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The problem of a portfolio strategy for financial market with regime switching driven by geometric Lévy process is investigated
in this paper. The considered financial market includes one bond and multiple stocks which has few researches up to now. A new
and general Black-Scholes (B-S) model is set up, in which the interest rate of the bond, the rate of return, and the volatility of the
stocks vary as the market states switching and the stock prices are driven by geometric Lévy process. For the general B-S model of
the financial market, a portfolio strategy which is determined by a partial differential equation (PDE) of parabolic type is given by
using Itô formula. The PDE is an extension of existing result. The solvability of the PDE is researched by making use of variables
transformation. An application of the solvability of the PDE on the European options with the final data is given finally.

1. Introduction

To make a portfolio strategy is to search for a best allocation
of wealth among different assets in markets. Taking the Euro-
pean options, for instance, how to distribute the appropriate
proportions of each option to maximize total returns at
expire time is the core of portfolio strategy problem. There
are two points mentioned among the relevant literatures for
portfolio selection problems: setting up a market model that
approximates to the real financial market and the way of
solving it.

Portfolio strategy researches are based on portfolio
selection analysis given by Markowitz [1]. Extension of
Markowitz’s work to the multiperiod model has given by Li
and Ng [2] which derived the analytical optimal portfolio
policy. These previous researches were assuming that the
underlying market has only one state or mode. But the real
market might have more than one state and could switch
among them.Then, portfolio policies under regime switching
have been widely discussed. In a financial market model, the
key process 𝑆 that models the evolution of stock price should
be a Brownianmotion. Indeed, this can be intuitively justified

on the basis of the central limit theorem if one perceives
the movement of stocks. The analysis of Øksendal [3] was
mainly based on the generalized Black-Scholes model which
has two assets 𝐵(𝑡) and 𝑆(𝑡) as 𝑑𝐵(𝑡) = 𝜌(𝑡)𝐵(𝑡)𝑑𝑡 and
𝑑𝑆(𝑡) = 𝛼(𝑡)𝑆(𝑡)𝑑𝑡+𝛽(𝑡)𝑆(𝑡)𝑑𝑊(𝑡), where𝑊(𝑡) is a Brownian
motion. In that case, Øksendal formulated optimal selling
decisionmaking as an optimal stopping problem and derived
a closed-form solution. The underlying problem may be
treated as a free boundary value problem,whichwas extended
to incorporate possible regime switching by Guo and Zhang
[4] and Pemy et al. [5] with the switching represented by a
two-state Markov chain. The rate of return 𝛼(t) in the above
Black-Scholes models in [4, 5] is a Markov chain which is
different from the general one. As an application, Wu and Li
[6, 7] have given the strategy of multiperiod mean-variance
portfolio selection with regime switching and a stochastic
cash flow which depends on the states of a stochastic market
following a discrete-time Markov chain. Being put in the
Markov jump, Black-Scholes model with regime switching is
much closer to the real market.

In recent years, Lévy process as a more general process
than Brownianmotion has been applied in financial portfolio
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optimization. Kallsen [8] gave an optimal portfolio strat-
egy of securities market under exponential Lévy process.
More specific than exponential Lévy process, a financial
market model with stock price following the geometric Lévy
process was discussed by Applebaum [9] in which a Lévy
process 𝑋(𝑡) and geometric Lévy motion 𝑆(𝑡) = 𝑒

𝑋(𝑡) were
introduced. Taking 𝑋 to be a Lévy process could force our
stock prices clearly not moving continuously, and a more
realistic approach is that the stock price is allowed to have
small jumps in small time intervals. Some applications of
financial market driven by Lévy process are taken on life
insurance. Vandaele and Vanmaele [10] show the real risk-
minimizing hedging strategy for unit-linked life insurance in
financial market driven by a Lévy process while Weng [11]
has analyzed the constant proportion portfolio insurance by
assuming that the risky asset price follows a regime switching
exponential Lévy process and obtained the analytical forms
of the shortfall probability, expected shortfall and expected
gain. Optimizing proportional reinsurance and investment
policies in a multidimensional Lévy-driven insurance model
is discussed by Bäuerle and Blatter [12]. Moreover, under a
generally method, Yuen and Yin [13] have considered the
optimal dividend problem for the insurance risk process in
a general Lévy process which shows that if the Lévy density is
a completely monotone function, then the optimal dividend
strategy is a barrier strategy.

Among all the above literatures, those portfolios are
always based on one risk-free asset and only one risky
asset which may limit the chosen stocks. However, in a real
financialmarket, there always existsmore than one risky asset
in a portfolio. That is why we are going to extend the single-
stock financial marketmodel to amultistock financial market
model driven by geometric Lévy process which ismore closer
to the real market than proposed portfolios cited above. In
this paper, we set up a general Black-Scholes model with
geometric Lévy process. For the general Black-Scholes model
of the financial market, a portfolio strategy which is deter-
mined by a partial differential equation (PDE) of parabolic
type is given by using Itô formula. The solvability of the PDE
is researched by making use of variables transformation. An
application of the solvability of the PDE on the European
options with the final data is given finally. The contributions
of this paper are as follows. (i) The B-S market model is
extended into general form in which the interest rate of the
bond, the rate of return, and the volatility of the stock vary as
the market states switching and the stock prices are driven
by geometric Lévy process. (ii) The PDE determining the
portfolio strategy and its solvability are extensions of the
existing results.

2. Problem Formulation

Assume that (Ω,F, 𝑃) is a complete probability space and
{F
𝑡
: 𝑡 ≥ 0} is a nondecreasing family of 𝜎-algebra subfields

of F. {𝛼(𝑡) : 𝑡 ≥ 0} denotes a Markov chain in (Ω,F, 𝑃) as
the regime of financial market, for example, the bull market
or bear market of a stock market. Let 𝑀 = {1, 2, . . . , 𝑚} be

the regime space of this Markov chain, and let Γ = (𝛾
𝑖𝑗
)
𝑚×𝑚

be the transition rate matrix which is satisfying

𝑃 {𝛼 (𝑡 + Δ) = 𝑗 | 𝛼 (𝑡) = 𝑖} = {
𝛾
𝑖𝑗
Δ + 𝑜 (Δ) , 𝑖 ̸= 𝑗,

1 + 𝛾
𝑖𝑖
Δ + 𝑜 (Δ) , 𝑖 = 𝑗,

(1)

where Δ > 0 is the increment of time, 𝛾
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗), 𝛾

𝑖𝑖
=

−∑
𝑚

𝑗 ̸= 𝑖,𝑗=1
𝛾
𝑖𝑗
.

