑑
2

]𝐾 −
𝜇

𝑑
2

(𝑑
1
𝑝 + 𝑑
2
𝑧) .

(47)

The maximum principle and Green formula imply that

𝑑
2
𝑧 < 𝑑
1
𝑝 + 𝑑
2
𝑧 <
𝑑
2

𝜇
[
𝑒𝑟

𝐾𝑛
(
𝐾 − 𝑚

2
)

2

−
𝜇𝑑
1

2
]𝐾. (48)

Therefore, we can show the nonexistence of positive steady
state solutions when the diffusion coefficients are large.

Theorem 10. Let 𝐷
1
> (𝐾
2

+ 𝑚𝐾 − 𝑚𝑛)𝐾/𝑛
2

𝜆
1
be a fixed

constant.Then, another constant𝐷
2
exists such that if 𝑑

1
≥ 𝐷
1

and 𝑑
2
≥ 𝐷
2
hold, (43) has no nonconstant positive solution.

Proof. Assume that (𝑝(𝑥), 𝑧(𝑥)) is a positive solution of (43).
For convenience, we denote

𝑓
1
(𝑝, 𝑧) = 𝑟 (1 −

𝑝

𝐾
)(1 −

𝑚 + 𝑛

𝑝 + 𝑛
)𝑝 − 𝑎𝑝𝑧,

𝑓
2
(𝑝, 𝑧) = 𝑒𝑎𝑝𝑧 − 𝜇𝑧.

(49)

Let

𝑝 =
1

|Ω|
∫
Ω

𝑝 (𝑥) 𝑑𝑥,

𝑧 =
1

|Ω|
∫
Ω

𝑧 (𝑥) 𝑑𝑥;

(50)

then ∫
Ω

(𝑝−𝑝)𝑑𝑥 = 0, ∫
Ω

(𝑧−𝑧)𝑑𝑥 = 0. Bymultiplying (𝑝−𝑝)
by the first equation in (43) and then integrating on Ω, we
have

∫
Ω

𝑑
1

∇𝑝

2

𝑑𝑥

= ∫
Ω

𝑓
1
(𝑝, 𝑧) (𝑝 − 𝑝) 𝑑𝑥

= ∫
Ω

(𝑓
1
(𝑝, 𝑧) − 𝑓

1
(𝑝, 𝑧)) (𝑝 − 𝑝) 𝑑𝑥

= ∫
Ω

((−𝑝𝑝 (𝑝 + 𝑝) (𝑝 − 𝑝)
2

+ (𝐾 + 𝑚) 𝑝𝑝(𝑝 − 𝑝)
2

− 𝐾𝑚𝑛 (𝑝 − 𝑝))

× ((𝑝 + 𝑛) (𝑝 + 𝑛))
−1

−𝑎𝑝 (𝑝 − 𝑝) (𝑧 − 𝑧) − 𝑎𝑧(𝑧 − 𝑧)
2

) 𝑑𝑥

≤ ∫
Ω

(
(𝐾 + 𝑚𝐾 − 𝑚𝑛)𝐾

𝑛2
(𝑝 − 𝑝)

2

+𝑎𝐾
𝑝 − 𝑝

 |𝑧 − 𝑧| ) 𝑑𝑥.

(51)

Similarly,

∫
Ω

𝑑
2
|∇𝑧|
2

𝑑𝑥

= ∫
Ω

𝑓
2
(𝑝, 𝑧) (𝑧 − 𝑧) 𝑑𝑥

= ∫
Ω

(𝑓
2
(𝑝, 𝑧) − 𝑓

2
(𝑝, 𝑧)) (𝑧 − 𝑧) 𝑑𝑥

= ∫
Ω

((𝑒𝑎𝑝 − 𝜇) (𝑧 − 𝑧)
2

− 𝑒𝑎𝑧 (𝑝 − 𝑝) (𝑧 − 𝑧)) 𝑑𝑥

≤ ∫
Ω

((𝑒𝑎𝐾 − 𝜇) (𝑧 − 𝑧)
2

+ 𝑒𝑎𝐿
𝑝 − 𝑝

 |𝑧 − 𝑧|) 𝑑𝑥,

(52)

where 𝐿 is defined inTheorem 9.
Therefore,

∫
Ω

(𝑑
1

∇𝑝

2

+ 𝑑
2
|∇𝑧|
2

) 𝑑𝑥

≤ ∫
Ω

(
(𝐾
2

+ 𝑚𝐾 − 𝑚𝑛)𝐾

𝑛2
(𝑝 − 𝑝)

