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Using the critical point theory, we establish sufficient conditions on the existence of ground states for discrete 𝑝(𝑘)-Laplacian
systems. Our results considerably generalize some existing ones.

1. Introduction and Main Results

The aim of this paper is to study the existence of ground state
for discrete 𝑝(𝑘)-Laplacian system

Δ [𝑎 (𝑘) |Δ𝑢 (𝑘 − 1)|
𝑝(𝑘)−2

Δ𝑢 (𝑘 − 1)]

−𝑞 (𝑘) |𝑢 (𝑘)|
𝑝(𝑘)−2

𝑢 (𝑘) + 𝑓 (𝑘, 𝑢 (𝑘)) = 0,

(1)

where 𝑝(𝑘) > 1, for all 𝑘 ∈ 𝑍, 𝑎(𝑘) and 𝑞(𝑘) are real valued
on 𝑍. 𝑓 : 𝑍 × 𝑅 → 𝑅 is continuous in the second variable.
Moreover, Δ is the forward difference operator defined by
Δ𝑢(𝑘) = 𝑢(𝑘 + 1) − 𝑢(𝑘).

We may think of (1) as being a discrete analogue of the
following differential system:

𝑑

𝑑𝑡
(𝑎 (𝑡) |𝑢̇ (𝑡)|

𝑝(𝑡)−2
𝑢̇ (𝑡))

− 𝑞 (𝑡) |𝑢 (𝑡)|
𝑝(𝑡)−2

𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0.

(2)

For the case 𝑝(𝑡) ≡ 𝑝, system (2) is a 𝑝-Laplacian
system, which has been widely studied; to mention a few, see
[1, 2]. Even for the special case 𝑝 = 2, system (2) can be
regarded as themore general formof Emden-Fowler equation
appearing in the study of astrophysics, fluid mechanics,
gas dynamics, nuclear physics, relativistic mechanics, and
chemically reacting system in terms of various special forms

of 𝑓(𝑡, 𝑢(𝑡)) (see, e.g., [3]). The more general differential
operator (2), namely, the so-called 𝑝(𝑡)-Laplacian, has been
studied by Fan et al. [4–7]. The 𝑝(𝑡)-Laplacian operator can
be used to describe the physical phenomena with “pointwise
different properties.” The 𝑝(𝑡)-Laplacian operator has more
complicated properties than that of the 𝑝-Laplacian; for
example, it is not homogeneous, and this makes some classic
theories and methods, such as the theory of Sobolev spaces,
not applicable.

With the theory of nonlinear discrete dynamical systems
beingwidely used to study discretemodels appearing inmany
fields such as economics, ecology, computer science, neural
networks, and cybernetics [8], the existence of solutions
of discrete dynamical systems has become a hot topic; to
mention a few, see [9–15]. For the case 𝑝(𝑘) ≡ 𝑝, Iannizzotto
and Tersian [16] obtained multiple homoclinic solutions
for system (1) by using the critical point theorem, and for
the special case 𝑝 = 2, Ma and Guo [13, 14] provided
some sufficient conditions on the existence of homoclinic
solutions for system (1). For the more general case—𝑝(𝑘)-
Laplacian system (1)—Chen et al. [17] established some
existence criteria to guarantee that the system has at least one
or infinitely many homoclinic orbits. Motivated by Liu [2],
which discussed the existence of ground state for𝑝-Laplacian
system, in this paper, we will consider the existence of ground
state for the 𝑝(𝑘)-Laplacian system (1).

Now we are in a position to state our main results.
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Theorem 1. Assume the following conditions hold:

(a) 𝑎(𝑘) > 0 for all 𝑘 ∈ 𝑍,
(q) 𝑞(𝑘) > 0 for all 𝑘 ∈ 𝑍 and 𝑞(𝑘) → +∞ as |𝑘| → +∞,
(p) 1 < 𝑝− = inf𝑘∈𝑍𝑝(𝑘) ≤ sup

𝑘∈𝑍
𝑝(𝑘) = 𝑝

+
< +∞ for

all 𝑘 ∈ 𝑍,
(f) 𝑓(𝑘, 𝑢) = 𝑓1(𝑘, 𝑢) − 𝑓2(𝑘, 𝑢) is continuous in 𝑢 for all
𝑘 ∈ 𝑍, and 𝐹(𝑘, 𝑢) = ∫𝑢

