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We deal with the finite-time control problem for discrete-time Markov jump systems subject to saturating actuators. A finite-
state Markovian process is given to govern the transition of the jumping parameters. A controller designed for unconstrained
systems combined with a dynamic antiwindup compensator is given to guarantee that the resulting system is mean-square locally
asymptotically finite-time stabilizable.The proposed conditions allow us to find dynamic anti-windup compensator which stabilize
the closed-loop systems in the finite-time sense. All these conditions can be expressed in the form of linear matrix inequalities and
therefore are numerically tractable, as shown in the example included in the paper.

1. Introduction

It is well known that more and more attention has been
paid to the study of actuator saturation due to its practical
and theoretical importance. Therefore, various approaches
were investigated to handle systems with actuator saturation
and dynamic antiwindup approach which is one of the most
effective ways to deal with it. To this end, a great number of
results have been reported in the literature; see, for example,
[1, 2]. Furthermore, the stabilization problem of singular
Markovian jump systems with discontinuities and saturation
inputs was presented in [3]. Via dynamic antiwindup fuzzy
design, the robust stabilization problem of state delayed T-S
fuzzy systems with input saturation was proposed in [4].

On the other hand, Markov jump is frequently encoun-
tered in many practical systems. Therefore, the study of
Markov jump systems has been a hot research topic due to
its importance, and many results have been proposed based
on various control techniques, such as robust control [5–9],
𝐻
∞

control [10, 11], Passivity-based control [12–14], fuzzy
dissipative control [15], and neural networks control [14, 16].
Furthermore, observer based finite-time𝐻

∞
control problem

of discrete-time Markov jump systems was studied [17].

As it is well known, when dealing with the stability
of s system, a distinction should have been made between
classical Lyapunov stability and finite-time stability (FTS).
Conversely, a system is said to be finite-time stable if,
once we fix a time-interval, its state does not exceed some
bounds during this time-interval. Some results on FTS
have been carried out; see, [18, 19]. Furthermore, finite-
time 𝐻

∞
filtering problem of time-delay stochastic jump

systems with unbiased estimation was proposed in [20].
By applying dynamic observer-based state feedback and the
Lyapunov-Krasovskii functional approach, the finite-time
𝐻
∞

control problem for time-delay nonlinear jump systems
was addressed in the work of He and Liu [21]. However,
to the best of our knowledge, the problem of finite-time
stabilization of discrete-time stochastic systems subject to
actuator saturation has not been fully investigated and it is
the main purpose of our study.

In this paper, the attention is focused on the finite-
time 𝐻

∞
control problem of discrete-time Markov jump

systems with actuator saturation based on dynamic anti-
windup approach. A controller designed for unconstrained
systems combined with a dynamic antiwindup compensator
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is given to ensure the stochastic finite-time boundedness and
stochastic finite-time stabilization of the resulting closed-
loop system for all admissible disturbances.The desired com-
pensator can be designed via solving a convex optimization
problem. Finally, a numerical example is employed to show
the effectiveness of the proposed method.

Notation 1. Throughout the paper, for symmetric matrices𝑋
and 𝑌, the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌) means that the
matrix𝑋−𝑌 is positive semidefinite (resp., positive definite).
𝐼 is the identitymatrix with appropriate dimension.Thenota-
tion 𝑁

𝑇 represents the transpose of the matrix 𝑁; 𝜆max(𝑀)

(resp.,𝜆min(𝑀))means the largest (resp., smallest) eigenvalue
of the matrix 𝑀; (Ω, F,P) is a probability space; Ω is the
sample space; F is the 𝜎-algebra of subsets of the sample
space and P is the probability measure on F;E{⋅} denotes
the expectation operator with respect to some probability
measure P. Matrices, if not explicitly stated, are assumed to
have compatible dimensions. The symbol ∗ is used to denote
amatrixwhich can be inferred by symmetry.𝐻𝑒{𝐴} = 𝐴

𝑇

+𝐴.

2. Preliminaries and Problem Description

Consider the following discrete-time Markov jump system
(Σ) in the probability space (Ω, F,P):

𝑥
𝑝
(𝑘 + 1) = 𝐴

𝑝
(𝑟 (𝑘)) 𝑥

𝑝
(𝑘) + 𝐵

𝑝,𝑢
(𝑟 (𝑘)) sat (𝑢 (𝑘))

+ 𝐵
𝑝,𝑤

(𝑟 (𝑘)) 𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑝,𝑦

(𝑟 (𝑘)) 𝑥
𝑝
(𝑘) + 𝐷

𝑝,𝑦𝑤
(𝑟 (𝑘)) 𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝑝,𝑧

(𝑟 (𝑘)) 𝑥
𝑝
(𝑘) + 𝐷

𝑝,𝑧𝑢
(𝑟 (𝑘)) sat (𝑢 (𝑘))

+ 𝐷
𝑝,𝑧𝑤

(𝑟 (𝑘)) 𝑤 (𝑘) ,

(1)

where𝑥
𝑝
(𝑘) ∈ R𝑛𝑝 is the state vector,𝑢(𝑘) ∈ R𝑛𝑢 is the control

input, and sat(𝑢(𝑘)) ∈ R𝑛𝑢 is the saturated control input.
𝑤(𝑘) ∈ 𝐿

𝑝

2
[0 +∞) is the external disturbances, 𝑦(𝑘) ∈ R𝑛𝑦 is

the measurement output, and 𝑧(𝑘) ∈ R𝑛𝑧 is the performance
output. {𝑟(𝑘)} is a discrete-time Markov process and takes
values from a finite set 𝑆 = {1, 2, . . . ,N} with transition
probabilities given by

Pr (𝑟
𝑘+1

= 𝑗 | 𝑟
𝑘
= 𝑖) = 𝜋

𝑖𝑗
, (2)

where 𝜋
𝑖𝑗

≥ 0, for ∀𝑗, 𝑖 ∈ 𝑆, and ∑
𝑗∈𝑆

𝜋
𝑖𝑗

= 1. Moreover, the
transition rates matrix of the system (Σ) is defined by

[

[

[

[

[

𝜋
11

𝜋
12

⋅ ⋅ ⋅ 𝜋
1N

𝜋
21

𝜋
22

⋅ ⋅ ⋅ 𝜋
2N

...
... d

...
𝜋N1 𝜋N2 ⋅ ⋅ ⋅ 𝜋NN

]

