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A stochastic pinning approach for multiagent systems is developed, which guarantees such systems being almost surely stable. It
is seen that the pinning is closely related to being a Bernoulli variable. It has been proved for the first time that a series of systems
can be stabilized by a Brownian noise perturbation in terms of a pinning scheme. A new terminology named “stochastic pinning
control” is introduced to describe the given pinning algorithm. Additionally, two general cases that the expectation of the Bernoulli
variable with bounded uncertainty or being unknown are studied. Finally, two simulation examples are provided to demonstrate
the effectiveness of the proposed methods.

1. Introduction

Due to the broad applications in cooperative control of
unmanned air vehicles, formation control of mobile robots,
sensor networks, and cooperative surveillance, multiagent
problems have drawn a lot of attention. In particular, multi-
agent coordination with multiple leaders becomes more and
more important, which forces a group of agents into a specific
target region. Because of the spatial distribution of actuators
and sensors, it is of high cost or even impossible in practice
to implement a centralized controller. Instead, distributed
control emerged to be a promising tool for coordination of
multiagent systems, which is usually to design a controller
to every subsystem. During the past years, many important
results have been reported in [1–6]. Many natural and man-
made systems, such as ecosystems, internet,WordWideWeb,
social networks, and power grids, are described by it. In
recent years, the analysis and control of complex behaviors
in complex networks have become a hot topic across many
fields such as in [7–11]. Especially, synchronization related
to being the most important collective behavior of complex
networks, such as ER random, small-world, and scale-free
complex networks [12–14], has been extensively studied. Via
introducing a Bernoulli stochastic variable describing the
randomswitching of controllers, the distributed synchroniza-
tion of complex networks was studied in [15, 16].

Due to the complexity of complex networks, it is usually
not easy to control a complex network by adding controllers
to all nodes. Instead, pinning control only uses a small
number of controllers. In this sense, it is said that pinning
control is a promising method, which can efficiently reduce
the number of controllers. The pinning control strategy
for linear coupled networks was investigated in [17, 18], in
which two different pinning strategies, random pinning and
special pinning methods, were theoretically and numerically
compared. During the past decades, a lot of results on
synchronization of various complex networks by pinning
control have emerged, for example, [19–25]. By searching
such references on pinning control, it is concluded that all the
pinning methods are realized by a kind of regular controllers
in terms of in the drift section of a system. However, it
is possible to design a controller to stabilize a stochastic
system almost surely which is unable to be stabilized in
mean-square sense. Based on these facts, it is asked that can
we design a pinning controller referred to be a Brownian
noise perturbation to stabilize multiagent systems? To the
best of authors’ knowledge, the control problemofmultiagent
systems via a pinning controller only in the diffusion part
has not yet been investigated, which motivates the current
research.

In this paper, the control problem of multiagent systems
is firstly considered by a stochastic pinning viewpoint. In

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 985356, 10 pages
http://dx.doi.org/10.1155/2014/985356

http://dx.doi.org/10.1155/2014/985356


2 Abstract and Applied Analysis

contrast to the existing results of pinning control methods,
the main contributions of this paper are as follows. (1) The
control of multiagent systems is firstly realized by a pinning
control method in terms of a Brownian noise perturbation.
(2) In order to achieve this goal, new pinning control in
terms of stochastic pinning control (SPC) is developed, in
which the Bernoulli variable plays an important role in SPC.
(3) More general cases such as the expectation of Bernoulli
variable with uncertainty and being unknown are considered
respectively. (4) The relationship among the expectation,
the pinning fraction, and the pinning control gain for both
randomand special pinning control is demonstrated in detail.

Notation. R𝑛 denotes the 𝑛 dimensional Euclidean space;
R𝑚×𝑛 is the set of all 𝑚 × 𝑛 real matrices. | ⋅ | denotes the
Euclidean norm.E{⋅} is the expectation operator with respect
to some probability measure. ⊗ is the Kronecker product. In
symmetric block matrices, we use “∗” as an ellipsis for the
terms induced by symmetry, diag{⋅ ⋅ ⋅ } for a block-diagonal
matrix. S ≜ {1, 2, . . . , 𝑁} = S

𝑙
⋃S
𝑙
, where S

𝑙
= {1, 2, . . . , 𝑙}

and S
𝑙
= S − S

𝑙
.

2. Problem Formulation

Consider a multiagent system consisting of𝑁 agents, such as
in [6], the model of agent, 𝑖 ∈ S, is described as

𝑥̇
𝑖
= 𝑓
𝑖
(𝑥
𝑖
, 𝑡) , (1)

where 𝑥
𝑖
∈ R𝑛 is the state vector, 𝑓

𝑖
(𝑥
𝑖
, 𝑡) : R𝑛 × R → R𝑛

is the inherent nonlinear dynamic. However, it can be also
be dealt with by the fuzzy method [26, 27]. In this paper, the
nonlinear term 𝑓

𝑖
(𝑥
𝑖
, 𝑡) is treated directly, and an assumption

is needed here.