0
𝑓(𝑘, 𝑠)𝑑𝑠 for 𝑢 ∈ 𝑅. Moreover,

󵄨󵄨󵄨󵄨𝑓 (𝑘, 𝑢)
󵄨󵄨󵄨󵄨

𝑞 (𝑘) |𝑢|
𝑝(𝑘)−1

󳨀→ 0 as 𝑢 󳨀→ 0 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑘 ∈ 𝑍;

(3)

(f1) there exists a constant 𝛽 > 𝑝+ such that

𝑢𝑓1 (𝑘, 𝑢) ≥ 𝛽𝐹1 (𝑘, 𝑢) > 0 ∀𝑘 ∈ 𝑍, 𝑢 ∈ 𝑅 \ {0} , (4)

where 𝐹1(𝑘, 𝑢) = ∫
𝑢

0
𝑓1(𝑘, 𝑠)𝑑𝑠 for 𝑢 ∈ 𝑅;

(f2) there exists a constant 𝜏 ∈ (0, 𝛽) such that

𝐹2 (𝑘, 𝑢) ≥ 0, 𝑢𝑓2 (𝑘, 𝑢) ≤ 𝜏𝐹2 (𝑘, 𝑢)

∀𝑘 ∈ 𝑍, 𝑢 ∈ 𝑅,

(5)

where 𝐹2(𝑘, 𝑢) = ∫
𝑢

0
𝑓2(𝑘, 𝑠)𝑑𝑠 for 𝑢 ∈ 𝑅.

Then (1) has a ground state solution.

Remark 2. (q) implies that there exists 𝑞∗ > 0 such that 𝑞(𝑘) ≥
𝑞∗ for all 𝑘 ∈ 𝑍.

Remark 3. We extendTheorem 3.1 in [14] to themore general
case—𝑝(𝑘)-Laplacian system. Furthermore, we obtain the
existence of the ground state.

The rest of this paper is organized as follows. In Section 2,
we establish the variational structure associated with (1).
Some preliminary results are also provided in this section. In
Section 3, we give the proof of the main result.

2. Variational Structure and
Some Preliminary Results

In this section, we establish a variational structure which
enables us to reduce the existence of solutions for (1) to the
existence of critical points of the corresponding functional.

Let 𝑆 be the set of all two-sided sequences; that is,

𝑆 = {𝑢 = {𝑢 (𝑘)} : 𝑢 (𝑘) ∈ 𝑅, 𝑘 ∈ 𝑍} . (6)

Then 𝑆 is a vector space with 𝑎𝑢 + 𝑏V = {𝑎𝑢(𝑘) + 𝑏V(𝑘)} for
𝑢, V ∈ 𝑆, 𝑎, 𝑏 ∈ 𝑅.

We define 𝑙𝑝(𝑘) as the set of all functions 𝑢 ∈ 𝑆 such that

𝑙
𝑝(𝑘)

= {𝑢 ∈ 𝑆 : ∑

𝑘∈𝑍

|𝑢 (𝑘)|
𝑝(𝑘)

< +∞} (7)

with the norm

‖𝑢‖𝑝(𝑘) = inf {𝑟 > 0 : ∑
𝑘∈𝑍

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑘)

𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤ 1} . (8)

We also define

𝐸 = {𝑢 ∈ 𝑆 : ∑

𝑘∈𝑍

[𝑎 (𝑘) |Δ𝑢 (𝑘 − 1)|
𝑝(𝑘)

+𝑞 (𝑘) |𝑢 (𝑘)|
𝑝(𝑘)
] < +∞}

(9)

with the norm

‖𝑢‖ = inf {𝑟 > 0 : ∑
𝑘∈𝑍

[𝑎 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Δ𝑢 (𝑘 − 1)

𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+𝑞 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑘)

𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

] ≤ 1} .

(10)

We call the space 𝐸 a sequence space; it is a special kind of
generalized Orlicz sequence space. For the general theory of
generalized Orlicz spaces, see [18, 19].