]

]

]

]

. (3)

The plant inputs are supposed to be bounded as follows:

−𝑢
0(𝑘)

≤ 𝑢
(𝑘)

≤ 𝑢
0(𝑘)

, 𝑢
0(𝑘)

> 0, 𝑘 = 1, . . . , 𝑚. (4)

For the system (Σ), to simplify the notation, we denote𝐴
𝑝𝑖

=

𝐴
𝑝
(𝑟(𝑘)) for each 𝑟(𝑘) = 𝑖 ∈ 𝑆, and the other symbols are

similarly denoted. Assume that a linear controller is designed
for any 𝑟(𝑘) = 𝑖 ∈ 𝑆; then,

𝑥
𝑐
(𝑘 + 1) = 𝐴

𝑐𝑖
𝑥
𝑐
(𝑘) + 𝐵

𝑐𝑦,𝑖
𝑦 (𝑘) + 𝐵

𝑐𝑤,𝑖
𝑤 (𝑘) + V

1
,

𝑦
𝑐
(𝑘) = 𝐶

𝑐𝑖
𝑥
𝑐
(𝑘) + 𝐷

𝑐𝑦,𝑖
𝑦 (𝑘) + 𝐷

𝑐𝑤,𝑖
𝑤 (𝑘) + V

2
,

(5)

where 𝑥
𝑐
(𝑘) ∈ R𝑛𝑐 is the controller state and 𝑦

𝑐
(𝑘) ∈ R𝑛𝑢 is

the controller output; V
1
and V
2
will be used for antiwindup

augmentation. In absence of actuator saturation, the uncon-
strained closed-loop is formed by setting the following:

𝑢 = 𝑦
𝑐
, V

1
= 0, V

2
= 0. (6)

Assumption 1. The unconstrained closed-loop system (1)–(5)
is well posed and internally stable.

In the presence of actuator saturation, the relation
between 𝑢 and 𝑦

𝑐
is that 𝑢 = sat(𝑦

𝑐
). To minimize

performance degradation caused by saturation, the following
antiwindup compensator is designed for the closed-loop
systems:

𝑥aw (𝑘 + 1) = 𝐴aw,𝑖𝑥aw (𝑘) + 𝐵aw,𝑖𝜓 (𝑦
𝑐
(𝑘)) ,

V (𝑘) = 𝐶aw,𝑖𝑥aw (𝑘) + 𝐷aw,𝑖𝜓 (𝑦c (𝑘)) ,
(7)

where 𝜓(𝑦
𝑐
(𝑘)) = sat(𝑦

𝑐
(𝑘)) − 𝑦

𝑐
(𝑘). The resulting nonlinear

closed-loop system (1), (5), (7) is depicted in Figure 1 and can
be represented in the following compact form:

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐵

𝑞𝑖
𝜓 (𝑦
𝑐
(𝑘)) + 𝐵

𝑤𝑖
𝑤 (𝑘) ,

𝑦
𝑐
(𝑘) = 𝐾

𝑖
𝑥 (𝑘) + 𝐾

𝜙,𝑖
𝜓 (𝑦
𝑐
(𝑘)) + 𝐾

𝑤𝑖
𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝑧𝑖
𝑥 (𝑘) + 𝐷

𝑧𝑞,𝑖
𝜓 (𝑦
𝑐
(𝑘)) + 𝐷

𝑧𝑤,𝑖
𝑤 (𝑘) ,

(8)

where

𝐴
𝑖
=

[

[

𝐴
𝑝𝑖

+ 𝐵
𝑝𝑢,𝑖

𝐷
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝐵
𝑝𝑢,𝑖

𝐶
𝑐𝑖

𝐵
𝑝𝑢,𝑖

𝐼
2
𝐶
𝑎𝑤,𝑖

𝐵
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝐴
𝑐𝑖

𝐼
1
𝐶
𝑎𝑤,𝑖

0 0 𝐴
𝑎𝑤,𝑖

]

]

,

𝐵
𝑞𝑖

=
[

[

𝐵
𝑝𝑢,𝑖

𝐼
2
𝐷
𝑎𝑤,𝑖

+ 𝐵
𝑝𝑢,𝑖

𝐼
1
𝐷
𝑎𝑤,𝑖

𝐵
𝑎𝑤,𝑖

]

]

,

𝐵
𝑤𝑖

=
[

[

𝐵
𝑝𝑤,𝑖

+ 𝐵
𝑝𝑢,𝑖

𝐷
𝑐𝑦,𝑖

𝐷
𝑝,𝑦𝑤,𝑖

+ 𝐵
𝑝𝑢,𝑖

𝐷
𝑐𝑤,𝑖

𝐵
𝑐𝑦,𝑖

𝐷
𝑝,𝑦𝑤,𝑖

+ 𝐵
𝑐𝑤,𝑖

0

]

]

,

𝐶
𝑧𝑖

= [𝐶
𝑝𝑧,𝑖

+ 𝐷
𝑝,𝑧𝑢,𝑖

𝐷
𝑐𝑖
𝐶
𝑝𝑦,𝑖

𝐷
𝑝,𝑧𝑢,𝑖

𝐼
2
𝐶
𝑎𝑤,𝑖

] ,

𝐷
𝑧𝑞,𝑖

= 𝐼
2
𝐷
𝑎𝑤,𝑖

+ 𝐷
𝑝,𝑧𝑢,𝑖

,

𝐷
𝑧𝑤,𝑖

= 𝐷
𝑝,𝑧𝑤,𝑖

+ 𝐷
𝑝,𝑧𝑢,𝑖

𝐷
𝑐𝑤,𝑖

+ 𝐷
𝑝,𝑧𝑢,𝑖

𝐷
𝑐𝑖
𝐷
𝑝,𝑦𝑤,𝑖

,

𝐾
𝑖
= [𝐷
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝐶
𝑐𝑖

𝐼
2
𝐶
𝑎𝑤,𝑖

] ,

𝐾
𝜙,𝑖

= 𝐼
2
𝐷
𝑎𝑤,𝑖

, 𝐾
𝑤,𝑖

= 𝐷
𝑐𝑤,𝑖

+ 𝐷
𝑝,𝑦𝑤,𝑖

,

𝐼
1
= [𝐼 0] , 𝐼

2
= [0 𝐼] .

