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This paper deals with the problem of robust exponential stability and𝐻
∞
performance analysis for a class of uncertain Markovian

jumping system with multiple delays. Based on the reciprocally convex approach, some novel delay-dependent stability criteria for
the addressed system are derived. At last, numerical examples is given presented to show the effectiveness of the proposed results.

1. Introduction

It is well known that time delay is usually the main reason for
instability and poor performance of many practical control
systems [1–5]. The stability results for delayed systems can
be generally classified into two categories: delay-independent
stability criteria and delay-dependent criteria. And the delay-
dependent results are often less conservative than the delay-
independent ones, especially when the time delays are
small. Therefore, much more attention has been focused
on study of the delay-dependent stability conditions in
recent years. For example, the system transformationmethod
in [6], the descriptor system method in [7], parameter-
dependent Lyapunov-Krasovskii functional method in [8],
Jensen inequality method in [9], Free-weighting matrix
method in [10, 11], integral inequality method in [12],
augmented Lyapunov functional method in [13], convex
domain method in [14], interval partition method in [15, 16],
reciprocally convex method in [17], and so forth. And those
approaches have been widely used in the stability analysis for
lots of delayed systems in recent years [18–20].

On the other hand, since Markovian jumping systems
can model many types of dynamic systems subject to abrupt
changes in their structures, such as failure prone manu-
facturing systems, power systems, and economics systems

[21–27], a great deal of results related to stability analysis
and synthesis for this class of systems with time delays
has been reported in recent years. For example, for the
delay-independent results, sufficient conditions for mean
squares to stochastic stability were obtained in [28], while
exponential stability conditions were proposed in [29]. The
robust 𝐻

∞
filtering problem was dealt with in [30]. For the

delay-dependent ones, the stability and 𝐻
∞

control results
were presented by resorting to some bounding techniques
for some cross terms and using model transformation to
the original delay system in [31]. The 𝐻

∞
control and

Filtering problem were taken into account in [32] using
the Free-weighting matrix method. The stability and 𝐻

∞

analysis was proposed in [33] with the idea of delay partition.
Filtering problem with a new index was considered in [34]
using the reciprocally convex method. It is worth mentioned
that inspite of the deep study for the delayed stochastic
in recent years as mentioned above, there are few papers
that consider the problem of stability analysis for uncertain
stochastic systems with multiple delays, which motivates our
study.

In this paper, the robust exponential stability and 𝐻
∞

performance analysis for a class of uncertain Markovian
system with multiple time-varying delays is investigated.
Some new delay-dependent stability conditions are derived.
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And numerical simulation is given to demonstrate the effec-
tiveness of the result.
Notation. Throughout this paper, for symmetric matrices 𝑋
and 𝑌, the notation 𝑋 ≥ Y (resp., 𝑋 > 𝑌) means that
the matrix 𝑋 − 𝑌 is positive semidefinite (resp., positive
definite); 𝐼 is the identity matrix with appropriate dimension;
𝑀
𝑇 represents the transpose of the matrix 𝑀; E{⋅} denotes

the expectation operator with respect to some probability
measureP; 𝐿

2
[0,∞] is the space of square-integrable vector

functions over [0,∞]; | ⋅ | refers to the Euclidean vector
norm; ‖ ⋅ ‖

2
stands for the usual 𝐿

2
[0,∞] norm; (Ω,F,P)

is a probability space with Ω the sample space and F is
the 𝜎-algebra of subsets of the sample space. Matrices, if
not explicitly mentioned, are assumed to have compatible
dimensions.

2. System Description and Preliminaries

Consider the following uncertainMarkovian jumping system
with multiple time-varying delays:

�̇� (𝑡) = 𝐴
0
(𝑟 (𝑡) , 𝑡) 𝑥 (𝑡)

+

𝑚

∑

𝑖=1

𝐴
𝑖
(𝑟 (𝑡) , 𝑡) 𝑥 (𝑡 − ℎ

𝑖
(𝑡))

+ 𝐷
1
(𝑟 (𝑡) , 𝑡) 𝑤 (𝑡) ,

(1)

𝑧 (𝑡) =

𝑚

∑

𝑖=0

𝐶
𝑖
(𝑟 (𝑡)) 𝑥 (𝑡 − ℎ

𝑖
(𝑡)) + 𝐷

2
(𝑟 (𝑡)) 𝑤 (𝑡) , (2)

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] , (3)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state; 𝑤(𝑡) ∈ 𝑅

𝑝 is the noise
disturbance which is assumed to be an arbitrary signal in
𝐿
2

([0,∞]); 𝑧(𝑡) ∈ 𝑅
𝑞 is the signal to be estimated; 𝑟(𝑡) is a

homogenous stationary Markov chain defined on a complete
probability space {Ω, 𝐹, 𝑃} and taking values in a finite set
𝑆 = {1, 2, . . . , 𝑁} with generator Π = (𝜆

𝑚,𝑛
) (𝑚, 𝑛 ∈ 𝑆) given

by

𝑃 {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑘}

= {

𝜆
𝑘,𝑗
Δ + 𝑜 (Δ) if 𝑘 ̸= 𝑗,

1 + 𝜆
𝑘,𝑘
Δ + 𝑜 (Δ) if 𝑘 = 𝑗,

(4)

whereΔ > 0 and lim
Δ→0

𝑜(Δ)/Δ = 0, 𝜆
𝑘,𝑗

≥ 0 is the transition
rate from 𝑘 to 𝑗 if 𝑘 ̸= 𝑗 and 𝜆

𝑘,𝑘
= −∑

𝑘 ̸= 𝑗
𝜆
𝑘,𝑗
. The scalar

ℎ
𝑖
(𝑡) is the time-varying delay with 0 ≤ ℎ

1𝑖
≤ ℎ
𝑖
(𝑡) ≤ ℎ

2𝑖
,

̇
ℎ
𝑖
(𝑡) ≤ 𝜇, 𝑖 = 1, 2, . . . , 𝑚, for any 𝑡 > 0, where ℎ

1𝑖
, ℎ
2𝑖
,

and 𝜇 are positive scalar constants; 𝜙(𝑡) is the initial function
defined in 𝑡 ∈ [−ℎ, 0] with ℎ = max{ℎ

21
, ℎ
22
, . . . , ℎ

2𝑚
};

𝐴
𝑖
(𝑟(𝑡)), 𝑖 = 0, 1, . . . , 𝑚, and 𝐷

1
(𝑟(𝑡)) are matrix functions

with time-varying uncertainties described as 𝐴
𝑖
(𝑟(𝑡), 𝑡) =

𝐴
𝑖
(𝑟(𝑡)) + Δ𝐴

𝑖
(𝑟(𝑡), 𝑡), 𝐷

1
(𝑟(𝑡), 𝑡) = 𝐷

1
(𝑟(𝑡)) + Δ𝐷

1
(𝑟(𝑡), 𝑡),

where 𝐴
𝑖
(𝑟(𝑡)), 𝐷

1
(𝑟(𝑡)) are known constant matrices, while

uncertainties Δ𝐴
𝑖
(𝑟(𝑡), 𝑡), Δ𝐷

1
(𝑟(𝑡), 𝑡) are assumed to be

norm bounded as
[Δ𝐴
𝑖
(𝑟 (𝑡) , 𝑡) Δ𝐷

1
(𝑟 (𝑡) , 𝑡)]