Consider the functional 𝐼 on 𝐸 defined by

𝐼 (𝑢) = ∑

𝑘∈𝑍

[
𝑎 (𝑘)

𝑝 (𝑘)
|Δ𝑢 (𝑘 − 1)|

𝑝(𝑘)
+
𝑞 (𝑘)

𝑝 (𝑘)
|𝑢(𝑘)|

𝑝(𝑘)

−𝐹 (𝑘, 𝑢 (𝑘)) ] .

(11)

Using the similar arguments as [17], we have the following
lemmas.

Lemma 4. (𝑙𝑝(𝑘), ‖ ⋅ ‖𝑝(𝑘)) is a reflexive Banach space. Let 𝑢 ∈
𝑙
𝑝(𝑘) and

𝜙 (𝑢) = ∑

𝑘∈𝑍

|𝑢(𝑘)|
𝑝(𝑘)
; (12)

one has

(1) if ‖𝑢‖𝑝(𝑘) > 1, then ‖𝑢‖
𝑝
−

𝑝(𝑘)
≤ 𝜙(𝑢) ≤ ‖𝑢‖

𝑝
+

𝑝(𝑘)
;

(2) if ‖𝑢‖𝑝(𝑘) < 1, then ‖𝑢‖
𝑝
+

𝑝(𝑘)
≤ 𝜙(𝑢) ≤ ‖𝑢‖

𝑝
−

𝑝(𝑘)
.

Lemma 5. (𝐸, ‖ ⋅ ‖) is a reflexive Banach space. Let 𝑢 ∈ 𝐸 and

𝜑 (𝑢) = ∑

𝑘∈𝑍

[𝑎 (𝑘) |Δ𝑢 (𝑘 − 1)|
𝑝(𝑘)
+ 𝑞 (𝑘) |𝑢 (𝑘)|

𝑝(𝑘)
] ;

(13)

one has

(1) if ‖𝑢‖ > 1, then ‖𝑢‖𝑝
−

≤ 𝜑(𝑢) ≤ ‖𝑢‖
𝑝
+

;

(2) if ‖𝑢‖ < 1, then ‖𝑢‖𝑝
+

≤ 𝜑(𝑢) ≤ ‖𝑢‖
𝑝
−

.
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Lemma 6. 𝐼 ∈ 𝐶1(𝐸, 𝑅) and the Fréchet derivative is given by

⟨𝐼
󸀠
(𝑢) , V⟩ = ∑

𝑘∈𝑍

[𝑎 (𝑘) |Δ𝑢 (𝑘 − 1)|
𝑝(𝑘)−2

× Δ𝑢 (𝑘 − 1) ΔV (𝑘 − 1)

+𝑞 (𝑘) |𝑢 (𝑘)|
𝑝(𝑘)−2

𝑢 (𝑘) V (𝑘)]

− ∑

𝑘∈𝑍

𝑓 (𝑘, 𝑢 (𝑘)) V (𝑘) ,

(14)

for all 𝑢, V ∈ 𝐸. Moreover, the nonzero critical points of the
functional 𝐼 on 𝐸 are the nontrivial solutions of (1).

Lemma 7. (f1) and (f2) imply that

𝑢𝑓 (𝑘, 𝑢) ≥ 𝛽𝐹 (𝑘, 𝑢) ∀𝑘 ∈ 𝑍, 𝑢 ∈ 𝑅. (15)

Moreover, for every 𝑘 ∈ 𝑍 and 𝑢 ∈ 𝑅, 𝑠−𝛽𝐹1(𝑘, 𝑠𝑢) is
nondecreasing on (0, +∞) and 𝑠−𝜏𝐹2(𝑘, 𝑠𝑢) is nonincreasing on
(0, +∞).

Let

𝑐min = inf {𝐼 (𝑢) : 𝐼󸀠 (𝑢) = 0, 𝑢 ∈ 𝐸 \ {0}} . (16)

Then 𝑢0 ̸= 0 with 𝐼(𝑢0) = 𝑐min is said to be a ground state
solution of (1).

As usual, we make use of the following basic notations.
Let 𝐻 be a Hilbert space and 𝐶1(𝐻, 𝑅) denote the set of
functionals that are Fréchet differentiable and their Fréchet
derivatives are continuous on𝐻.