(9)

For this system, we introduce the following definitions and
assumption.
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Figure 1: The closed-loop systems with input saturation.

Assumption 2 (see [17]). The external disturbance 𝑤(𝑘) is
varying and satisfies the following constraint condition:

𝑇

∑

𝑘=0

𝑤(𝑘)
𝑇

𝑤 (𝑘) ≤ 𝑑, 𝑑 ≥ 0. (10)

Definition 3 (see [17]). The resulting closed-loop system
(8) is stochastic finite-time stable (SFTB) with respect to
(𝛿
𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝑑) with 0 < 𝛿

𝑥
< 𝜖, 𝑅

𝑖
> 0, and 𝑁 ∈ 𝑍

𝑘≥0
,

if

𝐸 {𝑥
𝑇

(0) 𝑅
𝑖
𝑥 (0)} ≤ 𝛿

2

𝑥
⇒ 𝐸{𝑥

𝑇

(𝑘) 𝑅
𝑖
𝑥 (𝑘)} < 𝜖

2

,

∀𝑘 ∈ {1, 2, . . . , 𝑁} .

(11)

Definition 4 (see [17]). The resulting closed-loop system (8)
is said to be stochastic 𝐻

∞
finite-time stable with respect to

(𝛿
𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝛾, 𝑑) with 0 < 𝛿

𝑥
< 𝜖, 𝑅

𝑖
> 0, 𝛾 > 0,

and 𝑁 ∈ 𝑍
𝑘≥0

, if the system (8) is SFTB with respect to
(𝛿
𝑥
, 𝜖, 𝑅
𝑖
, 𝑁, 𝛾, 𝑑), and under the zero-initial condition,

the output 𝑧(𝑘) satisfies

𝐸

{

{

{

𝑁

∑

𝑗=0

𝑧
𝑇

(𝑗) 𝑧 (𝑗)

}

}

}

≤ 𝛾
2

𝐸

{

{

{

𝑁

∑

𝑗=0

𝑤
𝑇

(𝑗) 𝑤 (𝑗)

}

}

}

, (12)

for any nonzero 𝑤(𝑘) which satisfies (10), where 𝛾 is a
prescribed positive scalar.

3. Main Results

In this section, we investigate the stabilization analysis of
the unconstrained systems and the antiwindup controller
design of the resulting closed-loop system. Some sufficient
conditions in terms of LMI are given. Before presenting the
main results, we give some lemmas as follows.

Lemma 5 (see [4]). For the closed-loop systems (8) with the
matrix 𝐾

𝑖
, the appropriate matrix 𝐿

𝑖
∈ R𝑚×𝑛 is given, if 𝑥(𝑘)

is in the set𝐷(𝑢
𝑜
), where𝐷(𝑢

𝑜
) is defined as follows:

𝐷(𝑢
𝑜
) = {𝑥 (𝑘) ∈ R

𝑛

; −𝑢
0(𝑘)

≤ (𝐾
𝑖(𝑘)

+ 𝐿
𝑖(𝑘)

) 𝑥 (𝑡) ≤ 𝑢
0(𝑘)

,

𝑢
0(𝑘)

> 0, 𝑘 = 1, . . . , 𝑚} ,

(13)

then for any diagonal positive matrix 𝑇 ∈ R𝑚×𝑚, one has the
following:

𝜓(𝑢 (𝑘))
𝑇

𝑇 (𝜓 (𝑢 (𝑘)) − 𝐿
𝑖
𝑥 (𝑘) + 𝐾

𝜙,𝑖
𝜓 (𝑦
𝑐
(𝑘)) + 𝐾

𝑤𝑖
𝑤 (𝑘))

≤ 0.

(14)

Lemma 6 (see [12]). For the given symmetric matrix 𝑆 ∈

R(𝑛+𝑚)×(𝑛+𝑚),

𝑆 =
[

[

𝑆
11

𝑆
12

𝑆
𝑇

12
𝑆
22

]

]

, (15)

where 𝑆
11

∈ R𝑛×𝑛, 𝑆
12

∈ R𝑛×𝑚, and 𝑆
22

∈ R𝑚×𝑚, the following
conditions are equivalent:

(1) 𝑆 < 0;
(2) 𝑆
11

< 0, 𝑆
22

− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12

< 0;
(3) 𝑆
22

< 0, 𝑆
11

− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

3.1. Design of Controller. In this section, we design the
controller for the unconstrained systems with V

1
= 0 and

V
2
= 0. Combining system (1) with controller (5), we have

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐵

𝑤𝑖
𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝑧𝑖
𝑥 (𝑘) + 𝐷

𝑧𝑤,𝑖
𝑤 (𝑘) ,

(16)

where

𝐴
𝑖
=

[

[

𝐴
𝑝𝑖

+ 𝐵
𝑝𝑢,𝑖

D
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝐵
𝑝𝑢,𝑖

𝐶
𝑐𝑖

𝐵
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝐴
𝑐𝑖

]

]

,

𝐵
𝑤𝑖

=
[

[

𝐵
𝑝𝑤,𝑖

+ 𝐵
𝑝𝑢,𝑖

𝐷
𝑐𝑦,𝑖

𝐷
𝑝,𝑦𝑤,𝑖

+ 𝐵
𝑝𝑢,𝑖

𝐷
𝑐𝑤,𝑖

𝐵
𝑐𝑦,𝑖

𝐷
𝑝,𝑦𝑤,𝑖

+ 𝐵
𝑐𝑤,𝑖

]

]

.