In this paper, we consider a financial market model
driven by geometric Lévy process. The market consists of
one risk-free asset denoted by 𝐵 and 𝑛 risky assets denoted
by 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
. The price process of these assets obeys the

following dynamic equations in which the price process of
the risky assets follows the geometric Lévy process; that is,

𝑑𝐵 (𝑡) = 𝐵 (𝑡) 𝑟 (𝑡, 𝛼 (𝑡)) 𝑑𝑡, 𝐵 (0) = 𝐵
0
,

𝑑𝑆
𝑘 (𝑡) = 𝑆

𝑘 (𝑡) [𝜇𝑘 (𝑡, 𝛼 (𝑡)) 𝑑𝑡 + 𝜎𝑘 (𝑡, 𝛼 (𝑡)) 𝑑𝑊𝑘 (𝑡)

+∫
𝑅−{0}

𝑧𝑁̃
𝑘 (𝑑𝑡, 𝑑𝑧)] ,

𝑆
𝑘 (0) = 𝑆

0

𝑘
> 0,

(2)

where 𝐵(𝑡) is the price of 𝐵 with the interest rate 𝑟(𝑡, 𝛼(𝑡))
and 𝑆

𝑘
(𝑡) is the price of 𝑆

𝑘
with the expect rate of return

𝜇
𝑘
(𝑡, 𝛼(𝑡)) and the volatility 𝜎

𝑘
(𝑡, 𝛼(𝑡)), which follow the

regime switching of financialmarket. 𝑆
1
(𝑡), 𝑆
2
(𝑡), . . . , 𝑆

𝑛
(𝑡) are

independent from each other.𝑊
𝑘
(𝑡) is the Brownian motion

which is independent from {𝛼(𝑡) : 𝑡 ≥ 0}. 𝑁̃
𝑘
(⋅, ⋅) is defined as

below

𝑁̃
𝑘 (𝑑𝑡, 𝑑𝑧) = 𝑁

𝑘 (𝑑𝑡, 𝑑𝑧) − 𝜂𝑘 (𝑑𝑧) 𝑑𝑡, (3)

where𝑁
𝑘
(𝑑𝑡, 𝑑𝑧) and 𝜂

𝑘
(𝑑𝑧)𝑑𝑡 indicate the number of jumps

and average number of jumps within time 𝑑𝑡 and jump range
𝑑𝑧 of price process 𝑆

𝑘
(𝑡), respectively. That is

𝜂
𝑘 (𝑑𝑧) 𝑑t = E [𝑁

𝑘 (𝑑𝑡, 𝑑𝑧)] , (4)

where E is the expectation operator. Moreover, we assume
that𝑁

𝑘
(𝑑𝑡, 𝑑𝑧), 𝛼(𝑡), and𝑊

𝑘
(𝑡) (𝑘 = 1, 2, . . . , 𝑛) are indepen-

dent of each other.

Remark 1. Thefinancemarketmodel (2) is an extension of the
B-S market model in which the interest rate of the bond, the
rate of return, and the volatility of the stock vary as themarket
states switching and the stock prices are driven by geometric
Lévy process.

For finance market model (2), we introduce the concept
of self-financing portfolio as follows.

Definition 2. A self-financing portfolio (𝜑, 𝜓) = (𝜑, 𝜓
1
,

𝜓
2
, . . . , 𝜓

𝑛
) for the financial market model (2) is a series of

predictable processes

{𝜑 (𝑡)}
𝑡≥0
, {𝜓

𝑘 (𝑡)}𝑡≥0 (𝑘 = 1, 2, . . . , 𝑛) , (5)
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that is, for each 𝑇 > 0,

∫

𝑇

0

󵄨󵄨󵄨󵄨𝜑(𝑠)
󵄨󵄨󵄨󵄨

2
𝑑𝑠 +

𝑛

∑

𝑘=1

∫

𝑇

0

󵄨󵄨󵄨󵄨𝜓𝑘(𝑠)
󵄨󵄨󵄨󵄨

2
𝑑𝑠 < ∞, (6)

and the corresponding wealth process {𝑉(𝑡)}
𝑡≥0

, defined by

𝑉 (𝑡) := 𝜑 (𝑡) 𝐵 (𝑡) +

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡) , 𝑡 ≥ 0, (7)

is an Itô process satisfying

𝑑𝑉 (𝑡) = 𝜑 (𝑡) 𝑑𝐵 (𝑡) +

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑑𝑆𝑘 (𝑡) , 𝑡 ≥ 0. (8)

Problem Formulation. In this note, we will propose a port-
folio strategy for the financial market model (2) which
is determined by a partial differential equation (PDE) of
parabolic type by using Itô formula. The solvability of the
PDE is researched bymaking use of variables transformation.
Furthermore, the relationship between the solution of the
PDE and the wealth process will be discussed.

3. Main Results and Proofs

In this section, wewill give the following fundamental results.
For the sake of simplification, wewrite 𝑟(𝑡, 𝛼(𝑡)) as 𝑟,𝑓(𝑡, 𝑆(𝑡))
as 𝑓, and so forth.

To obtain the main result, we give the solution of (2) and
the characteristic of the derivation (8) of the wealth process.