Definition 8. Let 𝐼 ∈ 𝐶1(𝐻, 𝑅). A sequence {𝑥𝑗} ⊂ 𝐻 is
called a Palais-Smale sequence (P.S. sequence) for 𝐼 if {𝐼(𝑥𝑗)}
is bounded and 𝐼󸀠(𝑥𝑗) → 0 as 𝑗 → +∞. We say that 𝐼
satisfies the Palais-Smale condition (P.S. condition) if any P.S.
sequence for 𝐼 possesses a convergent subsequence.

Let 𝐵𝑟 be the open ball in 𝐻 with radius 𝑟 and center 0,
and let 𝜕𝐵𝑟 denote its boundary.

Lemma 9 (mountain pass lemma). Let 𝐻 be a real Hilbert
space and 𝐼 ∈ 𝐶1(𝐻, 𝑅) satisfies the P.S. condition. Assume
that 𝐼(0) ≤ 0 and the following two conditions hold.

(J1) There exist constants 𝑎 > 0 and 𝜌 > 0 such that 𝐼𝜕𝐵
𝜌

≥

𝑎.
(J2) There exists an 𝑒 ∈ 𝐻 \ 𝐵𝜌 such that 𝐼(𝑒) ≤ 0.

Then 𝐼 possesses a critical value 𝑐 ≥ 𝑎. Moreover, 𝑐 can be
characterized as

𝑐 = inf
ℎ∈Γ

max
𝑠∈[0,1]

𝐼 (ℎ (𝑠)) , (17)

where

Γ = {ℎ ∈ 𝐶 ([0, 1] ,𝐻) : ℎ (0) = 0, ℎ (1) = 𝑒} . (18)

3. Proof of Main Result

In order to prove Theorem 1, we first prove the following
lemmas.

Lemma 10. The embedding 𝐸 󳨅→ 𝑙
𝑝(𝑘) is compact.

Proof. Let {𝑢𝑗} be a bounded sequence in 𝐸; that is, there
exists𝑀 > 0 such that ‖𝑢𝑗‖ < 𝑀 for all 𝑗 ∈ 𝑍+. By reflexivity,
passing to a subsequencewe have 𝑢𝑗 ⇀ 𝑢 in𝐸 for some 𝑢 ∈ 𝐸.
We may assume 𝑢 = 0, in particular 𝑢𝑗(𝑘) → 0 as 𝑗 → +∞

for all 𝑘 ∈ 𝑍. For all 𝜖 > 0, we can find ℎ ∈ 𝑍+ such that

𝑞 (𝑘) >
1 +𝑀

𝜖
∀ |𝑘| > ℎ. (19)

By continuity of the finite sum, there exists ]0 ∈ 𝑍
+ such that

∑

|𝑘|≤ℎ

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤
𝜖

1 +𝑀
∀𝑗 > ]0. (20)

So for all 𝑗 ≥ ]0 we have

∑

𝑘∈𝑍

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤
𝜖

1 +𝑀
+

𝜖

1 +𝑀
∑

|𝑘|>ℎ

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗(𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤
𝜖

1 +𝑀
+

𝜖

1 +𝑀
∑

𝑘∈𝑍

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗(𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

.

(21)

Since

∑

𝑘∈𝑍

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗(𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤ 𝜑 (𝑢𝑗) ≤

{{{{

{{{{

{

󵄩󵄩󵄩󵄩󵄩
𝑢𝑗
󵄩󵄩󵄩󵄩󵄩

𝑝−

, if 󵄩󵄩󵄩󵄩󵄩𝑢𝑗
󵄩󵄩󵄩󵄩󵄩
< 1,

1, if 󵄩󵄩󵄩󵄩󵄩𝑢𝑗
󵄩󵄩󵄩󵄩󵄩
= 1,

󵄩󵄩󵄩󵄩󵄩
𝑢𝑗
󵄩󵄩󵄩󵄩󵄩

𝑝+

, if 󵄩󵄩󵄩󵄩󵄩𝑢𝑗
󵄩󵄩󵄩󵄩󵄩
> 1,

(22)

letting𝑀0 = max{𝑀𝑝−, 1,𝑀𝑝+}, we have

∑

𝑘∈𝑍

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤
1 +𝑀0

1 +𝑀
𝜖 ∀𝑗 ≥ ]0. (23)

Thus, 𝑢𝑗(𝑘) → 0 in 𝑙𝑝(𝑘), and the proof is completed.