= 𝐸 (𝑟 (𝑡)) 𝐹 (𝑟 (𝑡) , 𝑡) [𝐻
𝑖
(𝑟 (𝑡)) 𝐻

𝑑
(𝑟 (𝑡))] ,

𝑖 = 0, 1, . . . , 𝑚,

(5)

where 𝐸(𝑟(𝑡)),𝐻
𝑖
(𝑟(𝑡)),𝐻

𝑑
(𝑟(𝑡)), and 𝐶

𝑖
(𝑟(𝑡)),𝐷

2
(𝑟(𝑡)) in (2)

are known constant matrices with appropriate dimensions.
The unknown matrix functions 𝐹(𝑟(𝑡)) are having Lebesgue-
measurable elements and satisfying

𝐹 (𝑟 (𝑡)) ≤ 𝐼, ∀𝑡 > 0. (6)

Remark 1. When 𝑚 = 1, the system with multiple time-
varying delays (1)–(3) is actually deduced to the uncertain
Markovian jumping system with interval delay, which have
been deeply studied in recent years. That is, the obtained
results of multiple delayed systems can be directly deduced
to the interval delayed systems.

Throughout this paper, we will use the following Defini-
tions and Lemmas.

Definition 2. The uncertain Markovian jumping system with
multiple time-varying delays (1)–(3) is said to be robustly
exponentially stable in mean square for all admissible uncer-
tainties, if there exist scalars 𝛼

1
> 0 and 𝛼

2
> 0 such that for

all 𝑡 ≥ 0,




𝑥(𝑡, 𝑥
0
, 𝑡
0
)





2

≤ 𝛼
1
𝑒
−𝛼
2
𝑡 sup
−2ℎ≤𝑠≤0

{




𝜙 (𝑠)






2

} , (7)

where 𝑥(𝑡, 𝑥
0
, 𝑡
0
) is the trivial solution of systems (1)–(3) with

𝑤(𝑡) = 0.

Definition 3. Given a scalar 𝛾 > 0, uncertain Markovian
jumping system with multiple time-varying delays (1)–(3) is
said to be robustly exponentially stable with a prescribed𝐻

∞

performance level 𝛾 if it is robustly exponentially stable, and
under the zero initial condition, satisfies

‖𝑧‖
𝐸
2

< 𝛾‖𝑤‖
2
, (8)

for all admissible uncertainties and nonzero𝑤(𝑡) ∈ 𝐿
2
[0,∞),

where

‖𝑧‖
𝐸
2

= ({∫

∞

0






𝑧(𝑡)
2





𝑑𝑡})

1/2

. (9)

Lemma4 (see [9]). For any constant matrix𝑀 ∈ 𝑅
𝑚×𝑚, 𝑀 =

𝑀
𝑇

> 0, scalar 𝛾 > 0, vector function 𝜔 : [0, 𝛾] → 𝑅
𝑚 such

that the integrations in the following are well defined; then

𝛾∫

𝛾

0

𝜔(𝛽)
𝑇

𝑀𝜔(𝛽) 𝑑𝛽 ≥ (∫

𝛾

0

𝜔 (𝛽) 𝑑𝛽)

𝑇

𝑀∫

𝛾

0

𝜔 (𝛽) 𝑑𝛽.

(10)

Lemma5 (see [35]). Let𝐴,𝐷,𝐸 be real constantmatrices with
appropriate dimensions; matrix 𝐹(𝑡) satisfies 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼.
For any 𝜀 > 0, such that 𝑃−1 − 𝜀𝐷𝐷

𝑇

> 0,

𝐷𝐹 (𝑡) 𝐸 + 𝐸
𝑇

𝐹
𝑇

(𝑡) 𝐷
𝑇

≤ 𝜀
−1

𝐷𝐷
𝑇

+ 𝜀𝐸
𝑇

𝐸. (11)
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Lemma 6 (see [36]). Consider system (1) with 0 ≤ ℎ
1𝑖

≤

ℎ
𝑖
(𝑡) ≤ ℎ

2𝑖
, 𝑖 = 1, 2, . . . , 𝑚, for any matrices 𝑍

𝑖
∈ 𝑅
𝑛×𝑛 and

𝑈i ∈ 𝑅
𝑛×𝑛 satisfying [ 𝑍𝑖 𝑈𝑖

∗ 𝑍
𝑖

] ≥ 0; the following inequality holds

−
̂
𝑑
𝑖
∫

𝑡−ℎ
1𝑖

𝑡−ℎ
2𝑖

�̇�(𝑠)
𝑇

𝑍
𝑖
�̇� (𝑠) 𝑑𝑠 ≤ 𝜉

𝑖
(𝑡)
𝑇

Ω
𝑖
𝜉
𝑖
(𝑡) , (12)

where ̂
𝑑
𝑖
= ℎ
2𝑖
− ℎ
1𝑖
, and

𝜉
𝑖
(𝑡) = [𝑥(𝑡 − ℎ

1𝑖
)
𝑇

𝑥(𝑡 − ℎ
𝑖
(𝑡))
𝑇

𝑥(𝑡 − ℎ
2𝑖
)
𝑇

]

𝑇

,

Ω
𝑖
=

[

[

−𝑍
𝑖

𝑍
𝑖
− 𝑈
𝑖

𝑈
𝑖

∗ −2𝑍
𝑖
+ 𝑈
𝑖
+ 𝑈
𝑇

𝑖
𝑍
𝑖
− 𝑈
𝑖

∗ ∗ −𝑍
𝑖

]

]

.

(13)

3. Main Results

For simplicity, we define

𝜒 (𝑡) = [𝑥(𝑡)
𝑇

𝑥(𝑡 − ℎ
11
)
𝑇

𝑥 (𝑡 − ℎ
1
(𝑡)
𝑇

) 𝑥(𝑡 − ℎ
21
)
𝑇

⋅ ⋅ ⋅ 𝑥(𝑡 − ℎ
1𝑚

)
𝑇

𝑥 (𝑡 − ℎ
𝑚
(𝑡)
𝑇

) 𝑥(𝑡 − ℎ
2𝑚

)
𝑇

�̇�(𝑡)
𝑇

]

𝑇

,

𝑒
1

= [1 0 ⋅ ⋅ ⋅ 0]

𝑇

1×3𝑚+2
,

𝑒
2

= [0 1 ⋅ ⋅ ⋅ 0]

𝑇

1×3𝑚+2
,

...

𝑒
3𝑚+2

= [0 0 ⋅ ⋅ ⋅ 1]

𝑇

1×3𝑚+2
,

𝛽
1

= [1 0 ⋅ ⋅ ⋅ 0]

𝑇

1×3𝑚+3
,

𝛽
2

= [0 1 ⋅ ⋅ ⋅ 0]

𝑇

1×3𝑚+3
,

...

𝛽
3𝑚+3

= [0 0 ⋅ ⋅ ⋅ 1]

𝑇

1×3𝑚+3
,

𝜒
1
(𝑡) = [𝜒(𝑡)

𝑇

𝑤(𝑡)
𝑇

]

𝑇

.