2

+ (𝑎𝐾 + 𝑒𝑎𝐿)
𝑝 − 𝑝

 |𝑧 − 𝑧|

+ (𝑒𝑎𝐾 − 𝜇) (𝑧 − 𝑧)
2

)𝑑𝑥

≤ ∫
Ω

((
(𝐾
2

+ 𝑚𝐾 − 𝑚𝑛)𝐾

𝑛2
+
𝑎𝐾 + 𝑒𝑎𝐿

2
𝜀) (𝑝 − 𝑝)

2

+(
𝑒𝑎𝐿 + 𝑎𝐾

2𝜀
+ 𝑒𝑎𝐾 − 𝜇) (𝑧 − 𝑧)

2

)𝑑𝑥.

(53)

Using the Poincáre inequality, we can obtain

∫
Ω

(𝑑
1
𝜆
1

𝑝 − 𝑝

2

+ 𝑑
2
𝜆
1
|𝑧 − 𝑧|

2

) 𝑑𝑥

≤ ∫
Ω

((
(𝐾
2

+ 𝑚𝐾 − 𝑚𝑛)𝐾

𝑛2
+
𝑎𝐾 + 𝑒𝑎𝐿

2
𝜀) (𝑝 − 𝑝)

2

+ (
𝑒𝑎𝐿 + 𝑎𝐾

2𝜀
+ 𝑒𝑎𝐾 − 𝜇) (𝑧 − 𝑧)

2

)𝑑𝑥.

(54)
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Under the assumption 𝑑
1
𝜆
1
> (𝐾

2

+ 𝑚𝐾 − 𝑚𝑛)𝐾/𝑛
2, a

sufficiently small 𝜀 > 0 exists such that 𝑑
1
𝜆
1
≥ (𝐾
2

+ 𝑚𝐾 −

𝑚𝑛)𝐾/𝑛
2

+((𝑎𝐾+𝑒𝑎𝐿)/2)𝜀. Let𝐷
2
= ((𝑒𝑎𝐿+𝑎𝐾)/2𝜀+𝑒𝑎𝐾−

𝜇)(1/𝜆
1
); then we can have 𝑝 = 𝑝, 𝑧 = 𝑧. This completes the

proof.

We assume that all of the eigenvalues of −Δ are simple
and the corresponding eigenfunctions are denoted by 𝜙

𝑖
(𝑥).

Reference [13] gives an example of 𝑛 = 1 with 𝜆
𝑖
= 𝑖
2

/𝑙
2 and

𝜙
𝑖
(𝑥) = cos(𝑖𝑥/𝑙). Let

𝑇
𝑖
(𝑢) = −𝜆

𝑖
(𝑑
1
+ 𝑑
2
) + 𝐴 (𝑢) ,

𝐷
𝑖
(𝑢) = 𝑑

1
𝑑
2
𝜆
2

𝑖
− 𝐴 (𝑢) 𝑑

2
𝜆
𝑖
− 𝐵 (𝑢) 𝐶 (𝑢) .

(55)

According to [13], we know that a steady state bifurcation
point 𝑢must satisfy the following conditions.

(B) 𝑖 (𝑖 = 0, 1, 2, . . .) exists such that

𝐷
𝑖
(𝑢) = 0, 𝑇

𝑖
(𝑢) ̸= 0, 𝐷

𝑗
(𝑢) ̸= 0, 𝑇

𝑗
(𝑢) ̸= 0,

for 𝑗 ̸= 𝑖,

𝑑𝐷
𝑖
(𝑢)

𝑑𝑢
̸= 0.

(56)

Theorem 11. 𝑘 ∈ 𝑁 exists such that system (43) undergoes a
steady state bifurcation at 𝑢 = 𝑢

𝑖
(1 ≤ 𝑖 ≤ 𝑘



) if 𝑢∗ ≤ 𝑚 holds.