Assumption 1. Nonlinear function 𝑓
𝑖
(𝑥
𝑖
, 𝑡) is assumed to

satisfy the following condition:

𝑥
𝑇

𝑖
𝑓
𝑖
(𝑥
𝑖
, 𝑡) ≤ 𝜃

𝑖
𝑥
𝑇

𝑖
𝑥
𝑖
, ∀𝑥

𝑖
∈ R
𝑛

, ∀𝑡 ≥ 0, (2)

where 𝜃
𝑖
≥ 0 is a given constant.

In this paper, a new pinning control method for system
(1) in terms of stochastic pinning control is proposed as

𝑢
𝑖
= 𝑐

𝑁

∑
𝑗=1

𝑔
𝑖𝑗
𝑥
𝑗
− 𝑐𝑘
𝑖
𝑥
𝑖
, 𝑖 ∈ S

𝑙
, (3)

𝑢
𝑖
= 𝑐

𝑁

∑
𝑗=1

𝑔
𝑖𝑗
𝑥
𝑗
− 𝑐𝛼 (𝑡) 𝑘

𝑖
𝑥
𝑖
, 𝑖 ∈ S

𝑙
, (4)

respectively, where 𝑐 is the coupling strength, 𝐺 = (𝑔
𝑖𝑗
) ∈

R𝑁×𝑁 is the coupling matrix with 𝑔
𝑖𝑗

≥ 0, 𝑖 ̸= 𝑗, 𝑔
𝑖𝑖

=

−∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑔
𝑖𝑗
, which is an irreducible matrix, and 𝑘

𝑖
∈ R𝑛×𝑛

is the control gain. Bernoulli variable 𝛼(𝑡) in (4) is described
as

𝛼 (𝑡) = 1 or 0 (5)

whose expectation is E{𝛼(𝑡)} = 𝛼.
In this paper, such controllers will be used as a pinning

controller in terms of Brownian noise perturbation. As a
result, we have the closed-loop system as

𝑑𝑥
𝑖
= 𝑓
𝑖
(𝑥
𝑖
, 𝑡) 𝑑𝑡 + 𝑐(

𝑁

∑
𝑗=1

𝑔
𝑖𝑗
𝑥
𝑗
− 𝑘
𝑖
𝑥
𝑖
)𝑑𝜔 (𝑡) , 𝑖 ∈ S

𝑙
,

(6)

𝑑𝑥
𝑖
= 𝑓
𝑖
(𝑥
𝑖
, 𝑡) 𝑑𝑡 + 𝑐(

𝑁

∑
𝑗=1

𝑔
𝑖𝑗
𝑥
𝑗
− 𝛼 (𝑡) 𝑘

𝑖
𝑥
𝑖
)𝑑𝜔 (𝑡) ,

𝑖 ∈ S
𝑙
,

(7)

where 𝜔(𝑡) ∈ R𝑛 is a 𝑛-dimensional Brownian motion or
Wiener process. Let 𝑥 = [𝑥𝑇

1
⋅ ⋅ ⋅ 𝑥𝑇
𝑁
]
𝑇

, 𝑓 = [𝑓𝑇
1

⋅ ⋅ ⋅ 𝑓𝑇
𝑁
]
𝑇

,
and 𝐾

𝛼(𝑡)
= diag{𝑘

1
, . . . , 𝑘

𝑙
, 𝛼(𝑡)𝑘

𝑙+1
, . . . , 𝛼(𝑡)𝑘

𝑁
}; one has

𝐺
1
= 𝐺−𝐾

𝛼(𝑡)=1
and𝐺

2
= 𝐺−𝐾

𝛼(𝑡)=0
, respectively.Without of

loss generality, in this paper it is assumed that 𝑘
𝑖
= 𝑘
𝑗
= 𝑘 > 0,

for all 𝑖, 𝑗 ∈ S. Based on these notations, we have

𝑑𝑥 = 𝑓 (𝑥, 𝑡) 𝑑𝑡 + 𝑐𝐺 (𝜂 (𝑡)) 𝑥𝑑𝜔 (𝑡) , (8)

where 𝐺(𝜂(𝑡)) = 𝐺(𝜂(𝑡)) ⊗ 𝐼
𝑛
. Operation mode {𝜂(𝑡), 𝑡 ≥ 0}

takes values in set B = {1, 2} and is described as

𝜂 (𝑡) = {
1, if 𝛼 (𝑡) = 1

2, if 𝛼 (𝑡) = 0,
(9)

whose probabilities are Pr{𝜂(𝑡) = 1} = 𝛼 and Pr{𝜂(𝑡) = 2} =

1 − 𝛼, respectively.