(14)

3.1. Robust Exponential Stability Analysis. The criteria of
the robust exponential stability for the systems (1)–(3) are
proposed in the followingTheorem.

Theorem 7. Systems (1)–(3) with 𝑤(𝑡) = 0 is robustly
exponentially stable if there exist positivematrices𝑃

𝑘
= 𝑃
𝑇

𝑘
> 0,

𝑄
𝑖
= 𝑄
𝑇

𝑖
> 0, 𝑅

1𝑖
= 𝑅
𝑇

1𝑖
> 0, 𝑅

2𝑖
= 𝑅
𝑇

2𝑖
> 0, 𝑆

𝑖
= 𝑆
𝑇

𝑖
> 0,

𝑍
𝑖
= 𝑍
𝑇

𝑖
> 0, anymatrices𝑈

𝑖
𝑀
𝑗
with appropriate dimensions

satisfying [
𝑍
𝑖
𝑈
𝑖

∗ 𝑍
𝑖

] ≥ 0, 𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, 𝑘 =

1, 2, . . . , 𝑁, and positive scalars 𝜀 > 0, such that the following
LMI holds

[

Θ
11𝑘

Θ
12𝑘

∗ −𝜀𝐼
] < 0, 𝑘 = 1, 2, . . . , 𝑁, (15)

where

Θ
11𝑘

= 𝑒
1
𝑃
𝑘
𝑒
𝑇

3𝑚+2
+ 𝑒
3𝑚+2

𝑃
𝑘
𝑒
𝑇

1

+
[

[

𝑁

∑

𝑗=1

𝑒
1
𝜆
𝑘,𝑗
𝑃
𝑗
𝑒
𝑇

1

]

]

+ [𝑒
1

𝑚

∑

𝑖=1

𝑄
𝑖
𝑒
𝑇

1
]

− [

𝑚

∑

𝑖=1

(1 − 𝜇) 𝑒
3𝑖
𝑄
𝑖
𝑒
𝑇

3𝑖
]

+ [𝑒
1

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
) 𝑒
𝑇

1
] − [

𝑚

∑

𝑖=1

𝑒
3𝑖−1

𝑅
1𝑖
𝑒
𝑇

3𝑖−1
]

− [

𝑚

∑

𝑖=1

𝑒
3𝑖+1

𝑅
2𝑖
𝑒
𝑇

3𝑖+1
]

+ [

𝑚

∑

𝑖=1

ℎ
2

1𝑖
𝑒
3𝑚+2

𝑆
𝑖
𝑒
𝑇

3𝑚+2
] + [

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
𝑒
3𝑚+2

𝑍
𝑖
𝑒
𝑇

3𝑚+2
]

− [

𝑚

∑

𝑖=1

(𝑒
1
− 𝑒
3𝑖−1

) 𝑆
𝑖
(𝑒
1
− 𝑒
3𝑖−1

)
𝑇

]

+ (

𝑚

∑

𝑖=1

diag (0, Ω
𝑖
, 0))

+ [𝑒
1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
]
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⋅ [𝐴
0
(𝑘) 𝑒
𝑇

1
+ 𝐴
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴

𝑚
(𝑘) 𝑒
𝑇

3𝑚
− 𝑒
𝑇

3𝑚+2
]

+ [𝑒
1
𝐴
𝑇

0
(𝑘) + 𝑒

3
𝐴
𝑇

1
(𝑘) + ⋅ ⋅ ⋅ + 𝑒

3𝑚
𝐴
𝑇

𝑚
(𝑘) − 𝑒

3𝑚+2
]

× [𝑀
𝑇

1
𝑒
𝑇

1
+𝑀
𝑇

2
𝑒
𝑇

3𝑚+2
]

+ 𝜀[𝐻
0
(𝑘) 𝑒
𝑇

1
+ 𝐻
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐻

𝑚
(𝑘) 𝑒
𝑇

3𝑚
]

𝑇

× [𝐻
0
(𝑘) 𝑒
𝑇

1
+ 𝐻
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐻

𝑚
(𝑘) 𝑒
𝑇

3𝑚
] ,

Θ
12𝑘

= [𝑒
1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
] 𝐸 (𝑘) .

(16)

And Ω
𝑖

̂
𝑑
𝑖
are defined in (3).

Proof. On one hand, using Lemma 5 and Schur complement
lemma to (15), we have

Π = 𝑒
1
𝑃
𝑘
𝑒
𝑇

3𝑚+2
+ 𝑒
3𝑚+2

𝑃
𝑘
𝑒
𝑇

1

+
[

[

𝑁

∑

𝑗=1

𝑒
1
𝜆
𝑘,𝑗
𝑃
𝑗
𝑒
𝑇

1

]

]

+ [𝑒
1

𝑚

∑

𝑖=1

𝑄
𝑖
𝑒
𝑇

1
]

− [

𝑚

∑

𝑖=1

(1 − 𝜇) 𝑒
3𝑖
𝑄
𝑖
𝑒
𝑇

3𝑖
]

+ [𝑒
1

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
) 𝑒
𝑇

1
] − [

𝑚

∑

𝑖=1

𝑒
3𝑖−1

𝑅
1𝑖
𝑒
𝑇

3𝑖−1
]

− [

𝑚

∑

𝑖=1

𝑒
3𝑖+1

𝑅
2𝑖
𝑒
𝑇

3𝑖+1
]

+ [

𝑚

∑

𝑖=1

ℎ
2

1𝑖
𝑒
3𝑚+2

𝑆
𝑖
𝑒
𝑇

3𝑚+2
] + [

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
𝑒
3𝑚+2

𝑍
𝑖
𝑒
𝑇

3𝑚+2
]

− [

𝑚

∑

𝑖=1

(𝑒
1
− 𝑒
3𝑖−1

) 𝑆
𝑖
(𝑒
1
− 𝑒
3𝑖−1

)
𝑇

]

+ (

𝑚

∑

𝑖=1

diag (0, Ω
𝑖
, 0)) + [𝑒

1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
]

× [𝐴
0
(𝑘, 𝑡) 𝑒

𝑇

1
+ 𝐴
1
(𝑘, 𝑡) 𝑒

𝑇

3
+ ⋅ ⋅ ⋅

+𝐴
𝑚
(𝑘, 𝑡) 𝑒

𝑇

3𝑚
− 𝑒
𝑇

3𝑚+2
]

+ [𝐴
0
(𝑘) 𝑒
𝑇

1
+ 𝐴
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴

𝑚
(𝑘) 𝑒
𝑇

3𝑚
− 𝑒
𝑇

3𝑚+2
]

𝑇

× [𝑒
1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
]
𝑇

≤ 𝑒
1
𝑃𝑒
𝑇

3𝑚+2
+ 𝑒
3𝑚+2

𝑃𝑒
𝑇

1

+
[

[

𝑁

∑

𝑗=1

𝑒
1
𝑃
𝑘
𝑒
𝑇

1

]

]

+ [𝑒
1

𝑚

∑

𝑖=1

𝑄
𝑖
𝑒
𝑇

1
]

− [

𝑚

∑

𝑖=1

(1 − 𝜇) 𝑒
3𝑖
𝑄
𝑖
𝑒
𝑇

3𝑖
]