The exact solutions of 𝐵(𝑡) in (2) can be found as follows:

𝐵 (𝑡) = 𝐵 (0) exp(∫
𝑡

0

𝑟 (𝑠, 𝛼 (𝑠)) 𝑑𝑠) . (9)

To solve the second equation in (2) for 𝑆
𝑘
(𝑡), it follows

from the Itô formula that

𝑑 ln 𝑆
𝑘 (𝑡) =

1

𝑆
𝑘 (𝑡)

[𝑆
𝑘 (𝑡) 𝜇𝑘 (𝑡, 𝛼 (𝑡)) 𝑑𝑡

+𝑆
𝑘 (𝑡) 𝜎𝑘 (𝑡, 𝛼 (𝑡)) 𝑑𝑊𝑘 (𝑡)]

−
1

2

1

𝑆
2

𝑘
(𝑡)

𝑆
2

𝑘
(𝑡) 𝜎
2

𝑘
(𝑡, 𝛼 (𝑡)) 𝑑𝑡

+ ∫
𝑅−{0}

[ln (𝑆
𝑘 (𝑡) + 𝑧𝑆𝑘 (𝑡))

− ln (𝑆
𝑘 (𝑡))] 𝑁̃𝑘 (𝑑𝑡, 𝑑𝑧)

+ ∫
𝑅−{0}

[ ln (𝑆
𝑘 (𝑡) + 𝑧𝑆𝑘 (𝑡)) − ln (𝑆

𝑘 (𝑡))

−𝑧𝑆
𝑘 (𝑡)

1

𝑆
𝑘 (𝑡)

] 𝜂
𝑘 (𝑑𝑧) 𝑑𝑡

+

𝑠

∑

𝑗=1

𝛾
𝑖𝑗
ln (𝑆
𝑘 (𝑡))

= [𝜇
𝑘 (𝑡, 𝛼 (𝑡)) −

1

2
𝜎
2

𝑘
(𝑡, 𝛼 (𝑡))] 𝑑𝑡

+ 𝜎
𝑘 (𝑡, 𝛼 (𝑡)) 𝑑𝑊𝑘 (𝑡)

+ ∫
𝑅−{0}

ln (1 + 𝑧) 𝑁̃𝑘 (𝑑𝑡, 𝑑𝑧)

+ ∫
𝑅−{0}

[ln (1 + 𝑧) − 𝑧] 𝜂𝑘 (𝑑𝑧) 𝑑𝑡.

(10)

Integrating both sides of the above equation from 0 to 𝑡, we
have

𝑆
𝑘 (𝑡) = 𝑆

0

𝑘
exp{∫

𝑡

0

(𝜇
𝑘 (𝑠, 𝛼 (𝑠)) −

1

2
𝜎
2

𝑘
(𝑠, 𝛼 (𝑠))] 𝑑𝑠

+ ∫

𝑡

0

𝜎
𝑘 (𝑠, 𝛼 (𝑠)) 𝑑𝑊𝑘 (𝑠)

+ ∫

𝑡

0

∫
𝑅−{0}

ln (1 + 𝑧) 𝑁̃𝑘 (𝑑𝑠, 𝑑𝑧)

+ ∫

𝑡

0

∫
𝑅−{0}

[ln (1 + 𝑧) − 𝑧] 𝜂𝑘 (𝑑𝑧) 𝑑𝑠} .

(11)

Proposition 3. Consider the price model (2) of a financial
market. If a portfolio (𝜑, 𝜓) is a self-financing strategy, then the
wealth process {𝑉(𝑡)}

𝑡≥0
defined by (7) satisfies

𝑑𝑉 (𝑡) = {𝑟 (𝑡, 𝛼 (𝑡)) 𝑉 (𝑡)

+

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡) [𝜇𝑘 (𝑡, 𝛼 (𝑡)) − 𝑟 (𝑡, 𝛼 (𝑡))

−∫
𝑅−{0}

𝑧𝜂
𝑘 (𝑑𝑧)]} 𝑑𝑡

+

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡) 𝜎𝑘 (𝑡, 𝛼 (𝑡)) 𝑑𝑊𝑘 (𝑡)

+

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡) ∫

𝑅−{0}

𝑧𝑁
𝑘 (𝑑𝑡, 𝑑𝑧) .

(12)

Conversely, consider the model (2) of a financial market. If a
pair (𝜑, 𝜓) of predictable processes following the wealth process
{𝑉(𝑡)}

𝑡≥0
defined by formula (7) satisfies (12), then (𝜑, 𝜓) is a

self-financing strategy.

Proof. Substituting (2) into (8), we have

𝑑𝑉 (𝑡) = 𝜑 (𝑡) 𝑑𝐵 (𝑡) +

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑑𝑆𝑘 (𝑡)

= 𝜑 (𝑡) 𝐵 (𝑡) 𝑟 (𝑡, 𝛼 (𝑡)) 𝑑𝑡 +

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡)
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× [𝜇
𝑘 (𝑡, 𝛼 (𝑡)) 𝑑𝑡 + 𝜎𝑘 (𝑡, 𝛼 (𝑡)) 𝑑𝑊𝑘 (𝑡)

+ ∫
𝑅−{0}

𝑧𝑁̃
𝑘 (𝑑𝑡, 𝑑𝑧)]

= {[𝑉 (𝑡) −

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡)] 𝑟 (𝑡, 𝛼 (𝑡))

+

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡) 𝜇𝑘 (𝑡, 𝛼 (𝑡))} 𝑑𝑡

+

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡) 𝜎𝑘 (𝑡, 𝛼 (𝑡)) 𝑑𝑊𝑘 (𝑡)

+

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡) ∫

𝑅−{0}

𝑧𝑁̃
𝑘 (𝑑𝑡, 𝑑𝑧)

= {𝑟 (𝑡, 𝛼 (𝑡)) 𝑉 (𝑡) +

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡)

× [𝜇
𝑘 (𝑡, 𝛼 (𝑡)) − 𝑟 (𝑡, 𝛼 (𝑡))

−∫
𝑅−{0}

𝑧𝜂
𝑘 (𝑑𝑧)]} 𝑑𝑡

+

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡) 𝜎𝑘 (𝑡, 𝛼 (𝑡)) 𝑑𝑊𝑘 (𝑡)

+

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡) ∫

𝑅−{0}

𝑧𝑁
𝑘 (𝑑𝑡, 𝑑𝑧) ,

(13)

which is (12).
Conversely, from (2) and (12), we can obtain (8).
This completes the proof of the above proposition.