Remark 2. It is worth pointing out that the proposed pinning
control method is different from the existing pinning meth-
ods. Firstly, the pinning problem of this paper is realized by a
Brownian noise perturbation, which cannot be solved by the
usual analysis methods. Secondly, the introduced Bernoulli
variable 𝛼(𝑡) plays an important role in achieving the pinning
control in terms of Brownian noise control. Such differences
embody the property of stochastic pinning control. That is,
when 𝛼(𝑡) = 0, only controller (6) works and is a pinning
controller. On the contrary, if 𝛼(𝑡) = 1, the desired controller
becomes a distributed controller, which is not pinning control
in fact. In this sense, it is said that the developed pinning
control is a stochastic control method.

Remark 3. It should be remarked that this framework is
necessary to achieve pinning control through Brownian
noise perturbations. If there is no 𝛼(𝑡) in (7), the underlying
systems become (6) with 𝑖 ∈ S

𝑙
and (1) with 𝑖 ∈ S

𝑙
,

which can be obtained by applying the usual pinning
methods directly. Unfortunately, it is concluded that this
pinning framework is very hard to realize the desired object.
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The reason will be explained later. On the other hand, when
𝛼(𝑡) ≡ 1, we have (6) only, which is seen as a distributed
controller instead of a pinning controller. Thus, it is
claimed that the given pinning control algorithm bridges
the traditional pinning control and distributed control. In
addition,𝐾

𝛼(𝑡)
can also choose other forms, such as𝐾

𝛼(𝑡),𝛽(𝑡)
=

diag{𝛼(𝑡)𝑘
1
, . . . , 𝛼(𝑡)𝑘

𝑙
, 𝛽(𝑡)𝑘

𝑙+1
, . . . , 𝛽(𝑡)𝑘

𝑁
}, where both

𝛼(𝑡) and 𝛽(𝑡) are dependent or independent Bernoulli
variables.

Definition 4. The equilibrium of system (8) is said to be
almost surely exponentially stable if for any 𝑥

0
∈ R𝑛

lim
𝑡→∞

sup 1

𝑡
log (󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝑥

0
)
󵄨󵄨󵄨󵄨) < 0 a.s. (10)

3. Main Results

Theorem 5. For given scalars 𝜃 and 𝛼, the equilibrium of
system (8) is almost surely exponentially stable, if there exists
𝑘 > 0 such that

2𝜃 + 𝛼𝑐
2

Ω
1
+ (1 − 𝛼) 𝑐

2

Ω
2
< 0, (11)

whereΩ
𝑖
= 𝜆max(𝐺

𝑇

𝑖
𝐺
𝑖
) − 2𝜆2max(𝐺𝑖), 𝑖 ∈ B.

Proof. For any given initial condition 𝑥
0

̸= 0, it is known that
𝑥(𝑡) ≜ 𝑥(𝑡; 𝑥

0
)will never reach zero with probability one, and

by Itô formula, it is obtained that

𝑑 [log (|𝑥|2)]

=
(2𝑥𝑇𝑓 (𝑥, 𝑡) + 𝑐2𝑥𝑇𝐺𝑇

𝑖
𝐺
𝑖
𝑥) 𝑑𝑡 + 2𝑐𝑥𝑇𝐺

𝑖
𝑥𝑑𝜔 (𝑡)

|𝑥|
2

−
2𝑐2

󵄨󵄨󵄨󵄨󵄨
𝑥𝑇𝐺
𝑖
𝑥
󵄨󵄨󵄨󵄨󵄨

2

|𝑥|
4

𝑑𝑡

=
(2𝑥𝑇𝑓 (𝑥, 𝑡) + 𝑐2𝑥𝑇 (𝐺𝑇

𝑖
𝐺
𝑖
) ⊗ 𝐼
𝑛
𝑥) 𝑑𝑡 + 2𝑐𝑥𝑇𝐺

𝑖
𝑥𝑑𝜔 (𝑡)

|𝑥|
2

−
2𝑐2

󵄨󵄨󵄨󵄨󵄨
𝑥𝑇𝐺
𝑖
𝑥
󵄨󵄨󵄨󵄨󵄨

2

|𝑥|
4

𝑑𝑡

≤ (2𝜃 + 𝑐
2

Ω
𝑖
) 𝑑𝑡 +

2𝑐𝑥𝑇𝐺
𝑖
𝑥

|𝑥|
2

𝑑𝜔 (𝑡) .

(12)

Then, it is obtained that

log (|𝑥 (𝑡)|
2

) ≤ log (󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨
2

)

+ ∫
𝑡

0

(2𝜃 + 𝑐
2

Ω(𝜂 (𝑠))) 𝑑𝑠 + 𝑀 (𝑡) ,

(13)

where 𝑀(𝑡) = ∫
𝑡

0

((2𝑐𝑥𝑇(𝑠)𝐺(𝜂(𝑠))𝑥(𝑠))/|𝑥(𝑠)|
2

)𝑑𝜔(𝑠) is a
continuous martingale vanishing at 𝑡 = 0. Taking into
account (9), it is seen that

lim
𝑡→∞

1

𝑡
∫
𝑡

0

(2𝜃 + 𝑐
2

Ω(𝜂 (𝑠))) 𝑑𝑠

= 2𝜃 + 𝛼𝑐
2

Ω
1
+ (1 − 𝛼) 𝑐

2

Ω
2

a.s.
(14)