+ [𝑒
1

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
) 𝑒
𝑇

1
] − [

𝑚

∑

𝑖=1

𝑒
3𝑖−1

𝑅
1𝑖
𝑒
𝑇

3𝑖−1
]

− [

𝑚

∑

𝑖=1

𝑒
3𝑖+1

𝑅
2𝑖
𝑒
𝑇

3𝑖+1
]

+ [

𝑚

∑

𝑖=1

ℎ
2

1𝑖
𝑒
3𝑚+2

𝑆
𝑖
𝑒
𝑇

3𝑚+2
] + [

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
𝑒
3𝑚+2

𝑍
𝑖
𝑒
𝑇

3𝑚+2
]

− [

𝑚

∑

𝑖=1

(𝑒
1
− 𝑒
3𝑖−1

) 𝑆
𝑖
(𝑒
1
− 𝑒
3𝑖−1

)
𝑇

]

+ (

𝑚

∑

𝑖=1

diag (0, Ω
𝑖
, 0)) + [𝑒

1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
]

⋅ [𝐴
0
(𝑘) 𝑒
𝑇

1
+ 𝐴
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴

𝑚
(𝑘) 𝑒
𝑇

3𝑚
− 𝑒
𝑇

3𝑚+2
]

+ [𝑒
1
𝐴
𝑇

0
(𝑘) + 𝑒

3
𝐴
𝑇

1
(𝑘) + ⋅ ⋅ ⋅ + 𝑒

3𝑚
𝐴
𝑇

𝑚
(𝑘) − 𝑒

3𝑚+2
]

× [𝑀
𝑇

1
𝑒
𝑇

1
+𝑀
𝑇

2
𝑒
𝑇

3𝑚+2
]

+ 𝜀[𝐻
0
(𝑘) 𝑒
𝑇

1
+ 𝐻
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐻

𝑚
(𝑘) 𝑒
𝑇

3𝑚
]

𝑇

× [𝐻
0
(𝑘) 𝑒
𝑇

1
+ 𝐻
1
(𝑘) 𝑒
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐻

𝑚
(𝑘) e𝑇
3𝑚

]

+ 𝜀
−1

[𝑒
1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
] 𝐸 (𝑘) 𝐸(𝑘)

𝑇

× [𝑒
1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
]
𝑇

= Θ
11

+ 𝜀
−1

Θ
𝑇

12
Θ
12

< 0.

(17)

On the other hand, define a new process 𝑥
𝑡
(𝑠) = 𝑥(𝑡 + 𝑠),

𝑠 ∈ [−2ℎ, 0]. Choose a Lyapunov-Krasovskii functional

𝑉 (𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) =

5

∑

𝑖=1

𝑉
𝑖
(𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) , (18)

where

𝑉
1
(𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) = 𝑥(𝑡)

𝑇

𝑃
𝑟(𝑡)

𝑥 (𝑡) ,

𝑉
2
(𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) =

𝑚

∑

𝑖=1

∫

𝑡

𝑡−ℎ
𝑖
(𝑡)

𝑥(𝑠)
𝑇

𝑄
𝑖
𝑥 (𝑠) 𝑑𝑠,

𝑉
3
(𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) =

𝑚

∑

𝑖=1

∫

𝑡

𝑡−ℎ
1𝑖

𝑥(𝑠)
𝑇

𝑅
1𝑖
𝑥 (𝑠) 𝑑𝑠

+

𝑚

∑

𝑖=1

∫

𝑡

𝑡−ℎ
2𝑖

𝑥(s)𝑇𝑅
2𝑖
𝑥 (𝑠) 𝑑𝑠,

𝑉
4
(𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) =

𝑚

∑

𝑖=1

∫

0

−ℎ
1𝑖

∫

𝑡

𝑡+𝑠

ℎ
1𝑖
�̇�(𝛼)
𝑇

𝑆
𝑖
�̇� (𝛼) 𝑑𝛼 𝑑𝑠,

𝑉
5
(𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) =

𝑚

∑

𝑖=1

∫

−ℎ
1𝑖

−ℎ
2𝑖

∫

𝑡

𝑡+𝑠

̂
𝑑
𝑖
�̇�(𝛼)
𝑇

𝑍
𝑖
�̇� (𝛼) 𝑑𝛼 𝑑𝑠.

(19)
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LetL be the weak infinitesimal generator of the random
process {𝑥

𝑡
, 𝑡 ≥ 0}. Then for each 𝑟(𝑡) = 𝑘, 𝑘 ∈ 𝑆, we have

L𝑉
1
(𝑥
𝑡
, 𝑡, 𝑘)

= 2𝑥 (𝑡) 𝑃
𝑘
�̇� (𝑡) +

𝑁

∑

𝑗=1

𝑥(𝑡)
𝑇

𝜆
𝑘,𝑗
𝑃
𝑗
𝑥 (𝑡)

= 2𝜒(𝑡)
𝑇

[𝑒
1
𝑃
𝑘
𝑒
𝑇

3𝑚+2
] 𝜒 (𝑡)

+ 𝜒(𝑡)
𝑇
[

[

𝑁

∑

𝑗=1

𝑒
1
𝜆
𝑘,𝑗
𝑃
𝑗
𝑒
𝑇

1

]

]

𝜒 (𝑡) ,

L𝑉
2
(x
𝑡
, 𝑡, 𝑘)

≤ 𝑥(𝑡)
𝑇

𝑚

∑

𝑖=1

𝑄
𝑖
𝑥 (𝑡)

− (1 − 𝜇)

𝑚

∑

𝑖=1

𝑥(𝑡 − ℎ
𝑖
(𝑡))
𝑇

𝑄
𝑖
𝑥 (𝑡 − ℎ

𝑖
(𝑡))

= 𝜒(𝑡)
𝑇

[𝑒
1

𝑚

∑

𝑖=1

𝑄
𝑖
𝑒
𝑇

1
]𝜒 (𝑡)

− 𝜒(𝑡)
𝑇

[

𝑚

∑

𝑖=1

(1 − 𝜇) 𝑒
3𝑖
𝑄
𝑖
𝑒
𝑇

3𝑖
]𝜒 (𝑡) ,

L𝑉
3
(𝑥
𝑡
, 𝑡, 𝑘)

≤ 𝑥(𝑡)
𝑇

[

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
)] 𝑥 (𝑡)

−

𝑚

∑

𝑖=1

[𝑥(𝑡 − ℎ
1𝑖
)
𝑇

𝑅
1𝑖
𝑥 (𝑡 − ℎ

1𝑖
)

−𝑥(𝑡 − ℎ
2𝑖
)
𝑇

𝑅
2𝑖
𝑥 (𝑡 − ℎ

2𝑖
)]

= 𝜒(𝑡)
𝑇

[𝑒
1

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
) 𝑒
𝑇

1
]𝜒 (𝑡)

− 𝜒(𝑡)
𝑇

[

𝑚

∑

𝑖=1

𝑒
3𝑖−1

𝑅
1𝑖
𝑒
𝑇

3𝑖−1
]𝜒 (𝑡)