Now we give the following fundamental results.

Theorem 4. Consider the model (2) of a financial market.
Assume that the portfolio (𝜑, 𝜓

1
, 𝜓
2
, . . . , 𝜓

𝑛
) is a self-financing

strategy and {𝑉(𝑡)}
𝑡≥0

is the wealth process defined by (7) and
∑
𝑛

𝑘=1
𝜓
𝑘
𝑆
𝑘
∫
𝑅−{0}

𝑧𝜂
𝑘
(𝑑𝑧) = ∑

𝑛

𝑘=1
∫
𝑅−{0}

𝑧𝜓
𝑘
𝑆
𝑘
𝜂
𝑘
(𝑑𝑧). If there

exists a function 𝑓(𝑡, 𝑆) of 𝐶1,2 class (the set of functions which
are once differentiable in 𝑡 and continuously twice differentiable
in 𝑆) such that

𝑉 (𝑡) = 𝑓 (𝑡, 𝑆 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑆 (𝑡) = (𝑆
1 (𝑡) , 𝑆2 (𝑡) , . . . , 𝑆𝑛 (𝑡)) ,

(14)

which holds true, then the portfolio (𝜑, 𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑛
) satisfies

𝜑 (𝑡) =
𝑓 − (𝜕𝑓/𝜕𝑆) 𝑆

𝑇

B (𝑡)
, 𝑡 ≥ 0 (15)

𝜓 (𝑡) = (
𝜕𝑓

𝜕𝑆
1

,
𝜕𝑓

𝜕𝑆
2

, . . . ,
𝜕𝑓

𝜕𝑆
𝑛

) =
𝜕𝑓

𝜕𝑆
, 𝑡 ≥ 0 (16)

and the function 𝑓(𝑡, 𝑆) solves the following backward PDE of
parabolic type:

𝜕𝑓

𝜕𝑡
+ 𝑟

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗
= 𝑟𝑓,

𝑡 < 𝑇, 𝑆 > 0.

(17)

Moreover, if 𝑉(𝑇) = 𝑔(𝑆(𝑇)), then the function 𝑓(𝑡, 𝑆)

satisfies the following equation:

𝑓 (𝑇, 𝑆) = 𝑔 (𝑆) , 𝑆 > 0. (18)

For the converse part, we assume that 𝑇 > 0. If there
exists a function 𝑓(𝑡, 𝑆) of 𝐶1,2 class such that (17) and (18)
are satisfied, then the process (𝜑, 𝜓) defined by (16) and (15) is
a self-financing strategy. The wealth process 𝑉 = {𝑉(𝑡)}

𝑡∈[0,𝑇]

corresponding to (𝜑, 𝜓) satisfies (14).

Proof. We proof the direct part of Theorem 4 firstly.
For

𝑉 (𝑡) = 𝑓 (𝑡, 𝑆 (𝑡)) , (19)

by applying the Itô formula, we can infer that

𝑑𝑉 (𝑡) =
𝜕𝑓

𝜕𝑡
(𝑡, 𝑆 (𝑡)) 𝑑𝑡

+

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

(𝑡, 𝑆 (𝑡)) (𝑆𝑘𝜇𝑘𝑑𝑡 + 𝑆𝑘𝜎𝑘𝑑𝑊𝑘)

+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

(𝑡, 𝑆 (𝑡)) 𝑆𝑖𝜎𝑖𝑆𝑗𝜎𝑗𝑑𝑡

+

𝑛

∑

𝑘=1

∫
𝑅−{0}

(𝑓 (𝑡, 𝑆 + 𝑧𝑆) − 𝑓 (𝑡, 𝑆)) 𝑁̃𝑘 (𝑑𝑡, 𝑑𝑧)

+

𝑛

∑

𝑘=1

∫
𝑅−{0}

[𝑓 (𝑡, 𝑆 + 𝑧𝑆) − 𝑓 (𝑡, 𝑆)

−𝑧
𝜕𝑓

𝜕𝑆
𝑘

(𝑡, 𝑆) 𝑆𝑘] 𝜂𝑘 (𝑑𝑧) 𝑑𝑡

+

𝑚

∑

𝑗=1

𝛾
𝑖𝑗
𝑓 (𝑡, 𝑆 (𝑡))

= [

[

𝜕𝑓

𝜕𝑡
+

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
𝜇
𝑘
+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗

−

𝑛

∑

𝑘=1

∫
𝑅−{0}

𝑧
𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
𝜂
𝑘 (𝑑𝑧)] 𝑑𝑡

+

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
𝜎
𝑘
𝑑𝑊
𝑘

+

𝑛

∑

𝑘=1

∫
𝑅−{0}

[𝑓 (𝑡, 𝑆 + 𝑧𝑆) − 𝑓 (𝑡, 𝑆)]𝑁 (𝑑𝑡, 𝑑𝑧) .

(20)
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On the other hand, since our strategy is self-financing, the
formula (12) is satisfied.

Thus, the rate of return and the volatility in (20) and (12)
should be coincided, and hence

𝑛

∑

𝑘=1

𝜓
𝑘 (𝑡) 𝑆𝑘 (𝑡) 𝜎𝑘 =

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

(𝑡, 𝑆) 𝑆𝑘𝜎𝑘,

𝑟 (𝑡, 𝛼 (𝑡)) 𝑓 (𝑡, 𝑆) +

𝑛

∑

𝑘=1

𝜓
𝑘
𝑆
𝑘
(𝜇
𝑘
− 𝑟)

=
𝜕𝑓

𝜕𝑡
+

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
𝜇
𝑘
+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗
.