(17)

Theorem 7. For each 𝑟(𝑘) = 𝑖 ∈ 𝑆, the unconstrained system
(16) is SFTBwith respect to (𝛿

𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝑑)with 0 < 𝛿

𝑥
< 𝜖,

if there exist scalars 𝜇 ≥ 0, 𝜎
1

≥ 0, 𝜎
2

≥ 0, and the given
𝜆 > 0, two sets of mode-dependent symmetric positive-defined
matrices {𝑋

𝑖
, 𝑖 ∈ 𝑆} and {𝑄

𝑖
, 𝑖 ∈ 𝑆}, such that the following

conditions hold:

[

[

[

[

[

−𝜇𝜆𝐼 0 𝐿
𝑇

1𝑖

∗ −𝑄
𝑖

𝐿
𝑇

2𝑖

∗ ∗ −𝑊

]

]

]

]

]

< 0, (18)

[
𝜎
2
𝑑
2

− 𝜇
−𝑁

𝜖
2

∗

𝛿
𝑥

−𝜎
1

] < 0, (19)

𝜆𝑋
𝑖
< 𝐼, (20)

𝜎
1
𝑅
−1

𝑖
< 𝑋
𝑖
< 𝑅
−1

𝑖
, (21)

0 < 𝑄
𝑖
< 𝜎
2
𝐼, (22)
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where

𝑊 = diag {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
} ,

𝐿

𝑇

1𝑖
= [√𝜋

𝑖1
𝐴
𝑇

𝑖
√𝜋
𝑖2
𝐴
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐴
𝑇

𝑖
] ,

𝐿
𝑇

2𝑖
= [√𝜋

𝑖1
𝐵
𝑇

𝑤𝑖
√𝜋
𝑖2
𝐵
𝑇

𝑤𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐵
𝑇

𝑤𝑖
] .

(23)

Proof. Define the following Lyapunov function for each
𝛿(𝑡) = 𝑖 ∈ 𝑆:

𝑉 (𝑘) = 𝑥(𝑘)
𝑇

𝑃
𝑖
𝑥 (𝑘) . (24)

It is readily obtained that

𝐸 {𝑉 (𝑘 + 1)} = 𝐸

{

{

{

𝑛

∑

𝑗=1

𝜋
𝑖𝑗
𝑥(𝑘 + 1)

𝑇

𝑃
𝑗
𝑥 (𝑘 + 1)

}

}

}

= 𝜉(𝑘)
𝑇

[𝐿
1𝑖

𝐿
2𝑖
]

𝑇

𝑊[𝐿
1𝑖

𝐿
2𝑖
] 𝜉 (𝑘) ,

(25)

where

𝜉 (𝑘) = [𝑥(𝑘)
𝑇

𝑤(𝑘)
𝑇

] ,

𝑊 = diag {𝑃
1
, 𝑃
2
, . . . , 𝑃

ℎ
} .

(26)

By using of Schur complement lemma to (18), and note that
𝑃
−1

𝑖
= 𝑋
𝑖
and 𝜆𝑋

𝑖
< 𝐼, we derive 𝜆𝐼 < 𝑃

𝑖
; then, we have

𝜉(𝑘)
𝑇

[

−𝜇𝜆𝐼 0

∗ −𝑄
𝑖

] 𝜉 (𝑘) + 𝜉(𝑘)
𝑇

[𝐿
1𝑖

𝐿
2𝑖
]

𝑇

𝑊[𝐿
1𝑖

𝐿
2𝑖
] 𝜉 (𝑘)

< 0.

(27)

It follows that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑥(𝑘)
𝑇

𝑃
𝑖
𝑥 (𝑘) + 𝑤(𝑘)

𝑇

𝑄
𝑖
𝑤 (𝑘) . (28)

It is shown that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑉 (𝑘) + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝑤(𝑘)
𝑇

𝑤 (𝑘) . (29)

Then we have

𝐸 {𝑉 (𝑘 + 1)}

< 𝜇𝐸 {𝑉 (𝑘)} + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝐸 {𝑤(𝑘)
𝑇

𝑤 (𝑘)} .

(30)

Since 𝜇 ≥ 1, it is easily found that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (0)} + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)}

× 𝐸

{

{

{

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

≤ 𝜇
𝑘

𝐸 {𝑉 (0)} + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝜇
𝑘

𝑑
2

.

(31)

Letting

𝑃
𝑖
= 𝑅
−1/2

𝑖
𝑃
𝑖
𝑅
−1/2

𝑖
, (32)

and noting that

𝐸 {𝑥
𝑇

(0) 𝑅
𝑖
𝑥 (0)} ≤ 𝛿

2

𝑥
, (33)

it can be verified that

𝐸 {𝑉 (0)} = 𝐸 {𝑥
𝑇

(0) 𝑃
𝑖
𝑥 (0)}

= 𝐸 {𝑥
𝑇

(0) 𝑅
1/2

𝑖
𝑃
𝑖
𝑅
𝑖
1/2𝑥 (0)}

≤ sup
𝑖∈𝑆

{𝜆max (𝑃𝑖)} 𝐸 {𝑥
𝑇

(0) 𝑅
𝑖
𝑥 (0)}

≤ sup
𝑖∈𝑆

{𝜆max (𝑃𝑖)} 𝛿
2

𝑥
.

(34)

Similarly, for all 𝑖 ∈ 𝑆, we can obtain

𝐸 {𝑉 (𝑘)} = 𝐸 {𝑥
𝑇

(𝑘) 𝑃
𝑖
𝑥 (𝑘)}

= 𝐸 {𝑥
𝑇

(𝑘) 𝑅
1/2

𝑖
𝑃
𝑖
𝑅
𝑖
1/2𝑥 (𝑘)}

≥ inf
𝑖∈𝑆

{𝜆min} (𝑃𝑖) 𝐸 {𝑥
𝑇

(𝑘) 𝑅
𝑖
𝑥 (𝑘)} .

(35)

Then, it is not difficult to find that

𝐸 {𝑥
𝑇

(𝑘) 𝑅
𝑖
𝑥 (𝑘)}

<

sup
𝑖∈𝑆

{𝜆max (𝑃𝑖)} 𝜇
𝑘

𝛿
2

𝑥
+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝜇
𝑘

𝑑
2

inf
𝑖∈𝑆

{𝜆min} (𝑃𝑖)
,

(36)

which implies that

sup
𝑖∈𝑆

{𝜆max (𝑃𝑖)} 𝜇
𝑘

𝛿
2

𝑥
+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝜇
𝑘

𝑑
2

inf
𝑖∈𝑆

{𝜆min} (𝑃𝑖)
< 𝜖
2

.

(37)

Then, one can obtain that

sup
𝑖∈𝑆

{𝜆max (𝑃𝑖)} 𝛿
2

𝑥
+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝑑
2

< inf
𝑖∈𝑆

{𝜆min} (𝑃𝑖) 𝜇
−𝑁

𝜖
2

.