− 𝜒(𝑡)
𝑇

[

𝑚

∑

𝑖=1

𝑒
3𝑖+1

𝑅
2𝑖
𝑒
𝑇

3𝑖+1
]𝜒 (𝑡) ,

L𝑉
4
(𝑥
𝑡
, 𝑡, 𝑘)

=

𝑚

∑

𝑖=1

ℎ
2

1𝑖
�̇�(𝑡)
𝑇

𝑆
𝑖
�̇� (𝑡)

−

𝑚

∑

𝑖=1

∫

𝑡

𝑡−ℎ
1𝑖

ℎ
1𝑖
�̇�(𝑠)
𝑇

𝑆
𝑖
�̇� (𝑠) 𝑑𝑠

= 𝜒(𝑡)
𝑇

[

𝑚

∑

𝑖=1

ℎ
2

1𝑖
𝑒
3𝑚+2

𝑆
𝑖
𝑒
𝑇

3𝑚+2
]𝜒 (𝑡)

−

𝑚

∑

𝑖=1

∫

𝑡

𝑡−ℎ
1𝑖

ℎ
1𝑖
�̇�(𝑠)
𝑇

𝑆
𝑖
�̇� (𝑠) 𝑑𝑠 ,

L𝑉
5
(𝑥
𝑡
, 𝑡, 𝑘)

=

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
�̇�(𝑡)
𝑇

𝑍
𝑖
�̇� (𝑡)

−

𝑚

∑

𝑖=1

∫

𝑡−ℎ
1𝑖

𝑡−ℎ
2𝑖

̂
𝑑
𝑖
�̇�(𝑠)
𝑇

𝑍
𝑖
�̇� (𝑠) 𝑑𝑠

= 𝜒(𝑡)
𝑇

[

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
𝑒
3𝑚+2

𝑍
𝑖
𝑒
𝑇

3𝑚+2
]𝜒 (𝑡)

−

𝑚

∑

𝑖=1

∫

𝑡−ℎ
1𝑖

𝑡−ℎ
2𝑖

̂
𝑑
𝑖
�̇�(𝑠)
𝑇

𝑍
𝑖
�̇� (𝑠) 𝑑𝑠 .

(20)

Applying Lemma 4 toL𝑉
4
(𝑥
𝑡
) results in

−

𝑚

∑

𝑖=1

∫

𝑡

𝑡−ℎ
1𝑖

ℎ
1𝑖
�̇�(𝑠)
𝑇

𝑆
𝑖
�̇� (𝑠) 𝑑𝑠

≤ −

𝑚

∑

𝑖=1

(∫

𝑡

𝑡−ℎ
1𝑖

�̇� (𝑠) 𝑑𝑠)

𝑇

𝑆
𝑖
(∫

𝑡

𝑡−ℎ
1𝑖

�̇� (𝑠) 𝑑𝑠)

= −

𝑚

∑

𝑖=1

[𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
1𝑖
)]
𝑇

𝑆
𝑖
[𝑥 (𝑡) − 𝑥 (𝑡 − ℎ

1𝑖
)]

≤ −𝜒(𝑡)
𝑇

𝑚

∑

𝑖=1

[(𝑒
1
− 𝑒
3𝑖−1

) 𝑆
𝑖
(𝑒
1
− 𝑒
3𝑖−1

)
𝑇

] 𝜒 (𝑡) ,

(21)

and applying Lemma 6 to L𝑉
5
(𝑥
𝑡
, 𝑡, 𝑘), we have that there

exists 𝑈
𝑖
with [

𝑍
𝑖
𝑈
𝑖

∗ 𝑍
𝑖

] ≥ 0, 𝑖 = 1, 2, . . . , 𝑚, such that

−

𝑚

∑

𝑖=1

∫

𝑡−ℎ
1𝑖

𝑡−ℎ
2𝑖

̂
𝑑
𝑖
𝑓(𝑠)
𝑇

𝑍
𝑖
𝑓 (𝑠) 𝑑𝑠

≤

𝑚

∑

𝑖=1

𝜉
𝑖
(𝑡)
𝑇

Ω
𝑖
𝜉
𝑖
(𝑡)

= 𝜒(𝑡)
𝑇

(

𝑚

∑

𝑖=1

diag (0, Ω
𝑖
, 0))𝜒 (𝑡) ,

(22)

where 𝜉
𝑖
(𝑡) and Ω

𝑖
are defined in (13). Meanwhile, we note

that

2 [𝑥(𝑡)
𝑇

𝑀
1
+ �̇�(𝑡)

𝑇

𝑀
2
]

× [𝐴
0
(𝑘, 𝑡) 𝑥 (𝑡) +

𝑚

∑

𝑖=1

𝐴
𝑖
(𝑘, 𝑡) 𝑥 (𝑡 − ℎ

𝑖
(𝑡)) − �̇� (𝑡)] = 0,

(23)
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that is,

2𝜒(𝑡)
𝑇

[𝑒
1
𝑀
1
+ 𝑒
3𝑚+2

𝑀
2
]

× [𝐴
0
(𝑘, 𝑡) 𝑒

𝑇

1
+ 𝐴
1
(𝑘, 𝑡) 𝑒

𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴

𝑚
(𝑘, 𝑡) 𝑒

𝑇

3𝑚
− 𝑒
𝑇

3𝑚+2
]

× 𝜒 (𝑡) = 0.

(24)

Then, we can deduce from (19)–(24) that

L𝑉 (𝑥
𝑡
, 𝑡, 𝑘) ≤ 𝜒(𝑡)

𝑇

Π𝜒 (𝑡) < 0, (25)

whereΠ is defined in (17). Therefore, by Definition 2 and the
results in [37], we have that the system (1) is robustly stable .
Now, we will prove the robust stochastic exponential stability
in mean square for system (1). Setting 𝜆

0
= 𝜆min{−Π} > 0, we

have

L𝑉 (𝑥
𝑡
, 𝑡, 𝑘) ≤ 𝜒(𝑡)

𝑇

Π𝜒 (𝑡) ≤ −𝜆
0
‖𝑥(𝑡)‖

2

. (26)

Choose 𝑉(𝑥
𝑡
, 𝑡, 𝑘) = 𝑒

2𝛼𝑡

𝑉(𝑥
𝑡
, 𝑡, 𝑘), where 𝛼 > 0; then

L𝑉 (𝑥
𝑡
, 𝑡, 𝑘) = 2𝑘𝑒

2𝛼𝑡

𝑉 (𝑥
𝑡
, 𝑡, 𝑘) + 𝑒

2𝛼𝑡

L (𝑥
𝑡
, 𝑡, 𝑘)

≤ 2𝑘𝑒
2𝛼𝑡

𝑉 (𝑥
𝑡
, 𝑡, 𝑘) − 𝜆

0
𝑒
2𝛼𝑡

‖𝑥 (𝑡)‖
2

.

(27)

Integrating the above inequality (27), we get

𝑉 (𝑥
𝑡
, 𝑡, 𝑘)

≤ 𝑉 (𝑥
0
, 0, 𝑘)

+ ∫

𝑡

0

{2𝑘𝑒
2𝛼𝑠

𝑉 (𝑥
𝑠
, 𝑠, 𝑘) − 𝜆

0
𝑒
2𝛼𝑠

‖𝑥(𝑠)‖
2

} 𝑑𝑠.