Proof. Apparently (B) is not established for 𝑖 = 0. It is known
that 𝐷

𝑖
(𝑢) is a degree 3 polynomial of 𝑢 and there are at

most three 𝑢
𝑖
for 𝐷

𝑖
(𝑢
𝑖
) = 𝐷(𝑢

𝑖
, 𝜆
𝑖
) = 0. In particular, if

the parameters are selected such that 𝑢∗ ≤ 𝑚 holds, then,
for each 𝑖 > 0, there exists a unique 𝑢

𝑖
∈ (𝑚, 𝑢

𝑠
) such that

𝐷
𝑖
(𝑢
𝑖
) = 𝐷(𝑢

𝑖
, 𝜆
𝑖
) = 0. Thus, there is at most one bifurcation

point. However, 𝐷
𝑖
(𝑢) = −𝐴(𝑢)𝑑

2
𝜆
𝑖
− 𝐵(𝑢)𝐶



(𝑢). From the
proof of Lemma 6 we know that 𝐵(𝑢)𝐶(𝑢)+𝑑

2
𝐴


(𝑢)𝜆
±
(𝑢) <

0 for 𝑢 ∈ (𝑚, 𝜆
𝑠
). Therefore, 𝑑𝐷

𝑖
(𝑢)/𝑑𝑢 ̸= 0 holds if 𝑢∗ ≤

𝑚.

4. Discussion

Reaction-diffusion phytoplankton-zooplankton models with
Allee effects have been studied extensively in recent years. In
this study, we rigorously considered a Gause-type predator-
prey model with a double Allee effect on prey, which was
formulated as (4). It is known that the predator-prey model
with the most usual form of Allee effect has a unique limit
cycle, but the existence of two limit cycles was proved by
González-Olivares et al. [29] with a double Allee effect.
Thus, the double Allee effect produces different results with
different mathematical expressions.

The paper [15] found that the system without Allee effect
was always stable and without fluctuations, but in this paper
the results of the stability of the equilibrium and the bifur-
cation analysis based on a rigorous theoretical analysis show
that this system has complex spatiotemporal dynamics: for
𝑝
0
(𝑥) ≤ 𝑚, the phytoplankton is destined to become extinct

and leads to the extinction of zooplankton; after considering
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Figure 3: Time evolution of (4) around the interior equilibrium
(8, 2.30769). Phytoplankton is in (a) and zooplankton is in (b). The
parameter values are 𝑑

1
= 0.001, 𝑑

2
= 0.004, 𝑒 = 0.5, 𝑎 = 0.1, 𝑛 = 5,

𝑚 = 0.5, 𝜇 = 0.4, 𝑟 = 2, and 𝐾 = 10. The figure shows that both
types of plankton exhibit stable behavior.

the strong Allee effect in phytoplankton, extinction for both
species is always a locally stable equilibrium. But for 𝑢 >
𝑚, which is the condition in which the interior equilibrium
exists, the interior equilibrium is globally stable in some case
and there always exist some other spatiotemporal patterns in
other cases (Figure 3).

Overall, our results indicate that the impact of the Allee
effect increases the spatiotemporal complexity of the system.
The mathematical form which expresses the double Allee
effect has a strong impact of the dynamics of system. Thus,
we think it is important for ecologists to be aware of the
difference of the selection on the forms of Allee effect.

The limitations of our study are that we only consider
a simplest phytoplankton-zooplankton interaction and the
special formalization to describe the Allee effect. What is
more is that, compared with the ODE dynamics, the results
shown here are still coarse. Therefore, further research is still
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Figure 4: The graph of 𝑇(𝑢, 𝜆) = 0 and 𝐷(𝑢, 𝜆) = 0, where 𝑑
1
=

0.001, 𝑑
2
= 0.004, 𝑒 = 0.5, 𝑎 = 1, 𝑛 = 5, 𝑚 = 5, 𝜇 = 0.4, 𝑟 = 2, and

𝐾 = 10. In this case, 𝑢∗ ≤ 𝑚.

𝜆
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300
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Figure 5: The graph of 𝑇(𝑢, 𝜆) = 0 and 𝐷(𝑢, 𝜆) = 0, where 𝑑
1
=

0.001, 𝑑
2
= 0.004, 𝑒 = 0.5, 𝑎 = 1, 𝑛 = 5, 𝑚 = 1, 𝜇 = 0.4, 𝑟 = 2, and

𝐾 = 10. In this case, 𝑢∗ > 𝑚.

needed to elaborate a general theory on the influence of this
ecological phenomenon.
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