(21)

We can easily get 𝑆
𝑘
≥ 0 from (11), which together with

the first equation of (21) and the independence of 𝑆
𝑘
(𝑘 =

1, 2, . . . , 𝑛) yields (16).
From the first equation of (21), (7), and (14), we have

𝑟𝜑𝐵 = 𝑓 −

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
. (22)

So that

𝜑 =
𝑓 − ∑

𝑛

𝑘=1
(𝜕𝑓/𝜕𝑆

𝑘
) 𝑆
𝑘

𝐵
=
𝑓 − 𝑓
𝑆
𝑆
𝑇

𝐵
. (23)

Substituting (16) into the second equation of (21), we have

𝑟𝑓 −

𝑛

∑

𝑘=1

𝜓
𝑘
𝑆
𝑘
𝑟 =

𝜕𝑓

𝜕𝑡
+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗
, (24)

which is (17).
Conversely, assume that 𝑓 = 𝑓(𝑡, 𝑆) is a 𝐶

1,2-class
function which is a solution of the PDE (17), and that (𝜑, 𝜓)
is a process defined by (16) and (15).

Firstly, we will show that a process 𝑉 = 𝑉(𝑡), 𝑡 ∈ [0, 𝑇],
defined by (7) satisfies the equation:

𝑉 (𝑡) = 𝑓 (𝑡, 𝑆 (𝑡)) , 𝑡 ∈ [0, 𝑇] . (25)

In fact, substituting formulas (16) and (15) into the right hand
side of (7), we have

𝑉 (𝑡) = 𝜑𝐵 +

𝑛

∑

𝑘=1

𝜓
𝑘
𝑆
𝑘
=
𝑓 − ∑

𝑛

𝑘=1
(𝜕𝑓/𝜕𝑆

𝑘
) 𝑆
𝑘

𝐵
𝐵

+

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
= 𝑓, 𝑡 ≥ 0.

(26)

This proves (25).
Next, we will show that (𝜑, 𝜓) is a self-financing strategy;

that is, (12) holds.
By applying the Itô formula to the process𝑉 and function

𝑓, we have that (20) is satisfied.

Furthermore, by (17),

𝜕𝑓

𝜕𝑡
+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗
= 𝑟𝑓 − 𝑟

𝑛

∑

𝑘=1

𝑆
𝑘

𝜕𝑓

𝜕𝑆
𝑘

,

𝜕𝑓

𝜕𝑡
+

𝑛

∑

𝑘=1

𝑆
𝑘
𝜇
𝑘

𝜕𝑓

𝜕𝑆
𝑘

+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗

= 𝑟𝑓 +

𝑛

∑

𝑘=1

(𝜇
𝑘
− 𝑟) 𝑆

𝑘

𝜕𝑓

𝜕𝑆
𝑘

.

(27)

Then, by (25) and (16), we have

𝑟𝑉 +

𝑛

∑

𝑘=1

𝜓
𝑘
𝑆
𝑘
(𝜇
𝑘
− 𝑟) =

𝜕𝑓

𝜕𝑡
+

𝑛

∑

𝑘=1

𝑆
𝑘
𝜇
𝑘

𝜕𝑓

𝜕𝑆
𝑘

+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗
,

(28)

𝑛

∑

𝑘=1

𝜓
𝑘
𝑆
𝑘
𝜎
𝑘
=

𝑛

∑

𝑘=1

𝜕𝑓

𝜕𝑆
𝑘

𝑆
𝑘
𝜎
𝑘
. (29)

Those together with (16) yield that (20) implies (12). The
proof of Theorem 4 is completed.

Remark 5. In order to determine the portfolio strategy (𝜙, 𝜓)
and obtain the final value 𝑉(𝑡), from Theorem 4, we should
find the solution of the PDF (17) with the final data (18).
This is the key problem in the rest of this section. We
have the following result in terms of method of variables
transformation.

Theorem 6. Let 𝑟(𝑡, 𝛼(𝑡)) in (2) be a constant 𝑟. The function
𝑓(𝑡, 𝑆), 𝑡 ≤ 𝑇, 𝑆 > 0 given by the following formula:

𝑓 (𝑡, 𝑆) =
𝑒
−𝑟(𝑇−𝑡)

√2𝜋

×

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−𝑥
2

𝑖
/2
𝑔 (0, . . . , 0, 𝑆

𝑖
𝑒
𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
−(𝑟−𝜎

2

𝑖
/2)(𝑡−𝑇)

,

0, . . . , 0) 𝑑𝑥
𝑖
,

(30)

is a solution of the general Black-Scholes equation (17) with the
final data (18).

Proof. We are going to do some equivalent transformations
of general B-S equation (17), in order to get an appropriate
equivalent equation with analytic solutions. The procedure
will be divided into four steps.

Step I. Let

𝑓 (𝑡, 𝑆
1
, . . . , 𝑆

𝑛
) = 𝑒
𝑟(𝑡−𝑇)

𝑞 (𝑡, ln 𝑆
1
− (𝑟 −

1

2
𝜎
2

1
) (𝑡 − 𝑇) , . . . ,

ln 𝑆
𝑛
− (𝑟 −

1

2
𝜎
2

𝑛
) (𝑡 − 𝑇)) ,

(31)
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and denote 𝑦
𝑖
= ln 𝑆

𝑖
− (𝑟 − (1/2)𝜎

2

𝑖
)(𝑡 − 𝑇) (𝑖 = 1, 2, . . . , 𝑛),

and then

𝜕𝑓

𝜕𝑡
=

𝑑 (𝑒
𝑟(𝑡−𝑇)

)

𝑑𝑡
𝑞 + 𝑒
𝑟(𝑡−𝑇)

𝑞
𝑡

= 𝑒
𝑟(𝑡−𝑇)

𝑞 (
𝑑𝑟

𝑑𝑡
(𝑡 − 𝑇) + 𝑟)

+ 𝑒
𝑟(𝑡−𝑇)

[𝑞
𝑡
−

𝑛

∑

𝑖=1

𝜕𝑞

𝜕𝑦
𝑖

(𝑟 −
1

2
𝜎
2

𝑖
)]

= 𝑟𝑒
𝑟(𝑡−𝑇)

𝑞 + 𝑒
𝑟(𝑡−𝑇)

𝑞
𝑑𝑟

𝑑𝑡
(𝑡 − 𝑇)

+ 𝑒
𝑟(𝑡−𝑇)