(38)

Setting

𝑋
𝑖
= 𝑃
−1

𝑖
,

𝜎
1
𝑅
−1

𝑖
< 𝑋
𝑖
< 𝑅
−1

𝑖
,

0 < 𝑄
𝑖
< 𝜎
2
𝐼,

(39)

it is easy to see that

𝜎
−1

1
𝛿
2

𝑥
+ 𝜎
2
𝑑
2

< 𝜇
−𝑁

𝜖
2

. (40)

It is obvious that (40) is equivalent to (19).
This completes the proof.
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3.2. Design of Dynamic Antiwindup Compensator

Theorem 8. For each 𝑟(𝑘) = 𝑖 ∈ 𝑆, with antiwindup
compensator (7), such that the resulting closed-loop system (10)
is 𝑆𝐹𝑇𝐵 with respect to (𝛿

𝑥
, 𝜖, 𝑅

𝑖
, 𝑁, 𝑑) with 0 < 𝛿

𝑥
< 𝜖, if

there exist scalars 𝜇 ≥ 0, 𝜎
1
≥ 0, and 𝜎

2
≥ 0, three sets of mode-

dependent symmetric positive-defined matrices {𝑋
𝑖
, 𝑖 ∈ 𝑆},

{𝑄
𝑖
, 𝑖 ∈ 𝑆} and diag positive-defined matrices {𝑆

𝑖
, 𝑖 ∈ 𝑆},

and two sets of mode-dependent matrices {𝑌
𝑖
, 𝑖 ∈ 𝑆} and

{𝐿
𝑖

= 𝐿
𝑖
𝑋
𝑖
, 𝐴
𝑎𝑤,𝑖

= 𝐴
𝑎𝑤,𝑖

𝑋
𝑖
, 𝐶
𝑎𝑤,𝑖

= 𝐶
𝑎𝑤,𝑖

𝑋
𝑖
, 𝐵
𝑎𝑤,𝑖

=

𝐵
𝑎𝑤,𝑖

𝑆
𝑖
, 𝐷
𝑎𝑤,𝑖

= 𝐷
𝑎𝑤,𝑖

𝑆
𝑖

𝑖 ∈ 𝑆}, such that the following
conditions hold:

[

[

[

[

[

[

[

[

[

[

−𝜇𝑋
𝑖

0 𝐿

𝑇

𝑖
𝐿

𝑇

1𝑖

∗ −𝑄
𝑖

𝐾
𝑇

𝑤𝑖
𝐿
𝑇

2𝑖

∗ ∗ −2𝑆
𝑖
− 𝐻𝑒 (𝐾

𝜑,𝑖
) 𝐿

𝑇

3𝑖

∗ ∗ ∗ −𝑊

]

]

]

]

]

]

]

]

]

]

< 0, (41)

[
𝜎
2
𝑑
2

− 𝜇
−𝑁

𝜖
2

∗

𝛿
𝑥

−𝜎
1

] < 0, (42)

[

𝑋
𝑖

∗

𝐾
𝑖
+ 𝐿
𝑖
𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (43)

𝜎
1
𝑅
−1

𝑖
< 𝑋
𝑖
< 𝑅
−1

𝑖
, (44)

0 < 𝑄
𝑖
< 𝜎
2
𝐼, (45)

where

𝑊 = diag {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
} ,

𝐿

𝑇

1𝑖
= [

√𝜋
𝑖1
𝐴

𝑇

𝑖
√𝜋
𝑖2
𝐴

𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐴

𝑇

𝑖

] ,

𝐿
𝑇

2𝑖
= [√𝜋

𝑖1
𝐵
𝑇

𝑤𝑖
√𝜋
𝑖2
𝐵
𝑇

𝑤𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐵
𝑇

𝑤𝑖
] ,

𝐿
𝑇

3𝑖
= [√𝜋

𝑖1
𝐵

𝑇

𝑞𝑖
√𝜋
𝑖2
𝐵

𝑇

𝑞𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐵

𝑇

𝑞𝑖
] ,

(46)

with

𝐴
𝑖
=

[

[

[

[

[

[

[

𝐴
𝑝𝑖
𝑋
𝑖
+ 𝐵
𝑝𝑢,𝑖

𝐷
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝑋
𝑖

𝐵
𝑝𝑢,𝑖

𝐶
𝑐𝑖
𝑋
𝑖
𝐵
𝑝𝑢,𝑖

𝐼
2
𝐶
𝑎𝑤,𝑖

𝐵
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝑋
𝑖

𝐴
𝑐𝑖
𝑋
𝑖

𝐼
1
𝐶
𝑎𝑤,𝑖

0 0 𝐴
𝑎𝑤,𝑖

]

]

]

]

]

]

]

,

𝐵
𝑞𝑖

=

[

[

[

[

[

[

𝐵
𝑝𝑢,𝑖

𝐼
2
𝐷
𝑎𝑤,𝑖

+ 𝐵
𝑝𝑢,𝑖

𝑋
𝑖

𝐼
1
𝐷
𝑎𝑤,𝑖

𝐵
𝑎𝑤,𝑖

]

]

]

]

]

]

,

𝐾
𝑖
= [𝐷
𝑐𝑦,𝑖

𝐶
𝑝𝑦,𝑖

𝑋
𝑖
C
𝑐𝑖
𝑋
𝑖

𝐼
2
𝐶
𝑎𝑤,𝑖

] , 𝐾
𝜙,𝑖

= 𝐼
2
𝐷
𝑎𝑤,𝑖

.

(47)

Proof. Define the following Lyapunov function for each
𝛿(𝑡) = 𝑖 ∈ 𝑆:

𝑉 (𝑘) = 𝑥(𝑘)
𝑇

𝑃
𝑖
𝑥 (𝑘) . (48)

It is readily obtained that

𝐸 {𝑉 (𝑘 + 1)} = 𝐸

{

{

{

𝑛

∑

𝑗=1

𝜋
𝑖𝑗
𝑥(𝑘 + 1)

𝑇

𝑃
𝑗
𝑥 (𝑘 + 1)

}

}

}

= 𝜉(𝑘)
𝑇

[𝐿
1𝑖

𝐿
2𝑖

𝐿
3𝑖
]

𝑇

𝑊[𝐿
1𝑖

𝐿
2𝑖

𝐿
3𝑖
] 𝜉 (𝑘) ,

(49)

where

𝜉 (𝑘) = [𝑥(𝑘)
𝑇

𝑤(𝑘)
𝑇

𝜓(𝑘)
𝑇

] ,

𝑊 = diag {𝑃
1
, 𝑃
2
, . . . , 𝑃

ℎ
} ,

𝐿
𝑇

1𝑖
= [√𝜋

𝑖1
𝐴
𝑇

𝑖
√𝜋
𝑖2
𝐴
𝑇

𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐴
𝑇

𝑖
] ,

𝐿
𝑇

2𝑖
= [√𝜋

𝑖1
𝐵
𝑇

𝑤𝑖
√𝜋
𝑖2
𝐵
𝑇

𝑤𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐵
𝑇

𝑤𝑖
] ,

𝐿
𝑇

3𝑖
= [√𝜋

𝑖1
𝐵
𝑇

𝑞𝑖
√𝜋
𝑖2
𝐵
𝑇

𝑞𝑖
⋅ ⋅ ⋅ √𝜋

𝑖𝑛
𝐵
𝑇

𝑞𝑖
] .