Lemma 11. Assume that 𝑢 ∈ 𝑙𝑝(𝑘) and V ∈ 𝑙𝑟(𝑘). Moreover, 𝑝(𝑘)
satisfies condition (𝑝) and 1/𝑟(𝑘) + 1/𝑝(𝑘) = 1 for all 𝑘 ∈ 𝑍.
Then

∑

𝑘∈𝑍

𝑢 (𝑘) V (𝑘) ≤ (
1

𝑝−
+
1

𝑟−
) ‖𝑢‖𝑝(𝑘)‖V‖𝑟(𝑘), (24)

where 𝑟− = inf{𝑟(𝑘) : 𝑘 ∈ 𝑍} and 𝑟− = 𝑝+/(𝑝+ − 1).

Proof. Let

𝑟1 = ‖𝑢‖𝑝(𝑘), 𝑟2 = ‖V‖𝑟(𝑘); (25)
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then

∑

𝑘∈𝑍

𝑢 (𝑘) V (𝑘)
𝑟1𝑟2

≤ ∑

𝑘∈𝑍

[
1

𝑝 (𝑘)
(
𝑢 (𝑘)

𝑟1
)

𝑝(𝑘)

+
1

𝑟 (𝑘)
(
V (𝑘)
𝑟2
)

𝑟(𝑘)

]

≤
1

𝑝−
+
1

𝑟−
.

(26)

The proof is completed.

Lemma 12. Assume that all the conditions of Theorem 1 hold.
Then the functional 𝐼 satisfies the P.S. condition.

Proof. Assume that {𝑢𝑗}𝑗∈𝑁 ⊂ 𝐸 is a sequence such that
{𝐼(𝑢𝑗)} is a bounded and 𝐼󸀠(𝑢𝑗) → 0 as 𝑗 → +∞. Then
there exists a positive constant𝑀󸀠 such that |𝐼(𝑢𝑗)| ≤ 𝑀

󸀠 for
all 𝑗 ∈ 𝑍+.

First, we show that ‖𝑢𝑗‖ is bounded. Now we may assume
that ‖𝑢𝑗‖ > 1; otherwise, ‖𝑢𝑗‖ is bounded obviously. When 𝑗
is large enough, we have

𝑀
󸀠
+
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝑢𝑗
󵄩󵄩󵄩󵄩󵄩
≥ 𝐼 (𝑢𝑗) −

1

𝛽
⟨𝐼
󸀠
(𝑢𝑗) , 𝑢𝑗⟩

= ∑

𝑘∈𝑍

(
1

𝑝 (𝑘)
−
1

𝛽
) [𝑎 (𝑘)

󵄨󵄨󵄨󵄨󵄨
Δ𝑢𝑗 (𝑘 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗(𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

]

+ ∑

𝑘∈𝑍

[
1

𝛽
𝑓 (𝑘, 𝑢𝑗) 𝑢𝑗 (𝑘) − 𝐹 (𝑘, 𝑢𝑗 (𝑘))]

≥ (
1

𝑝+
−
1

𝛽
)
󵄩󵄩󵄩󵄩󵄩
𝑢𝑗
󵄩󵄩󵄩󵄩󵄩

𝑝
−

.

(27)

It follows from 𝛽 > 𝑝+ and 𝑝− > 1 that there exists a constant
𝑀∗ > 0 such that

󵄩󵄩󵄩󵄩󵄩
𝑢𝑗
󵄩󵄩󵄩󵄩󵄩
≤ 𝑀∗, ∀𝑗 ∈ 𝑍

+
. (28)

By Lemma 10, we can choose a subsequence, still denoted by
{𝑢𝑗}, such that

𝑢𝑗 ⇀ 𝑢∗ in 𝐸, (29)

𝑢𝑗 󳨀→ 𝑢∗ in 𝑙𝑝(𝑘), (30)

for some 𝑢∗ ∈ 𝐸.
Next, we prove that

lim
𝑗→+∞

∑

𝑘∈𝑍

(𝑓 (𝑘, 𝑢𝑗 (𝑘)) − 𝑓 (𝑘, 𝑢∗ (𝑘)))

× (𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)) = 0.