[
𝜕𝑞

𝜕𝑡
−

𝑛

∑

𝑖=1

𝜕𝑞

𝜕𝑦
𝑖

(𝑟 −
1

2
𝜎
2

𝑖
)] ,

𝜕𝑓

𝜕𝑆
𝑖

= 𝑒
𝑟(𝑡−𝑇) 𝜕𝑞

𝜕𝑦
𝑖

1

𝑆
𝑖

,

𝜕
2
𝑓

𝜕𝑆
𝑖
𝜕𝑆
𝑗

=

𝜕 (𝑒
𝑟(𝑡−𝑇)

(𝜕𝑞/𝜕𝑦
𝑖
) (1/𝑆

𝑖
))

𝜕𝑆
𝑗

=

{{{{

{{{{

{

𝑒
𝑟(𝑡−𝑇)

𝜕
2
𝑞

𝜕𝑦
𝑖
𝜕𝑦
𝑗

1

𝑆
𝑖

1

𝑆
𝑗

, 𝑖 ̸= 𝑗,

𝑒
𝑟(𝑡−𝑇)

(
𝜕
2
𝑞

𝜕𝑦
𝑖
𝜕𝑦
𝑖

1

𝑆
𝑖

1

𝑆
𝑖

−
𝜕𝑞

𝜕𝑦
𝑖

1

𝑆
2

𝑖

) , 𝑖 = 𝑗.

(32)

Inserting the above formulas into (17), we get

𝑟𝑓 +
𝑑𝑟

𝑑𝑡
(𝑡 − 𝑇) 𝑞𝑒

𝑟(𝑡−𝑇)
+ 𝑒
𝑟(𝑡−𝑇)

[
𝜕𝑞

𝜕𝑡
−

𝑛

∑

𝑖=1

𝜕𝑞

𝜕𝑦
𝑖

(𝑟 −
1

2
𝜎
2

𝑖
)]

+ 𝑟

𝑛

∑

𝑖=1

𝑒
𝑟(𝑡−𝑇) 𝜕𝑞

𝜕𝑦
𝑖

1

𝑆
𝑖

𝑆
𝑖
+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑒
𝑟(𝑡−𝑇) 𝜕

2
𝑞

𝜕𝑦
𝑖
𝜕𝑦
𝑗

1

𝑆
𝑖

1

𝑆
𝑗

𝑆
𝑖
𝜎
𝑖
𝑆
𝑗
𝜎
𝑗

−
1

2

𝑛

∑

𝑖=1

𝑒
𝑟(𝑡−𝑇) 𝜕𝑞

𝜕𝑦
𝑖

𝑆
2

𝑖

1

𝑆
2

𝑖

𝑆
2

𝑖
= 𝑟𝑓,

(33)

which can be simplified as

𝑑𝑟

𝑑𝑡
(𝑡 − 𝑇) 𝑞 +

𝜕𝑞

𝜕𝑡
+
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑞

𝜕𝑦
𝑖
𝜕𝑦
𝑗

𝜎
𝑖
𝜎
𝑗
= 0. (34)

The final data 𝑓(𝑇, 𝑆) = 𝑔(𝑆) can be rewritten as

𝑞 (𝑇, 𝑆) = 𝑔 (𝑒
𝑆
1 , 𝑒
𝑆
2 , . . . , 𝑒

𝑆
𝑛) . (35)

Step II. We introduce another variable and a new function as
follows:

𝜏 = 𝑇 − 𝑡 > 0, 𝑡 = 𝑇 − 𝜏, 𝜏 ≥ 0, 𝑡 ≤ 𝑇,

𝑞 (𝑡, 𝑦) = 𝑢 (𝑇 − 𝑡, 𝑦) or 𝑢 (𝜏, 𝑦) = 𝑞 (𝑇 − 𝜏, 𝑦) .

(36)

It can be computed that

𝑞
𝑡
(𝑡, 𝑦) = −𝑢

𝜏
(𝑇 − 𝑡, 𝑦) ,

𝜕𝑞

𝜕𝑦
𝑖

=
𝜕𝑢

𝜕𝑦
𝑖

(𝑇 − 𝑡, 𝑦) ,

𝜕
2
𝑞

𝜕𝑦
𝑖
𝜕𝑦
𝑗

=
𝜕
2
𝑢

𝜕𝑦
𝑖
𝜕𝑦
𝑗

(𝑇 − 𝑡, 𝑦) .

(37)

Substituting the above formulas into (34), we get

𝑑𝑉

𝑑𝑡
(𝑡 − 𝑇) 𝑢 (𝑇 − 𝑡, 𝑦) − 𝑢

𝜏
(𝑇 − 𝑡, 𝑦) +

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑢

𝜕𝑦
𝑖
𝜕𝑦
𝑗

𝜎
𝑖
𝜎
𝑗

= 0,

𝑢 (0, 𝑦) = 𝑔 (𝑒
𝑦
) .

(38)

Since 𝑟(𝑡, 𝛼(𝑡)) is assumed as a constant 𝑟, (38) can be changed
into

𝑢
𝜏
(𝜏, 𝑦) −

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑢

𝜕𝑦
𝑖
𝜕𝑦
𝑗

𝜎
𝑖
𝜎
𝑗
= 0,

𝑢 (0, 𝑦) = 𝑔 (𝑒
𝑦
) .

(39)

Step III. We claim that the unique solution of (39) is

𝑢 (𝑡, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)

=
1

√2𝜋𝜏

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

𝑔 (0, . . . , 0, 𝑒
𝑥
𝑖 , 0, . . . , 0) 𝑑𝑥

𝑖
.