On the other hand, it is concluded that for any finite 𝑘 given in
𝐺
𝑖
, there exists a positive scalar 𝜌

𝑖
that the quadratic variation

of𝑀(𝑡) is

⟨𝑀 (𝑡) ,𝑀 (𝑡)⟩ = ∫
𝑡

0

4𝑐2
󵄨󵄨󵄨󵄨󵄨
𝑥𝑇 (𝑠) 𝐺 (𝜂 (𝑠)) 𝑥 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

|𝑥 (𝑠)|
4

𝑑𝑠

≤ 4𝑡max
𝑖∈B

𝜌
𝑖
.

(15)

Applying the strong law of the large numbers to𝑀(𝑡), one has

lim
𝑡→∞

𝑀(𝑡)

𝑡
= 0 a.s. (16)

Based on (14) and (16), we conclude that

lim
𝑡→∞

sup 1

𝑡
log (󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝑥

0
)
󵄨󵄨󵄨󵄨)

≤ 2𝜃 + 𝛼𝑐
2

Ω
1
+ (1 − 𝛼) 𝑐

2

Ω
2
< 0 a.s.

(17)

which is guaranteed by (11). This completes the proof.

Remark 6. By Theorem 5, it is known that if condition (11)
holds, one can stabilize system (1) by a pinning control tactic
in terms of Brownian noise perturbation. However, condition
(11) is impossible or hard to be satisfied if controller (7) is with
𝛼(𝑡) ≡ 0. If 𝛼(𝑡) ≡ 0, condition (11) becomes 2𝜃 + 𝑐

2Ω
2
< 0,

where pinning controller is same as the traditional pinning
controller. Unfortunately, it is said that 2𝜃 + 𝑐2Ω

2
< 0 with

𝜃 > 0 is impossible or hard to be satisfied because of Ω
2
>

0. That is, due to the property of 𝐺 in (3) or (4), we have
𝜆max(𝐺2) < 0, and 𝜆2max(𝐺2) = (𝜆max(𝐺2))

2. It usually results
in 𝜆max(𝐺

𝑇

2
𝐺
2
) ≫ 2𝜆2max(𝐺2). In this sense, when 𝛼(𝑡) ≡ 0, it

is difficult to realize the pinning control goal of this paper.

From Theorem 5, it is seen that the expectation 𝛼 plays
an important role in SPC which should be given exactly. In
some applications, it is very hard or of high cost to obtain 𝛼

exactly. Instead, only its estimation 𝛼̃ is available. Then, it is
natural and important to study how to realize SPC when 𝛼 is
uncertain. If there exists an uncertainty in 𝛼, we will use its
estimation 𝛼̃. It is described as

Δ𝛼 = 𝛼 − 𝛼̃, 𝛼̃ ∈ [0, 1] , (18)

where admissible uncertainty Δ𝛼 ∈ [−𝜖, 𝜖] with 𝜖 ∈ [0, 1].
Then, we have the following theorem.
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Theorem 7. For given scalars 𝜃 and 𝛼̃, the equilibrium of
system (8) is robust almost surely exponentially stable for any
admissible uncertainty (18), if there exist 𝑘 > 0 and 𝜇 > 0 such
that

2𝜃 + 𝛼̃𝑐
2

Ω
1
+ (1 − 𝛼̃) 𝑐

2

Ω
2
+ 0.25𝜖

2

𝑐
4

𝜇

+ (Ω
1
− Ω
2
)
2

𝜇
−1

< 0.

(19)

Proof. Based on the proof ofTheorem 5, it is obtained that the
change of 𝛼 only takes place in (14); that is

𝛼𝑐
2

Ω
1
+ (1 − 𝛼) 𝑐

2

Ω
2

= 𝛼̃𝑐
2

Ω
1
+ (1 − 𝛼̃) 𝑐

2

Ω
2
+ Δ𝛼𝑐

2

(Ω
1
− Ω
2
) < 0.

(20)

For Δ𝛼𝑐2(Ω
1
− Ω
2
) with any 𝜇 > 0, it is seen that

Δ𝛼𝑐2 (Ω
1
− Ω
2
) ≤ 0.25(Δ𝛼)

2

𝑐4𝜇 + (Ω
1
− Ω
2
)
2

𝜇−1. (21)

Taking into account (19) and (21), one has (11).That completes
the proof.

It is seen that the conditions of Theorems 5 and 7 are
not LMIs, which are not solved directly. In the following,
another condition in terms of LMIs with equation constraints
is proposed, which could be solved easily.