(28)

From (19), it can be inferred that

𝑉 (𝑥
𝑠
, 𝑠, 𝑘)

≤ 𝜆max (𝑃𝑘) ‖𝑥 (𝑠)‖
2

+ [

𝑚

∑

𝑖=1

(𝜆max (𝑄𝑖) + 𝜆max (𝑅1𝑖) + 𝜆max (𝑅2𝑖))]

× ∫

𝑠

𝑠−ℎ

‖𝑥 (V)‖2𝑑V

+ [

𝑚

∑

𝑖=1

ℎ
1𝑖
𝜆max (S𝑖) + 𝑑

𝑖
𝜆max (𝑍𝑖)]∫

𝑠

𝑠−ℎ

�̇�(V)𝑇�̇� (V) 𝑑V.

(29)

Note that

�̇�(V)𝑇�̇� (V)

≤ 𝑚 [𝜆max (𝐴
𝑇

0
(𝑘, V) 𝐴

0
(𝑘, V)) ‖𝑥 (V)‖2

+ 𝜆max (𝐴
𝑇

1
(𝑘, V) 𝐴

1
(V)) 


𝑥 (V − ℎ

1
(V))



2

+ 𝜆max (𝐴
𝑇

𝑚
(𝑘, V) 𝐴

𝑚
(V)) 


𝑥 (V − ℎ

𝑚
(V))



2

] .

(30)

We denote  = 𝑚[𝜆max(𝐴
𝑇

0
(𝑘, V)𝐴

0
(𝑘, V)) + 𝜆max(𝐴

𝑇

1
(𝑘,

V)𝐴
1
(𝑘, V)) + 𝜆max(𝐴

𝑇

𝑚
(𝑘, V)𝐴

𝑚
(𝑘, V))]; then

∫

𝑠

𝑠−ℎ

�̇�(V)𝑇�̇� (V) 𝑑V ≤ ∫

𝑠

𝑠−2ℎ

‖𝑥(V)‖2𝑑V. (31)

From (29) to (31), we obtain

𝑉 (𝑥
𝑠
, 𝑠, 𝑘) ≤ Ξ

0
‖𝑥(𝑠)‖

2

+ Ξ
1
∫

𝑠

𝑠−2ℎ

‖𝑥(V)‖2𝑑V, (32)

where

Ξ
0
= 𝜆max (𝑃𝑘) ,

Ξ
1
= [

𝑚

∑

𝑖=1

(𝜆max (𝑄𝑖) + 𝜆max (𝑅1𝑖) + 𝜆max (𝑅2𝑖))]

+ [

𝑚

∑

𝑖=1

ℎ
1𝑖
𝜆max (𝑆𝑖) + 𝑑

𝑖
𝜆max (𝑍𝑖)] .

(33)

By the similar method, we have

𝑉 (𝑥
0
, 0, 𝑘) ≤ 𝜃 sup

−2ℎ≤𝑠≤0

{




𝜙 (𝑠)






2

} , (34)

where 𝜃 = 2ℎΞ
1
. Therefore, by (28)–(34), we get

𝑉 (𝑥
𝑡
, 𝑡, 𝑘)

≤ 𝜃 sup
−2ℎ≤𝑠≤0

{




𝜙 (𝑠)






2

}

+ ∫

𝑡

0

{2𝛼𝑒
2𝛼𝑠

[Ξ
0
‖𝑥(𝑠)‖

2

+ Ξ
1
∫

𝑠

𝑠−2ℎ

‖𝑥(V)‖2𝑑V]

−𝜆
0
𝑒
2𝛼𝑠

‖𝑥(𝑠)‖
2

}𝑑𝑠

≤ 𝜃 sup
−2ℎ≤𝑠≤0

{




𝜙 (𝑠)






2

}

+ (2𝛼Ξ
0
− 𝜆
0
) ∫

𝑡

0

𝑒
2𝛼𝑠

‖𝑥(𝑠)‖
2

𝑑𝑠

+ 𝑒
2𝛼𝑠

Ξ
1
∫

𝑡

−2ℎ

‖𝑥(V)‖2𝑑V

≤ (𝜃 + 2ℎ𝑒
2𝛼𝑡

Ξ
1
) sup
−2ℎ≤𝑠≤0

{




𝜙(𝑠)






2

}

+ (𝑒
2𝛼𝑡

Ξ
1
+ 2𝛼Ξ

0
− 𝜆
0
)∫

𝑡

0

‖𝑥(V)‖2𝑑V.

(35)

Choose 𝛼
0
> 0 such that

𝑒
2𝛼
0
𝑡

Ξ
1
+ 2𝛼
0
Ξ
0
− 𝜆
0
≤ 0; (36)

then

𝑉 (𝑥
𝑡
, 𝑡, 𝑘) ≤ (𝜃 + 2ℎ𝑒

2𝛼
0
𝑡

Ξ
1
) sup
−2ℎ≤𝑠≤0

{




𝜙(𝑠)






2

} . (37)
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Since 𝑉(𝑥
𝑡
, 𝑡, 𝑘) ≥ 𝑒

2𝛼
0
𝑡

𝜆min(𝑃𝑘)‖𝑥(𝑡)‖
2, it can be shown

from (37) that

‖𝑥(𝑡)‖
2

≤ 𝛿𝑒
−2𝛼
0
𝑡 sup
−2ℎ≤𝑠≤0

{




𝜙(𝑠)






2

} , (38)

where

𝛿 =

𝜃 + 2ℎ𝑒
2𝛼
0
𝑡

Ξ
1

𝜆min (𝑃𝑘)
, (39)

which implies that system (10) is robustly exponentially stable
by Definition 2. This completes the proof.

3.2. Robust𝐻
∞
Exponential Stability Analysis. The criteria of

the robust exponential stability with𝐻
∞
performance for the

systems (1)–(3) are proposed in the followingTheorem.

Theorem 8. Given a scalar 𝛾 > 0, the systems (1)–(3) are
robustly exponentially stable with a prescribed 𝐻

∞
perfor-

mance level 𝛾 if there exist matrices 𝑃
𝑘
= 𝑃
𝑇

𝑘
> 0,𝑄

𝑖
= 𝑄
𝑇

𝑖
> 0,

𝑅
1𝑖

= 𝑅
𝑇

1𝑖
> 0, 𝑅

2𝑖
= 𝑅
𝑇

2𝑖
> 0, 𝑆

𝑖
= 𝑆
𝑇

𝑖
> 0, 𝑍

𝑖
= 𝑍
𝑇

𝑖
> 0,

any matrices 𝑈
𝑖
𝑀
𝑗
with appropriate dimensions satisfying

[
𝑍
𝑖
𝑈
𝑖

∗ 𝑍
𝑖

] ≥ 0, 𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, 𝑘 = 1, 2, . . . , 𝑁, and
positive scalars 𝜀 > 0, such that the following LMI holds

[

[

Ω
11𝑘

Ω
12𝑘

Ω
13𝑘

∗ −𝜀𝐼 0

∗ ∗ −𝐼

]

]