(40)

In fact,

𝑢
𝜏
(𝜏, 𝑦) = −

1

2√2𝜋𝜏𝜏

×

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

× 𝑔 (0, . . . , 0, 𝑒
𝑥
𝑖 , 0, . . . , 0) 𝑑𝑥

𝑖

+
1

√2𝜋𝜏

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

× 𝑔 (0, . . . , 0, 𝑒
𝑥
𝑖 , 0, . . . , 0)

×
(𝑦
𝑖
− 𝑥
𝑖
)
2

2𝜎
2

𝑖
𝜏2

𝑑𝑥
𝑖
,
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𝜕𝑢

𝜕𝑦
𝑖

=
1

√2𝜋𝜏
∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

𝑔 (0, . . . , 0, 𝑒
𝑥
𝑖 , 0, . . . , 0)

× (−
𝑦
𝑖
− 𝑥
𝑖

𝜎
2

𝑖
𝜏

)𝑑𝑥
𝑖
,

𝜕
2
𝑢

𝜕𝑦
𝑖
𝜕𝑦
𝑗

=

{{{{{{{

{{{{{{{

{

0, 𝑖 ̸= 𝑗,

1

√2𝜋𝜏
∫

∞

−∞

𝑔 (𝑒
𝑥
1 , . . . , 𝑒

𝑥
𝑛)

𝜎
2

𝑖

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

×(
(𝑦
𝑖
− 𝑥
𝑖
)
2

𝜎
4

𝑖
𝜏2

−
1

𝜎
2

𝑖
𝜏
)𝜎
2

𝑖
𝑑𝑥i, 𝑖 = 𝑗.

(41)

So

𝑢
𝜏
(𝜏, 𝑔) −

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜕
2
𝑢

𝜕𝑦
𝑖
𝜕𝑦
𝑗

𝜎
𝑖
𝜎
𝑗

= −
1

2√2𝜋𝜏𝜏

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

× 𝑔 (0, . . . , 0, 𝑒
𝑥
𝑖 , 0, . . . , 0) 𝑑𝑥

𝑖

+
1

√2𝜋𝜏

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

× 𝑔 (0, . . . , 0, 𝑒
𝑥
𝑖 , 0, . . . , 0)

(𝑦
𝑖
− 𝑥
𝑖
)
2

2𝜎
2

𝑖
𝜏2

𝑑𝑥
𝑖

−
1

2

𝑛

∑

𝑖=1

1

√2𝜋𝜏
∫

∞

−∞

𝑔 (𝑒
𝑥
1 , . . . , 𝑒

𝑥
𝑛)

𝜎
2

𝑖

× 𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏
(
(𝑦
𝑖
− 𝑥
𝑖
)
2

𝜎
4

𝑖
𝜏2

−
1

𝜎
2

𝑖
𝜏
)𝜎
2

𝑖
𝑑𝑥
𝑖
= 0.

(42)

Step IV. By introducing a change of variables 𝑧
𝑖
= 𝑥
𝑖
− 𝑦
𝑖
,

we have 𝑥
𝑖
= 𝑧
𝑖
+ 𝑦
𝑖
and 𝑑𝑥

𝑖
= 𝑑𝑧
𝑖
, where 𝑧

𝑖
∈ (−∞,∞). It

follows that

𝑢 (𝜏, 𝑦)

=
1

√2𝜋𝜏

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−(𝑦
𝑖
−𝑥
𝑖
)
2
/2𝜎
2

𝑖
𝜏

𝜎
𝑖

× 𝑔 (0, . . . , 0, 𝑒
𝑧
𝑖
+𝑦
𝑖 , 0, . . . , 0) 𝑑𝑧

𝑖
.

(43)

In order to get rid of the denominator 𝜎2
𝑖
𝜏 in the exponent in

the above formula, we make another change of variables as

𝑧
𝑖
= 𝜎
𝑖
√𝜏𝑥
𝑖
. (44)

So 𝑑𝑧
𝑖
= 𝜎
𝑖
√𝜏𝑑𝑥

𝑖
.

Recalling the relationship between 𝑞 and 𝑢 described in
(36), we therefore have

𝑞 (𝑡, 𝑦)

=
1

√2𝜋

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−𝑥
2

𝑖
/2

× 𝑔 (0, . . . , 0, 𝑒
𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
+𝑦
𝑖 , 0, . . . , 0) 𝑑𝑥

𝑖
.

(45)

Hence, by formula (31), we have

𝑓 (𝑡, 𝑆)

=
𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−𝑥
2

𝑖
/2

× 𝑔 (0, . . . , 0, 𝑒
𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
+ln 𝑆
𝑖
−(𝑟−𝜎

2

𝑖
/2)(𝑡−𝑇)

,

0, . . . , 0) 𝑑𝑥
𝑖
.

(46)

Since 𝑒ln 𝑆 = 𝑆, then

𝑓 (𝑡, 𝑆)

=
𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

∫

∞

−∞

𝑒
−𝑥
2

𝑖
/2

× 𝑔 (0, . . . , 0, 𝑆
𝑖
𝑒
𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
−(𝑟−𝜎

2

𝑖
/2)(𝑡−𝑇)

,

0, . . . , 0) 𝑑𝑥
𝑖
.

(47)

In this way we provedTheorem 6.

4. A Financial Example

As an application, we consider the European call option. In
Theorem 6, we have given the solution of the general B-S
equation (17) which depends on the final data (18); that is,
𝑓(𝑇, 𝑠) = 𝑔(𝑠). More specific, we take the final data 𝑔(𝑠) for
the European call option as

𝑔 (𝑆) = 𝑔 (𝑆
−𝑘
1

1
, 𝑆
−𝑘
2

2
, . . . , 𝑆

−𝑘
𝑛

𝑛
) =

𝑛

∑

𝑖=1

(𝑆
𝑖
− 𝐾i)
+
, (48)

where 𝑆
𝑖
> 0 and 𝐾

𝑖
> 0 are the strike price of 𝑆

𝑖
. Then we

have the following corollary fromTheorem 6.