Theorem 8. For given scalars 𝜃 and 𝛼, the equilibrium of
system (8) is almost surely exponentially stable, if there exist
𝑘 > 0, 𝛿

𝑖
> 0, 𝛾

𝑖
> 0, 𝛾

𝑖
> 0, 𝜎

𝑖
> 0, and 𝜎

𝑖
> 0, such that the

following LMIs hold for all 𝑖 ∈ B:

2𝜃 + 𝛼𝑐
2

Ω
1
+ (1 − 𝛼) 𝑐

2

Ω
2
< 0 (22)

[
−𝛿
𝑖
𝐼 𝐺𝑇
𝑖

𝐺
𝑖

−𝐼
] ≤ 0 (23)

[
−𝜎
𝑖

𝛾
𝑖

𝛾
𝑖

−1
] ≤ 0 (24)

𝛾
𝑖
𝛾
𝑖
= 1, 𝜎

𝑖
𝜎
𝑖
= 1 (25)

either

𝐺
𝑖
+ 𝐺
𝑇

𝑖
≥ 2𝛾
𝑖
𝐼 (26)

or

𝐺
𝑖
+ 𝐺
𝑇

𝑖
≤ −2𝛾

𝑖
𝐼, (27)

whereΩ
𝑖
= 𝛿
𝑖
− 2𝜎
𝑖
.

Proof. Based on (11), it is known that if there are 𝛿
𝑖
> 0 and

𝛾
𝑖
> 0 such that

𝜆max (𝐺
𝑇

𝑖
𝐺
𝑖
) ≤ 𝛿
𝑖
,

𝜆
2

max (𝐺𝑖) ≥ 𝛾
2

𝑖
,

(28)

hold, which are guaranteed by

𝐺
𝑇

𝑖
𝐺
𝑖
≤ 𝛿
𝑖
𝐼

𝜆max (𝐺𝑖) ≥ 𝛾
𝑖
𝐼

(29)

or

𝜆max (𝐺𝑖) ≤ −𝛾
𝑖
𝐼, (30)

respectively. Based on these, it is obvious that (28) can be
obtained by (23), (26), or (27). Then, we have (11) which is
insured by

2𝜃 + 𝛼𝑐
2

(𝛿
1
− 2𝛾
2

1
) + (1 − 𝛼) 𝑐

2

(𝛿
2
− 2𝛾
2

2
) < 0, (31)

where 𝛿
𝑖
and 𝛾
𝑖
should be determined. Because of nonlinear

term 𝛾2
𝑖
in (31), it cannot be solved by LMI tool box directly.

By introducing a variable 𝜎
𝑖
satisfying 𝛾2

𝑖
≥ 𝜎
𝑖
, it is concluded

that it is equivalent to 𝜎−1
𝑖

≥ 𝛾−2
𝑖
. By Schur complement

and condition (25), one has (22)–(25) implying (11). This
completes the proof.

If the expectation 𝛼 is unknown, how to achieve a useful
SPC is another general case. For this case, we have the
following theorem.

Theorem 9. For a given scalar 𝜃, the equilibrium of system (8)
is almost surely exponentially stable, if there exists 𝑘 > 0 such
that

Ω
1
+ Ω
2
< 0. (32)

In this case, the expectation 𝛼 can be unknown, but it should be
satisfied

𝛼 >
Ω
2

Ω
2
− Ω
1

. (33)

Proof. Based on the proof of Theorem 5, one can easily have
the equilibrium of system (8) almost surely exponentially
stable, if there exists 𝑘 > 0 such that

2𝜃 + 𝑐
2

𝛼Ω
1
+ 𝑐
2

(1 − 𝛼)Ω
2
< 0, (34)

which is equivalent to

2𝜃 + 𝑐
2

[𝛼 (Ω
1
− Ω
2
) + Ω
2
] < 0. (35)

If 𝛼 is unknown but satisfies (33), one could always choose a
sufficiently large scalar 𝑐 such that (35) holds. This completes
the proof.
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Corollary 10. For a given scalar 𝜃, the equilibrium of system
(8) is almost surely exponentially stable, if there exists 𝑘 > 0

such that Ω
1
< 0 and (32) hold. In this case, the expectation 𝛼

can be unknown, but it should be satisfied 𝛼 ∈ (0.5, 1].

Proof. Similar to the proof of Theorem 9, (34) can be rewrit-
ten to be

2𝜃 + (2𝛼 − 1) 𝑐
2

Ω
1
+ (1 − 𝛼) 𝑐

2

(Ω
1
+ Ω
2
) < 0, (36)

which could be guaranteed by

2𝜃 + (2𝛼 − 1) 𝑐
2

Ω
1
< 0, (37)

(1 − 𝛼) 𝑐
2

(Ω
1
+ Ω
2
) ≤ 0. (38)

Since Ω
1

< 0 and 𝛼 ∈ (0.5, 1], it is obtained that there is
always a sufficiently large constant 𝑐 such that (37) holds. On
the other hand, under the conditions of 𝛼 and 𝑐 > 0, we have
(33) implying (38) directly. This completes the proof.