< 0, (40)

where

Ω
11𝑘

= 𝛽
1
𝑃
𝑘
𝛽
𝑇

3𝑚+2
+ 𝛽
3𝑚+2

𝑃
𝑘
𝛽
𝑇

1

+
[

[

𝑁

∑

𝑗=1

𝛽
1
𝜆
𝑘,𝑗
𝑃
𝑗
𝛽
𝑇

1

]

]

+ [𝛽
1

𝑚

∑

𝑖=1

𝑄
𝑖
𝛽
𝑇

1
]

− [

𝑚

∑

𝑖=1

(1 − 𝜇) 𝛽
3𝑖
𝑄
𝑖
𝛽
𝑇

3𝑖
]

+ [𝛽
1

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
) 𝛽
𝑇

1
] − [

𝑚

∑

𝑖=1

𝛽
3𝑖−1

𝑅
1𝑖
𝛽
𝑇

3𝑖−1
]

− [

𝑚

∑

𝑖=1

𝛽
3𝑖+1

𝑅
2𝑖
𝛽
𝑇

3𝑖+1
]

+ [

𝑚

∑

𝑖=1

ℎ
2

1𝑖
𝛽
3𝑚+2

𝑆
𝑖
𝛽
𝑇

3𝑚+2
] + [

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
𝛽
3𝑚+2

𝑍
𝑖
𝛽
𝑇

3𝑚+2
]

− [

𝑚

∑

𝑖=1

(𝛽
1
− 𝛽
3𝑖−1

) 𝑆
𝑖
(𝛽
1
− 𝛽
3𝑖−1

)
𝑇

]

+ (

𝑚

∑

𝑖=1

diag (0, Ω
𝑖
, 0)) + [𝛽

1
𝑀
1
+ 𝛽
3𝑚+2

𝑀
2
]

⋅ [𝐴
0
(𝑘) 𝛽
𝑇

1
+ 𝐴
1
(𝑘) 𝛽
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴

𝑚
(𝑘) 𝛽
𝑇

3𝑚

− 𝛽
𝑇

3𝑚+2
+ 𝐷
1
(𝑘) 𝛽
𝑇

3𝑚+3
]

+ [𝛽
1
𝐴
𝑇

0
(𝑘) + 𝛽

3
𝐴
𝑇

1
(𝑘) + ⋅ ⋅ ⋅ + 𝛽

3𝑚
𝐴
𝑇

𝑚
(𝑘)

−𝛽
3𝑚+2

+ 𝛽
3𝑚+3

𝐷
1
(𝑘)
𝑇

]

⋅ [𝑀
𝑇

1
𝛽
𝑇

1
+𝑀
𝑇

2
𝛽
𝑇

3𝑚+2
]

+ 𝜀[𝐻
0
(𝑘) 𝛽
𝑇

1
+ 𝐻
1
(𝑘) 𝛽
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐻

𝑚
(𝑘) 𝛽
𝑇

3𝑚
]

𝑇

× [𝐻
0
(𝑘) 𝛽
𝑇

1
+ 𝐻
1
(𝑘) 𝛽
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐻

𝑚
(𝑘) 𝛽
𝑇

3𝑚
]

− 𝛾
2

𝛽
3𝑚+3

𝛽
𝑇

3𝑚+3
.

Ω
12𝑘

= [𝛽
1
𝑀
1
+ 𝛽
3𝑚+2

𝑀
2
] 𝐸 (𝑘) ,

Ω
13𝑘

= [𝐶
0
(𝑘) 𝛽
𝑇

1
+𝐶
1
(𝑘) 𝛽
𝑇

3
+ ⋅ ⋅ ⋅ + 𝐶

𝑚
(𝑘) 𝛽
𝑇

3𝑚
+𝐷
2
(𝑘) 𝛽
𝑇

3𝑚+3
]

𝑇

.

(41)

Proof. Implying Lemma 5 and Schur complement lemma to
(40), we obtain

Π


= 𝛽
1
𝑃
𝑘
𝛽
𝑇

3𝑚+2
+ 𝛽
3𝑚+2

𝑃
𝑘
𝛽
𝑇

1

+
[

[

𝑁

∑

𝑗=1

𝛽
1
𝜆
𝑘,𝑗
𝑃
𝑗
𝛽
𝑇

1

]

]

+ [𝛽
1

𝑚

∑

𝑖=1

𝑄
𝑖
𝛽
𝑇

1
]

− [

𝑚

∑

𝑖=1

(1 − 𝜇) 𝛽
3𝑖
𝑄
𝑖
𝛽
𝑇

3𝑖
]

+ [𝛽
1

𝑚

∑

𝑖=1

(𝑅
1𝑖
+ 𝑅
2𝑖
) 𝛽
𝑇

1
] − [

𝑚

∑

𝑖=1

𝛽
3𝑖−1

𝑅
1𝑖
𝛽
𝑇

3𝑖−1
]

− [

𝑚

∑

𝑖=1

𝛽
3𝑖+1

𝑅
2𝑖
𝛽
𝑇

3𝑖+1
] + [

𝑚

∑

𝑖=1

ℎ
2

1𝑖
𝛽
3𝑚+2

𝑆
𝑖
𝛽
𝑇

3𝑚+2
]

+ [

𝑚

∑

𝑖=1

̂
𝑑
2

𝑖
𝛽
3𝑚+2

𝑍
𝑖
𝛽
𝑇

3𝑚+2
]

− [

𝑚

∑

𝑖=1

(𝛽
1
− 𝛽
3𝑖−1

) 𝑆
𝑖
(𝛽
1
− 𝛽
3𝑖−1

)
𝑇

]

+ (

𝑚

∑

𝑖=1

diag (0, Ω
𝑖
, 0))

+ [𝛽
1
𝑀
1
+ 𝛽
3𝑚+2

𝑀
2
]

× [𝐴
0
(𝑘, 𝑡) 𝛽

𝑇

1
+ 𝐴
1
(𝑘, 𝑡) 𝛽

𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴

𝑚
(𝑘, 𝑡) 𝛽

𝑇

3𝑚

−𝛽
𝑇

3𝑚+2
+ 𝐷
1
(𝑘, 𝑡) 𝛽

𝑇

3𝑚+3
]
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+ [𝐴
0
(𝑘, 𝑡) 𝛽

𝑇

1
+ 𝐴
1
(𝑘, 𝑡) 𝛽

𝑇

3
+ ⋅ ⋅ ⋅ + 𝐴m (𝑘, 𝑡) 𝛽

𝑇

3𝑚

− 𝛽
𝑇

3𝑚+2
+ 𝐷
1
(𝑘, 𝑡) 𝛽

𝑇

3𝑚+3
]

𝑇

× [𝛽
1
𝑀
1
+ 𝛽
3𝑚+2

𝑀
2
]
𝑇

− 𝛾
2

𝛽
3𝑚+3

𝛽
𝑇

3𝑚+3
.