Corollary 7. For the European call option, the solution to the
general Black-Scholes value problem (17) with the final data
(48) is given by

𝑓 (𝑡, 𝑆) =

𝑛

∑

𝑖=1

𝑆
𝑖
Φ(−𝐴

𝑖
+ 𝜎
𝑖
√𝑇 − 𝑡)

− 𝑒
−𝑟(𝑇−𝑡)

𝑛

∑

𝑖=1

𝐾
𝑖
Φ(−𝐴

𝑖
) ,

(49)
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where

−𝐴
𝑖
=

(𝑟 − 𝜎
2

𝑖
/2) (𝑇 − 𝑡) + ln (𝑆

𝑖
/𝐾
𝑖
)

𝜎
𝑖
√𝑇 − 𝑡

=: 𝑑
2
,

−𝐴
𝑖
+ 𝜎
𝑖
√𝑇 − 𝑡 =

(𝑟 + 𝜎
2

𝑖
/2) (𝑇 − 𝑡) + ln (𝑆

𝑖
/𝐾
𝑖
)

𝜎
𝑖
√T − 𝑡

=: 𝑑
1
,

(50)

that is,

𝑓 (𝑡, 𝑆) =

𝑛

∑

𝑖=1

𝑆
𝑖
Φ(𝑑
1
) − 𝑒
−𝑟(𝑇−𝑡)

𝑛

∑

𝑖=1

𝐾
𝑖
Φ(𝑑
2
) ; (51)

In particular,

𝑓 (0, 𝑆) =

𝑛

∑

𝑖=1

𝑆
𝑖
Φ(𝑑
1
) − 𝑒
−𝑟𝑇

𝑛

∑

𝑖=1

𝐾
𝑖
Φ(𝑑
2
) . (52)

Proof. For a European call option, we infer that

𝑆
𝑖
𝑒
𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
−(𝑟−𝜎

2

𝑖
/2)(𝑡−𝑇)

> 𝐾
𝑖
. (53)

Dividing (53) by 𝑆
𝑖
and taking the ln, we get

𝜎
𝑖
√𝑇 − 𝑡𝑥

𝑖
− (𝑟 −

𝜎
2

𝑖

2
) (𝑡 − 𝑇) > ln

𝐾
𝑖

𝑆
𝑖

; (54)

that is,

𝑥
𝑖
>

ln (𝐾
𝑖
/𝑆
𝑖
) − (𝑟 − 𝜎

2

𝑖
/2) (𝑇 − 𝑡)

𝜎
𝑖
√𝑇 − 𝑡

=: 𝐴
𝑖
. (55)

Hence, from (30) and (48), it follows that

𝑓 (𝑡, 𝑆) =
𝑒
−𝑟(𝑇−𝑡)

√2𝜋

×

𝑛

∑

𝑖=1

∫

∞

𝐴
𝑖

𝑒
−𝑥
2

𝑖
/2
𝑆
𝑖
𝑒
𝜎
𝑖
√𝑇−𝑡𝑥

𝑖
−(𝑟−𝜎

2

𝑖
/2)(𝑡−𝑇)

𝑑𝑥
𝑖

−
𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

𝐾
𝑖
∫

∞

𝐴
𝑖

𝑒
−𝑥
2

𝑖
/2
𝑑𝑥
𝑖

=
𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

∫

∞

𝐴
𝑖

𝑆
𝑖
𝑒
(𝑟−𝜎
2

𝑖
/2)(𝑇−𝑡)

𝑒
−𝑥
2

𝑖
/2+𝜎
𝑖
√𝑇−𝑡𝑥

𝑖𝑑𝑥
𝑖

−
𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

𝐾
𝑖
∫

∞

𝐴
𝑖

𝑒
−𝑥
2

𝑖
/2
𝑑𝑥
𝑖

=
1

√2𝜋

𝑛

∑

𝑖=1

∫

∞

𝐴
𝑖

𝑆
𝑖
𝑒
−(𝜎
2

𝑖
/2)(𝑇−𝑡)

× 𝑒
−(1/2)(𝑥

𝑖
−𝜎
𝑖
√𝑇−𝑡)

2

+(1/2)𝜎
2

𝑖
(𝑇−𝑡)

𝑑𝑥
𝑖

−
𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

𝐾
𝑖
∫

∞

𝐴
𝑖

𝑒
−𝑥
2

𝑖
/2
𝑑𝑥
𝑖

=
1

√2𝜋

𝑛

∑

𝑖=1

∫

∞

𝐴
𝑖
−𝜎
𝑖
√𝑇−𝑡

𝑆
𝑖
𝑒
−𝑧
2
/2
𝑑𝑧

−
𝑒
−𝑟(𝑇−𝑡)

√2𝜋

𝑛

∑

𝑖=1

𝐾
𝑖
∫

∞

𝐴
𝑖

𝑒
−𝑥
2

𝑖
/2
𝑑𝑥
𝑖

=

𝑛

∑

𝑖=1

𝑆
𝑖

1

√2𝜋
∫

−𝐴
𝑖
+𝜎
𝑖
√𝑇−𝑡

−∞

𝑒
−𝑥
2

𝑖
/2
𝑑𝑥
𝑖

− 𝑒
−𝑟(𝑇−𝑡)

𝑛

∑

𝑖=1

𝐾
𝑖

1

√2𝜋
∫

−𝐴
𝑖

−∞

𝑒
−𝑥
2

𝑖
/2
𝑑𝑥
𝑖

=

𝑛

∑

𝑖=1

𝑆
𝑖
Φ(−𝐴

𝑖
+ 𝜎
𝑖
√𝑇 − 𝑡)

− 𝑒
−𝑟(𝑇−𝑡)

𝑛

∑

𝑖=1

𝐾
𝑖
Φ(−𝐴

𝑖
) ,

(56)

where Φ(𝑡) is the probability distribution function of a
standard Gaussion random variable𝑁(0, 1); that is,

Φ (𝑡) =
1

√2𝜋
∫

𝑡

−∞

𝑒
−𝑥
2
/2
𝑑𝑥, 𝑡 ∈ 𝑅. (57)

In this way, we have proved Corollary 7.

Remark 8. Theabove result is about the European call option.
A similar representation to those from the above corollary
in the European put option case can be obtained by taking
𝑔(𝑆) = ∑

𝑛

𝑖=1
(𝐾
𝑖
− 𝑆
𝑖
)
+, 𝑆
𝑖
> 0 for some fixed 𝐾

𝑖
> 0.

5. Conclusion

In this paper, we have considered a financial market model
with regime switching driven by geometric Lévy process.
This financial market model is based on the multiple risky
assets 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
driven by Lévy process. Itô formula and

equivalent transformation methods have been used to solve
this complicated financial market model. An example of the
portfolio strategy and the final value problem to applying our
method to the European call option has been given in the end
of this paper.
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