It is claimed that the key idea of SPC described by (3) and
(4) can be used to construct a pinning controller in the drift
section. That is

𝑥̇
𝑖
= 𝑓
𝑖
(𝑥
𝑖
, 𝑡) + 𝑐(

𝑁

∑
𝑗=1

𝑔
𝑖𝑗
𝑥
𝑗
− 𝛼 (𝑡) 𝑘

𝑖
𝑥
𝑖
) , 𝑖 ∈ S

𝑙
,

𝑥̇
𝑖
= 𝑓
𝑖
(𝑥
𝑖
, 𝑡) + 𝑐

𝑁

∑
𝑗=1

𝑔
𝑖𝑗
𝑥
𝑗
, 𝑖 ∈ S

𝑙
.

(39)

Let 𝑥 = [𝑥𝑇
1

⋅ ⋅ ⋅ 𝑥𝑇
𝑁
]
𝑇

, 𝑓 = [𝑓𝑇
1

⋅ ⋅ ⋅ 𝑓𝑇
𝑁
]
𝑇

, and 𝐾 =

diag{𝑘
1
, . . . , 𝑘

𝑙
, 0, . . . , 0}; one has

𝑥̇ = 𝑓 (𝑥, 𝑡) + 𝑐 (𝐺 − 𝛼 (𝑡)𝐾) ⊗ 𝐼
𝑛
𝑥. (40)

It is rewritten to be

𝑥̇ = 𝑓 (𝑥, 𝑡) + 𝑐𝐺 ⊗ 𝐼
𝑛
𝑥 + 𝑐 (𝛼 (𝑡) − 𝛼)𝐾 ⊗ 𝐼

𝑛
𝑥, (41)

where 𝐺 = 𝐺 + 𝛼𝐾. Without of loss generality, in matrix 𝐾,
it is also assumed that 𝑘

𝑖
= 𝑘
𝑗
= 𝑘 > 0, for all 𝑖, 𝑗 ∈ S

𝑙
. Since

𝛼(𝑡) is a Bernoulli variable, it is known that E{𝛼(𝑡) − 𝛼} = 0.

Theorem 11. For given scalars 𝜃 and 𝛼, the equilibrium of
system (40) is exponentially mean-square stable, if there exists
𝑘 > 0 such that

2𝜃 + 𝑐𝜆max (𝐺) < 0. (42)

Proof. Choose the following Lyapunov function:

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑥
𝑇

(𝑡) 𝑥 (𝑡) . (43)

Based on (42), we have

L𝑉 (𝑥 (𝑡) , 𝑡) ≤ 𝑥
𝑇

(𝑡) (2𝜃𝐼
𝑁𝑛

+ 𝑐𝐺 ⊗ 𝐼
𝑛
) 𝑥 (𝑡)

≤ (2𝜃 + 𝑐𝜆max𝐺)𝑥
𝑇

(𝑡) 𝑥 (𝑡) < 0.

(44)

Then, there is always a sufficient small scalar 𝜇 > 0 such that

L𝑉 (𝑥 (𝑡) , 𝑡) ≤ −𝜇𝑥
𝑇

(𝑡) 𝑥 (𝑡) < 0. (45)

By Dynkin’s formula, it is obtained that for 𝑇 > 0

E (𝑥
𝑇

(𝑇) 𝑥 (𝑇)) −E (𝑥
𝑇

(0) 𝑥 (0))

≤ −𝜇∫
𝑇

0

𝑥
𝑇

(𝑠) 𝑥 (𝑠) 𝑑𝑠 < 0.

(46)

Applying the Gronwall-Bellman lemma to (46), one gets

E (𝑥
𝑇

(𝑡) 𝑥 (𝑡)) ≤ |𝑥 (0)|
2 exp (−𝜇𝑡) . (47)

This completes the proof.

Remark 12. It should be pointed out that the pinning con-
troller in the drift section is also different from the existing
methods such as [17, 18, 20, 21, 28]. It is said that the pinning
method of this paper is a stochastic algorithm, where the
expectation plays an important role. Compared with the
traditional pinning methods, the desired pinning controller
is not necessary implemented online, which is added to some
nodes in terms of probability 𝛼. The correlation among the
expectation 𝛼, the pinning fraction 𝛿, and the control gain
𝑘 is firstly illustrated in Theorem 11, which is also shown by
numerical examples.

Similarly, when the expectation 𝛼 is uncertain and satis-
fies (18), we have the following result.

Theorem 13. For given scalars 𝜃 and 𝛼̃, the equilibrium of
system (40) is robust exponentially mean-square stable for any
admissible uncertainty (18), if there exist 𝑘 > 0 and 𝜇 > 0 such
that

2𝜃 + 𝑐𝜆max (𝐺) + 𝑐𝜖𝑘 < 0, (48)

where 𝐺 = 𝐺 + 𝛼̃𝐾.