(50)

Then, by pre- and postmultiplying (41) by diag{𝑃
𝑖
, 𝐼, 𝑇

𝑖
, 𝐼}

with 𝑃
𝑖
= 𝑋
−1

𝑖
, 𝑇
𝑖
= 𝑆
−1

𝑖
, we have

[

[

[

[

[

[

[

[

[

−𝜇𝑃
𝑖

0 𝐿
𝑇

𝑖
𝑇
𝑖

𝐿
𝑇

1𝑖

∗ −𝑄
𝑖

𝐾
𝑇

𝑤𝑖
𝐿
𝑇

2𝑖

∗ ∗ −2𝑇
𝑖
− 𝐻𝑒 (𝑇

𝑖
K
𝜙,𝑖
) 𝐿
𝑇

3𝑖

∗ ∗ ∗ −𝑊

]

]

]

]

]

]

]

]

]

< 0. (51)

By using of Schur complement lemma, we derive

𝜉(𝑘)
𝑇[

[

[

−𝜇𝑃
𝑖

0 𝐿
𝑇

𝑖
𝑇
𝑖

∗ −𝑄
𝑖

𝐾
𝑇

𝑤𝑖

∗ ∗ −2𝑇
𝑖
− 𝐻𝑒 (𝑇

𝑖
𝐾
𝜙,𝑖
)

]

]

]

𝜉 (𝑘)

+ 𝜉(𝑘)
𝑇

[𝐿
1𝑖

𝐿
2𝑖

𝐿
3𝑖
]

𝑇

𝑊[𝐿
1𝑖

𝐿
2𝑖

𝐿
3𝑖
] 𝜉 (𝑘) < 0.

(52)

It follows that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑥(𝑘)
𝑇

𝑃
𝑖
𝑥 (𝑘) + 𝑤(𝑘)

𝑇

𝑄
𝑖
𝑤 (𝑘)

+ 𝜓(𝑘)
𝑇

(2𝑇
𝑖
+ 𝐻𝑒 {𝑇

𝑖
𝐾
𝜙,𝑖
}) 𝜓 (𝑘)

− 2𝜓(𝑘)
𝑇

𝑇
𝑖
𝐿
𝑖
𝑥 (𝑘) + 2𝜓(𝑘)

𝑇

𝑇
𝑖
𝐾
𝑤𝑖
𝑤 (𝑘) .

(53)

Since 𝜓(𝑘)
𝑇

(2𝑇
𝑖
+ 𝐻𝑒{𝑇

𝑖
𝐾
𝜙,𝑖
})𝜓(𝑘) − 2𝜓(𝑘)

𝑇

𝑇
𝑖
𝐿
𝑖
𝑥(𝑘) +

2𝜓(𝑘)
𝑇

𝑇
𝑖
𝐾
𝑤𝑖
𝑤(𝑘) ≤ 0, we get

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑥(𝑘)
𝑇

𝑃
𝑖
𝑥 (𝑘) + 𝑤(𝑘)

𝑇

𝑄
𝑖
𝑤 (𝑘) . (54)
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It is shown that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝑉 (𝑘) + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝑤(𝑘)
𝑇

𝑤 (𝑘) . (55)

Then, we have

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (𝑘)}

+ sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝐸 {𝑤(𝑘)
𝑇

𝑤 (𝑘)} .

(56)

Since 𝜇 ≥ 1, it is easily found that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (0)} + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)}

× 𝐸

{

{

{

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

≤ 𝜇
𝑘

𝐸 {𝑉 (0)} + sup
(𝑖∈𝑆)

{𝜆max (𝑄𝑖)} 𝜇
𝑘

𝑑
2

.

(57)

The following proof is similar to the process of Theorem 7.
Based on Lemma 5, it is easy to obtain that

[

𝑃
𝑖

∗

𝐾
𝑖
+ 𝐿
𝑖
𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (58)

then pre- and post-multiply (58) by diag{𝑋
𝑖
, 𝐼}which implies

(43). This completes the proof.

Theorem 9. For each 𝑟(𝑘) = 𝑖 ∈ 𝑆, with antiwindup
compensator (7), such that the resulting closed-loop system (10)
is said to be Stochastic𝐻

∞
finite-time stable via state feedback

with respect to (𝛿
𝑥
, 𝜖, 𝑅
𝑖
, 𝑁, 𝛾, 𝑑), if there exist three scalars

𝜇 ≥ 0, 𝜎
1

≥ 0, and 𝛾 ≥ 0, two sets of mode-dependent
symmetric positive-defined matrices {𝑋

𝑖
, 𝑖 ∈ 𝑆} and diag

matrices {𝑆
𝑖
, 𝑖 ∈ 𝑆}, and two sets of mode-dependent matrices

{𝑌
𝑖
, 𝑖 ∈ 𝑆} and {𝐿

𝑖
= 𝐿
𝑖
𝑋
𝑖
, 𝑖 ∈ 𝑆}, such that the following

conditions hold:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝜇𝑋
𝑖

0 𝐿

𝑇

𝑖
𝐿

𝑇

1𝑖
𝐶

𝑇

𝑧𝑖

∗ −𝛾
2

𝜇
−𝑁

𝐼 𝐾
𝑇

𝑤𝑖
𝐿
𝑇

2𝑖
𝐷
𝑇

𝑧𝑤,i

∗ ∗ −2𝑆
𝑖
− 𝐻𝑒 (𝐾

𝜙,𝑖
) 𝐿

𝑇

3𝑖
𝐷

𝑇

𝑧𝑞,𝑖

∗ ∗ ∗ −𝑊 0

∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(59)