(42)

Set

𝐽 (𝑡) = {∫

𝑡

0

[𝑧(𝑠)
𝑇

𝑧 (𝑠) − 𝛾
2

𝑤(𝑠)
𝑇

𝑤 (𝑠)]} 𝑑𝑠. (43)

Then, it is easy to have

𝐽 (𝑡) = {∫

𝑡

0

[𝑧(𝑠)
𝑇

𝑧 (𝑠) − 𝛾
2

𝑤(𝑠)
𝑇

𝑤 (𝑠)] + ℓ𝑉 (𝑥 (𝑠) , 𝑠, 𝑘)} 𝑑𝑠

− {𝑉 (𝑥 (𝑡) , 𝑡)}

≤ {∫

𝑡

0

[𝑧(𝑠)
𝑇

𝑧 (𝑠) − 𝛾
2

𝑤(𝑠)
𝑇

𝑤 (𝑠)] + ℓ𝑉 (𝑥 (𝑠) , 𝑠, 𝑘)} 𝑑𝑠,

(44)

where 𝑉(𝑥(𝑡), 𝑡, 𝑘) is defined in (18). Similar to the proof of
Theorem 7, we can obtain

𝑧(𝑡)
𝑇

𝑧 (𝑡) − 𝛾
2

𝑤(𝑡)
𝑇

𝑤 (𝑡) + ℓ𝑉 (𝑥 (𝑡) , 𝑡) ≤ 𝜒
1
(𝑡)
𝑇

Π


𝜒
1
(𝑡) ,

(45)

where Π is given in (42) and 𝜒
1
(𝑡) is defined in (14). Then, it

follows from (40) and (45) that

𝐽 (𝑡) < 0. (46)

This implies that for any nonzero V(𝑡) ∈ 𝐿
2
[0,∞],

‖𝑧‖
𝐸
2

< 𝛾‖𝑤‖
2
. (47)

Therefore, by Definition 3, the system is robustly exponen-
tially stable with a prescribed 𝐻

∞
performance level 𝛾. This

completes the proof.

4. Numerical Example

In this section, we provide an example to demonstrate the
effectiveness of the proposed method.

Let 𝑚 = 2 and 𝑁 = 2; consider the systems (1)–(3) with
parameters as follows.

Mode 1

𝐴
0
(1) = [

−5 0

0.5 −6
] , 𝐴

1
(1) = [

−2 0

1 −3
] ,

𝐴
2
(1) = [

0.1 0.2

0.1 0.5
] , 𝐷

1
(1) = [

0.1 0.2

0.1 0.1
] ,

𝐶
0
(1) = [

0.1 0.1

0.2 0.1
] , 𝐶

1
(1) = [

−0.1 0

0.1 0.2
] ,

𝐶
2
(1) = [

−0.1 0.1

0 0.3
] , 𝐷

2
(1) = [

−0.1 −0.3

0.1 −0.2
] ,

𝐸 (1) = [

0.1 0.1

0.2 0.3
] , 𝐻

0
(1) = [

0.1 0.2

0.1 0.1
] ,

𝐻
1
(1) = [

−0.3 0.4

0.5 −0.1
] , 𝐻

2
(1) = [

0.2 0.2

0.3 0.1
] ,

𝐻
𝑑
(1) = [

−0.1 0.4

0.3 −0.1
] , 𝜆

11
= −0.5, 𝜆

12
= 0.5.

(48)

Mode 2

𝐴
0
(2) = [

−2 0

1 −4
] , 𝐴

1
(2) = [

−1 1

1 −4
] ,

𝐴
2
(2) = [

0.2 −0.2

0 −0.3
] , 𝐷

1
(2) = [

−0.1 0.2

−0.1 0.3
] ,

𝐶
0
(2) = [

0.2 −0.1

0.1 −0.1
] , 𝐶

1
(2) = [

−0.2 0

−0.1 0.1
] ,

𝐶
2
(2) = [

0.1 0.2

0 −0.1
] , 𝐷

2
(2) = [

0.1 0.2

−0.1 −0.3
] ,

𝐸 (2) = [

0.1 −0.1

0.1 −0.3
] , 𝐻

0
(2) = [

0.2 0.1

0.2 0.3
] ,

𝐻
1
(2) = [

−0.1 0.5

0.3 −0.3
] , 𝐻

2
(2) = [

0.1 0.1

0.6 0.2
] ,

𝐻
𝑑
(2) = [

0.2 −0.3

0.2 −0.1
] , 𝜆

21
= 0.3, 𝜆

22
= −0.3.

(49)

And 𝛾 = 2, 𝜇 = 0.5, ℎ
11

= 0.1, ℎ
21

= 0.4, ℎ
12

= 0.4,
ℎ
22

= 0.5. Then, by solving the LMI (15) with the constraints
in Theorem 7, we obtain

𝑃
1
= [

59.1376 8.2356

8.2356 26.8113
] ,

𝑃
2
= [

229.5038 50.5016

50.5016 124.2305
] ,

𝑄
1
= [

37.1817 −0.5668

−0.5668 41.5837
] ,

𝑄
2
= [

28.1504 6.9399

6.9399 7.1618
] ,



Abstract and Applied Analysis 9

𝑅
11

= [

18.1195 0.9123

0.9123 14.7239
] ,

𝑅
21

= [

31.6879 −9.1485

−9.1485 54.6448
] ,

𝑅
12

= [

31.9976 6.7097

6.7097 10.5708
] ,

𝑅
22

= [

32.5781 6.8947

6.8947 10.6649
] ,

𝑆
1
= [

35.1285 −0.1159

−0.1159 25.3955
] ,

𝑆
2
= [

0.9787 0.2268

0.2268 0.0975
] ,

𝑍
1
= [

52.7205 −8.8649

−8.8649 70.5952
] ,

𝑍
2
= [

1.7431 0.4057

0.4057 0.1638
] ,

𝑈
1
= [

1.7807 18.4064

18.8018 −53.4269
] ,

𝑈
2
= [

−10.2878 −1.9164

−1.8946 −5.3788
] ,

𝑀
1
= [

42.4713 5.0586

8.4912 25.0911
] ,

𝑀
2
= [

11.7147 1.1250

1.9353 3.9491
] ,

𝜀 = 12.8944.

(50)

If we fix the lower bound of ℎ
1
(𝑡) and ℎ

2
(𝑡), that is, ℎ

12
=

0.3 and ℎ
22

= 0.5, for the different ℎ
11
, we can get the upper

bounds of ℎ
21
as in Table 1.

If we fix the lower bound of ℎ
1
(𝑡) and ℎ

2
(𝑡), that is, ℎ

11
=

0.2 and ℎ
21

= 0.6, for the different ℎ
12
, we can get the upper

bounds of ℎ
22
as in Table 2.

5. Conclusion

The robust exponential stability and 𝐻
∞

performance anal-
ysis for uncertain Markovian jumping system with multiple
time-varying delays has been investigated based on the
reciprocally convex approach. Some new delay-dependent
stability conditions are obtained in term of LMIs. Numerical
example has been proposed to illustrate the effectiveness of
result.
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Table 1: The upper bound of ℎ
21
for different ℎ

11
.

ℎ
11

0.2 0.5 0.7 0.9 1 1.2
The upper bound of ℎ

21
0.505 0.617 0.797 0.993 1.093 1.292

Table 2: The upper bound of ℎ
22
for different ℎ

12
.

ℎ
12

0.3 0.5 0.7 0.9 1 1.2
The upper bound of ℎ

22
0.397 0.597 0.797 0.997 1.097 1.297
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