Proof. Based on the proof of Theorem 11 and taking in (48),
it is obtained that (44) is rewritten as

L𝑉 (𝑥 (𝑡) , 𝑡)

≤ 𝑥
𝑇

(𝑡) (2𝜃𝐼
𝑁𝑛

+ 𝑐𝐺 ⊗ 𝐼
𝑛
) 𝑥 (𝑡)

= 𝑥
𝑇

(𝑡) (2𝜃𝐼
𝑁𝑛

+ 𝑐𝐺 ⊗ 𝐼
𝑛
+ 𝑐Δ𝛼𝐾 ⊗ 𝐼

𝑛
) 𝑥 (𝑡)

≤ 𝑥
𝑇

(𝑡) (2𝜃𝐼
𝑁𝑛

+ 𝑐𝐺 ⊗ 𝐼
𝑛
+ 𝑐𝜖𝑘𝐼

𝑁𝑛
) 𝑥 (𝑡) < 0,

(49)

where 𝐾 is defined in (41). Obviously, it is known that (48)
implies (49). This completes the proof.

When 𝛼 is unknown, we have the following theorem.
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Figure 1: Connection of the closed-loop system.

Theorem 14. For a given scalar 𝜃, the equilibrium of system
(40) is exponentially mean-square stable, if there exists 𝑘 > 0

such that

𝜆max (𝐺 + 𝐾) < 0. (50)

In this case, there is an SPC such that (40) is exponentially
mean-square stable with unknown 𝛼.

Proof. Based on Theorem 11, the equilibrium of system (40)
is exponentially mean-square stable, if there exists 𝑘 > 0 such
that

2𝜃𝐼
𝑁𝑛

+ 𝑐 (𝐺 + 𝛼𝐾) ⊗ 𝐼
𝑛
< 0, (51)

which is equivalent to

2𝜃𝐼
𝑁𝑛

+ 𝑐𝛼 (𝐺 + 𝐾) ⊗ 𝐼
𝑛
+ 𝑐 (1 − 𝛼)𝐺 ⊗ 𝐼

𝑛
< 0. (52)

By the definition of𝐺, it is known that𝜆
𝑖
(𝐺) ≤ 0, 𝑖 = 1, . . . , 𝑁.

Because of 𝑐 > 0 and 𝛼 ∈ [0, 1], it is concluded that (52) is
guaranteed by

2𝜃 + 𝑐𝛼𝜆max (𝐺 + 𝐾) < 0. (53)

If (50) satisfies, one could always choose a sufficiently large
scalar 𝑐 such that (53) holds. This completes the proof.

4. Numerical Examples

In this section, two numerical examples are used to demon-
strate the utility of the proposed method.

Example 15. Without loss of generality, consider amultiagent
system with 20 agents, whose agent is described as

𝑥̇
1
= 0.2𝑥

1
+ 𝑥
2
,

𝑥̇
2
= −𝑥
1
− 0.5𝑥

2
.

(54)

In this example, such multiagent system will be stabilized by
a stochastic pinning controller whose connection of agents in
terms of scale-free network is simulated in Figure 1.Then, the
coupling matrix can be obtained from Figure 1 directly.
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Figure 2: Correlation between 𝑘 and 𝛼 with given different 𝛿.
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Figure 3: Correlation between 𝑘 and 𝛿 with given different 𝛼.

From system (54), it is obtained that 𝜃
𝑖
can be chosen

as 𝜃 = 1.37. The correlations among the expectation 𝛼, the
pinning fraction 𝛿, and the pinning control gain 𝑘 are given
in Theorem 5, which are demonstrated in Figures 2 and 3,
respectively. In this paper, the special pinning control means
(3) takes place in the nodeswithmore degrees. FromFigure 2,
it is seen that for given 𝛿, larger expectation 𝛼 results in
smaller control gain 𝑘. When 𝛼 is small, such as 𝛼 ≤ 0.7,
the curve of 𝑘 along with 𝛼 changes sharply, while the other
section is gentle. On the other hand, the change of 𝑘 along
with 𝛿 under given 𝛼 is shown in Figure 3. By this simulation,
one knows that larger 𝛿 results in larger 𝑘. Different from
Figure 2, it is seen that the whole curve is gentle. If 𝛿 = 0.1,
𝛼 = 0.6, by Theorem 5, we have 𝑘min = 150 with 𝑘 > 0.
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Figure 4: Simulation of the closed-loop system by SPC.
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Figure 5: Correlation between 𝑘 and 𝛼 with given different 𝛿.

Let initial condition of system (54) be 𝑥
0
= [0.1 −0.1]

𝑇; the
state response of the closed-loop system is given in Figure 4,
which is stable and demonstrates that the desired SPC is
effective.