[
𝜇
−𝑁

(𝑑
2

𝛾
2

− 𝜖
2

) ∗

𝛿
𝑥

−𝜎
1

] < 0, (60)

[

𝑋
𝑖

∗

𝐾
𝑖
+ 𝐿
𝑖
𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (61)

𝜎
1
𝑅
−1

𝑖
< 𝑋
𝑖
< 𝑅
−1

𝑖
, (62)

with

𝐶
𝑧𝑖

= [(𝐶
𝑝𝑧,𝑖

+ 𝐷
𝑝,𝑧𝑢,𝑖

𝐷
𝑐𝑖
𝐶
𝑝𝑦,𝑖

)𝑋
𝑖

𝐷
𝑝,𝑧𝑢,𝑖

𝑋
𝑖

𝐼
2
𝐶
𝑎𝑤,𝑖

] ,

𝐷

𝑇

𝑧𝑞,𝑖
= 𝐼
2
𝐷
𝑎𝑤,𝑖

+ 𝐷
𝑝,𝑧𝑢,𝑖

.

(63)

Proof. Choose the similar Lyapunov function as Theorem 7
and denote

Π (𝑥 (𝑘) , 𝑤 (𝑘) , 𝑟 (𝑘) = 𝑖)

= 𝐸 {𝑉 (𝑘 + 1)} − 𝜇𝑉 (𝑘) + 𝑧(𝑘)
𝑇

𝑧 (𝑘)

− 𝛾
2

𝜇
−𝑁

𝑤(𝑘)
𝑇

𝑤 (𝑘) .

(64)

Thus, in light of Lemma 5, we have

Π(𝑥 (𝑘) , 𝑤 (𝑘) , 𝑟
𝑘
= 𝑖)

≤ 𝜉(𝑘)
𝑇

[𝐿
1𝑖

𝐿
2𝑖

𝐿
3𝑖
]

𝑇

𝑊[𝐿
1𝑖

𝐿
2𝑖

𝐿
3𝑖
] 𝜉 (𝑘)

+ 𝜉(𝑘)
𝑇

[𝐶
𝑧𝑖

𝐷
𝑧𝑤,𝑖

𝐷
𝑧𝑞,𝑖

]

𝑇

[𝐶
𝑧𝑖

𝐷
𝑧𝑤,𝑖

𝐷
𝑧𝑞,𝑖

] 𝜉 (𝑘)

+ 𝜉
𝑇

(𝑘)
[

[

−𝜇𝑋
𝑖

0 𝐿
𝑇

𝑖
𝑇
𝑖

∗ −𝛾
2

𝜇
−𝑁

𝐼 𝐾
𝑇

𝑤𝑖

∗ ∗ −2𝑇
𝑖
− 𝐻𝑒 {𝑇

𝑖
𝐾
𝜙,𝑖
}

]

]

𝜉 (𝑘) .

(65)

Then pre- and postmultiply (59) by diag{𝑃
𝑖
, 𝐼, 𝑇

𝑖
, 𝐼}, and

considering Schur complement lemma and (65), we derive
that

Π (𝑥 (𝑘) , 𝑤 (𝑘) , 𝑟 (𝑘) = 𝑖) < 0 (66)

holds for all 𝑟
𝑘
= 𝑖 ∈ 𝑆. According to (66), one can obtain that

𝐸 {𝑉 (𝑘 + 1)} < 𝜇𝐸 {𝑉 (𝑘)} − 𝐸 {𝑧(𝑘)
𝑇

𝑧 (𝑘)}

+ 𝛾
2

𝜇
−𝑁

𝐸 {𝑤(𝑘)
𝑇

𝑤 (𝑘)} .

(67)

Then, we have

𝐸 {𝑉 (𝑘)} < 𝜇
𝑘

𝐸 {𝑉 (0)} −

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝐸 {𝑧(𝑗)
𝑇

𝑧 (𝑗)}

+ 𝛾
2

𝜇
−𝑁

𝐸

{

{

{

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

.

(68)

Under the zero-value initial condition and noting that𝑉(𝑘) ≥

0, for all 𝐾 ∈ 𝑍
𝑘≥0

, it is shown that

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝐸 {𝑧(𝑗)
𝑇

𝑧 (𝑗)} < 𝛾
2

𝜇
−𝑁

𝐸

{

{

{

𝑘−1

∑

𝑗=0

𝜇
𝑘−𝑗−1

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

.

(69)
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Since 𝜇 ≥ 1 and from (69), we have

𝐸

{

{

{

𝑁

∑

𝑗=0

𝑧(𝑗)
𝑇

𝑧 (𝑗)

}

}

}

=

𝑁

∑

𝑗=0

𝐸 {𝑧(𝑗)
𝑇

𝑧 (𝑗)}

≤

𝑁

∑

𝑗=0

𝐸 {𝜇
𝑁−𝑗

𝑧(𝑗)
𝑇

𝑧 (𝑗)}

≤ 𝛾
2

𝜇
−𝑁

𝐸

{

{

{

𝑁

∑

𝑗=0

𝜇
𝑁−𝑗

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

≤ 𝛾
2

𝐸

{

{

{

𝑁

∑

𝑗=0

𝑤(𝑗)
𝑇

𝑤 (𝑗)

}

}

}

.

(70)

The following proof is similar to the process of Zhang and Liu
[17].

Since 𝜀(𝑃
𝑖
, 1) ⊂ 𝐷(𝑢

0
), it follows that

[

𝑃
𝑖

∗

𝐾
𝑖
+ 𝐿
𝑖

𝑢
2

0(𝑘)

] > 0, 𝑘 = 1, . . . , 𝑚, (71)

and then pre- and post-multiply (71) by diag(𝑋
𝑖
, 𝐼) and

its transpose, respectively; we derive condition (61). This
completes the proof.

4. Illustrative Examples

In this section, a numerical example is provided to demon-
strate the effectiveness of the proposedmethod. Consider the
following systems with four operation modes.

Mode 1 is

𝐴
𝑝1

= [

0.75 −0.75

1.5 −1.5
] , 𝐵

𝑝𝑢,1
= [

1

0
] , 𝐵

𝑝𝑤,1
= [

1

0
] ,

𝐶
𝑝𝑦,1

= [−0.1 −0.2] , 𝐶
𝑝𝑧,1

= [1 0] ,

𝐷
𝑝𝑦𝑤,1

= 1, 𝐷
𝑝𝑧𝑢,1

= 1, 𝐷
𝑝𝑧𝑤,1

= 0.8.

(72)

Mode 2 is

𝐴
𝑝2

= [

0.15 4.5

2.10 −0.4
] , 𝐵

𝑝𝑢,2
= [

1

0
] , 𝐵

𝑝𝑤,2
= [

1

0
] ,

𝐶
𝑝𝑦,2

= [−0.1 −0.1] , 𝐶
𝑝𝑧,2

= [1 0] ,

𝐷
𝑝𝑦𝑤,2

= 1, 𝐷
𝑝𝑧𝑢,2

= 0.9, 𝐷
𝑝𝑧𝑤,2

= 0.8.

(73)

Mode 3 is

𝐴
𝑝3

= [

0.24 2.50

1.2 −2.1
] , 𝐵

𝑝𝑢,3
= [

0.9

0
] , 𝐵

𝑝𝑤,3
= [

1

0
] ,

𝐶
𝑝𝑦,3

= [−0.1 0] , 𝐶
𝑝𝑧,3

= [1 0] ,

𝐷
𝑝𝑦𝑤,3

= 0.8, 𝐷
𝑝𝑧𝑢,3

= 1, 𝐷
𝑝𝑧𝑤,3

= 1.2.

(74)

Mode 4 is

𝐴
𝑝4

= [

1 −0.25

1.5 −1.5
] , 𝐵

𝑝𝑢,4
= [

1

0
] , 𝐵

𝑝𝑤,4
= [

1

0
] ,

𝐶
𝑝𝑦,4

= [1 0] , 𝐶
𝑝𝑧,4

= [1 0] ,

𝐷
𝑝𝑦𝑤,4

= 1, 𝐷
𝑝𝑧𝑢,4

= 0.5, 𝐷
𝑝𝑧𝑤,4

= 1.

(75)

With the given designed controllers,

𝐴
𝑐1

= −5.5, 𝐵
𝑐𝑦,1

= −1, 𝐵
𝑐𝑤,1

= 1,

𝐶
𝑐1

= −1, 𝐷
𝑐𝑦,1

= −0.1, 𝐷
𝑐𝑤,1

= 0.5,

𝐴
𝑐2

= −5, 𝐵
𝑐𝑦,2

= −0.9, 𝐵
𝑐𝑤,2

= 1,

𝐶
𝑐2

= −1, 𝐷
𝑐𝑦,2

= 5.9, 𝐷
𝑐𝑤,2

= 1,

𝐴
𝑐3

= −4.5, 𝐵
𝑐𝑦,3

= −1, 𝐵
𝑐𝑤,3

= 1,

𝐶
𝑐3

= −1.5, 𝐷
𝑐𝑦,3

= 5.1, 𝐷
𝑐𝑤,3

= 1,

𝐴
𝑐4

= −7, 𝐵
𝑐𝑦,4

= −1, 𝐵
𝑐𝑤,4

= 1,

𝐶
𝑐4

= −1.5, 𝐷
𝑐𝑦,4

= −2, 𝐷
𝑐𝑤,4

= 1.

(76)

The transition rate matrix is given by the following:

[

[

[

[

0.3 0.3 0.2 0.2

0.4 0.3 0.2 0.1

0.2 0.1 0.4 0.3

0.2 0.3 0.1 0.4

]

]

]

]

. (77)

In this case, we choose the initial values for 𝑅
𝑖
= 𝐼
2
, 𝑖 =

1, 2, 3, 4, 𝛿
𝑥

= 1, 𝑁 = 5, 𝛼 = 10
−10

, 𝜇 = 2.5, 𝑑 =

1, and 𝑤(𝑘) = 0.5(1 + cos𝑥(𝑘)); Theorem 7 yields to 𝜖 =

36.2671, 𝜎
1
= 0.4906, 𝜎

2
= 13.7421, and the bounds of the

input saturation 𝑢
0
= 0.08.

Based onTheorem 9, we derive

𝐴
𝑎𝑤,1

= −2.67, 𝐴
𝑎𝑤,2

= −1.86,

𝐴
𝑎𝑤,3

= −1.88, 𝐴
𝑎𝑤,4

= −2.59,

𝐵
𝑎𝑤,1

= −0.02, 𝐵
𝑎𝑤,2

= −0.01,

𝐵
𝑎𝑤,3

= −0.01, 𝐵
𝑎𝑤,4

= −0.02,

𝐶
𝑎𝑤,1

= [

17.27

0.68
] , 𝐶

𝑎𝑤,2
= [

68.44

−48.31
] ,

𝐶
𝑎𝑤,3

= [

68.74

−49.29
] , 𝐶

𝑎𝑤,4
= [

17.27

0.66
] ,
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Figure 2: 𝑟
𝑘
of jump rates.

𝐷
𝑎𝑤,1

= [

0.21

0.1
] , 𝐷

𝑎𝑤,2
= [

0.18

−0.1
] ,

𝐷
𝑎𝑤,3

= [

0.19

0
] , 𝐷

𝑎𝑤,4
= [

0.2

0.1
] .

(78)

Remark 10. Figures 2, 3, and 4 are given on the last page.
Figure 1 is 𝑟

𝑘
of the jump rates, Figure 2 and Figure 3 are

state response of open and closed-loop system. Based on
the figures provided, the controller and the compensator we
designed guarantee that the resulting closed-loop systems are
mean-square locally asymptotically finite-time stabilizable.

5. Conclusions and Future Work

In this paper, the finite-time 𝐻
∞

stabilization problem for a
class of discrete-time Markov jump systems with input satu-
ration has been investigated. Based on stochastic finite-time
stability analysis, a controller designed for the unconstrained
system with a dynamic antiwindup compensator subject to
actuator saturation is given to guarantee the stochastic finite-
time boundedness and stochastic finite-time stabilization of
the considered closed-loop system for all admissible distur-
bances. Finally, the effectiveness of the proposed approach
has been illustrated by simulation results.The finite-time sta-
bilization problem ofMarkov jump systems with constrained
input and time-delay will be considered in the future work.
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Figure 3: 𝑥(𝑘) of the system (1)–(5).
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Figure 4: 𝑥(𝑘) of the closed-loop system (1)–(7).
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