When the stochastic pinning controller is realized by
random pinning control in terms of (3) taking place in any
nodes, one has the following results, which are given in
Figures 5 and 6, respectively. Considering Figures 2 and 5,
it is concluded that control gain 𝑘 in both of them becomes
larger when 𝛼 takes larger values. Especially, from Figure 5,
it is further obtained that in some cases with larger pinning
fraction 𝛿, smaller 𝛼 results in no solution to 𝑘. On the other
hand, in Figure 6, one has that for some given values of 𝛼
such as 𝛼 = 0.91, 𝛼 = 0.93 and 𝛼 = 0.95, there is no
solution to control gain 𝑘 in terms of random pinning control
when 𝛿 satisfies 𝛿 > 0.15 and 𝑁 ∗ 𝛿 should be an integer
number. On the contrary, even if 𝛿 = 0.9, we also have the
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Figure 6: Correlation between 𝑘 and 𝛿 with given different 𝛼.

control gain of special pinning controller. In this sense, it
is said that special pinning control is better. For a given 𝛼,
when pinning fraction 𝛿 becomes larger, larger control gain
𝑘 is needed no matter which pinning control algorithm is
selected. That means if one wants to pin a multiagent system
by exploiting SPC described by (3) and (4) in terms of more
agents controlled directly, he should provide a larger control
gain 𝑘. Moreover, there is an interesting phenomenon in
Figure 2 with 𝛿 = 0.05 and Figure 5 with 𝛿 = 0.05. That is, for
the same 𝛼, the gain of random pinning controller is smaller
than one of special pinning controller.This phenomenon can
be explained if the two pinningmethods are effective, because
of special pinning control pinning more nodes due to the
controlled nodes more “important”, it needs its control gain 𝑘

larger.

Example 16. Consider a dynamical node of complex network
is a Chua’s chaotic circuit described by

𝑥̇
1
(𝑡) = 𝛽 (−𝑥

1
+ 𝑥
2
− 𝜍 (𝑥

1
))

𝑥̇
2
(𝑡) = 𝑥

1
− 𝑥
2
+ 𝑥
3

𝑥̇
3
(𝑡) = − 𝛾𝑥

2
,

(55)

where 𝜍(𝑥
1
) = 𝑏𝑥

1
+ 0.5(𝑎 − 𝑏)(|𝑥

1
+ 1| − |𝑥

1
− 1|). When

the parameters are 𝛽 = 10, 𝛾 = 18, 𝑎 = −4/3, and
𝑏 = −3/4, Chua’s system has a chaotic attractor shown in
Figure 7. By computation, one has 𝜃 = 5.1623 in view of
Assumption 1. Suppose an undirected network consisting of
𝑁 = 20 nodes in terms of small word network, where the
connection is given in Figure 8. Similarly, its coupling matrix
is easily obtained from Figure 8.

ByTheorem 11 with coupling strength 𝑐 = 85, one has the
relationship among the expectation 𝛼, the pinning fraction
𝛿, and the pinning control gain 𝑘 in terms of special pinning
control, which are given Figures 9 and 10, respectively. From
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Figure 8: Connection of the complex network system.
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Figure 9: Correlation between 𝑘 and 𝛼 with given different 𝛿.

such simulations, it is seen that larger expectation 𝛼 results
in smaller control gain 𝑘 with given pinning fraction 𝛿, while
larger pinning fraction 𝛿 also results in smaller 𝑘 with given
expectation 𝛿. This property is same as that in Example 15.
Let initial condition of system (55) be 𝑥

0
= [0.1 −0.1 0.2]

𝑇
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Figure 10: Correlation between 𝑘 and 𝛿 with given different 𝛼.
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Figure 11: Simulation of the closed-loop system.

and 𝛿 = 0.1, 𝛼 = 0.7, one has 𝑘min = 2.8 with 𝑘 > 0

by Theorem 11. The state curve of the closed-loop system is
given in Figure 11. From Figure 11, it is said that the desired
pinning controller is useful. If the desired pinning controller
is realized by random pinning control, we also have the
corresponding simulations of correlation among 𝛼, 𝛿, and
𝑘. Such relationships are demonstrated in Figures 12 and 13,
respectively, which are quite different to the above cases.That
is, the array of curves 𝛿 = 0.05, 𝛿 = 0.1, and 𝛿 = 0.3 in
Figure 12 is different from those in Figures 9, 2, and 5, though
there is also a consistency that larger 𝛼 leads to smaller 𝑘.
Accordingly, a phenomenon different from Figures 3, 6, and
10 is shown in Figure 13. For a given 𝛼, it is seen that the value
change of 𝑘 is not in accordancewith 𝛿. Such differences come
from the properties of complex network and randompinning
control.
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5. Conclusions

In this paper, a newpinningmethodwith a stochastic pinning
viewpoint is proposed to investigate the control problem
of multiagent systems. It has been shown that a fraction
of controllers added to nodes in terms of Brownian noise
perturbations can stabilize the underlying systems, whose
control method is defined as “stochastic pinning control.”
It is also seen that the Bernoulli variable plays an essential
role in realizing SPC. Based on the given method, new
sufficient conditions of the expectation with uncertainty and
being unknown are also established. Finally, the utility of the
developed theory is illustrated by numerical examples. In this

paper, there is no delay in the underlying system.When there
is time delay in the controller such as [29], one may design a
similar stochastic pinning controller with time delay, which
will be our further topics.
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