(31)

By (f), for any 0 < 𝜖 < min{1/2, 1/2𝑝+}, there exists a
positive constant 𝜌 < 1 with 𝑞(1/𝑝

−

)

∗
𝜌
(𝑝
+

/𝑝
−

)
< 1 such that

𝑓 (𝑘, 𝑢) ≤ 𝜖𝑞 (𝑘) |𝑢|
𝑝(𝑘)−1

∀𝑘 ∈ 𝑍, |𝑢| ≤ 𝜌, (32)

Since 𝑢∗ ∈ 𝐸, there exists a positive integer 𝑇 such that

󵄨󵄨󵄨󵄨𝑢∗ (𝑘)
󵄨󵄨󵄨󵄨 ≤
𝜌

2
∀𝑘 > 𝑇; (33)

we have

󵄨󵄨󵄨󵄨𝑓 (𝑘, 𝑢∗ (𝑘))
󵄨󵄨󵄨󵄨 ≤ 𝜖𝑞 (𝑘)

󵄨󵄨󵄨󵄨𝑢∗ (𝑘)
󵄨󵄨󵄨󵄨
𝑝(𝑥)−1

∀𝑘 > 𝑇. (34)

By (30), there exists ]1 ∈ 𝑍
+ such that

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨
≤
𝜌

2
∀𝑗 > ]1, 𝑘 ∈ 𝑍. (35)

This, combined with (33) and (32), gives us
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨 ≤ 𝜌 ∀𝑗 > ]1, 𝑘 > 𝑇,

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑘, 𝑢𝑗 (𝑘))

󵄨󵄨󵄨󵄨󵄨
≤ 𝜖𝑞 (𝑘)

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−1

∀𝑗 > ]1, 𝑘 > 𝑇.
(36)

Then for 𝑗 > ]1,

∑

|𝑘|>𝑇

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑘, 𝑢𝑗 (𝑘)) − 𝑓 (𝑘, 𝑢∗ (𝑘))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

≤ 𝜖 ∑

|𝑘|>𝑇

(𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−1

+ 𝑞 (𝑘)
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−1

)

× (
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨)

≤ 𝜖∑

𝑘∈𝑍

𝑞(𝑘)
1/𝑟(𝑘)󵄨󵄨󵄨󵄨󵄨

𝑢𝑗 (𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−1

𝑞(𝑘)
1/𝑝(𝑘) 󵄨󵄨󵄨󵄨󵄨

𝑢𝑗 (𝑘)
󵄨󵄨󵄨󵄨󵄨

+ 𝜖∑

𝑘∈𝑍

𝑞(𝑘)
1/𝑟(𝑘)󵄨󵄨󵄨󵄨󵄨

𝑢𝑗 (𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−1

𝑞 (𝑘)
1/𝑝(𝑘) 󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨

+ 𝜖∑

𝑘∈𝑍

𝑞(𝑘)
1/𝑟(𝑘)󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−1

𝑞(𝑘)
1/𝑝(𝑘) 󵄨󵄨󵄨󵄨󵄨

𝑢𝑗 (𝑘)
󵄨󵄨󵄨󵄨󵄨

+ 𝜖∑

𝑘∈𝑍

𝑞(𝑘)
1/𝑟(𝑘)󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−1

𝑞(𝑘)
1/𝑝(𝑘) 󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨 ,

(37)

where 1/𝑟(𝑘) + 1/𝑝(𝑘) = 1 for all 𝑘 ∈ 𝑍.
Let V1 = {V1(𝑘)} and V1(𝑘) = 𝑞(𝑘)

1/𝑟(𝑘)
|𝑢𝑗(𝑘)|

𝑝(𝑘)−1,
V2 = {V2(𝑘)} and V2(𝑘) = 𝑞(𝑘)

1/𝑝(𝑘)
|𝑢𝑗(𝑘)|, ℎ1 = {ℎ1(𝑘)}

and ℎ1(𝑘) = 𝑞(𝑘)
1/𝑟(𝑘)

|𝑢∗(𝑘)|
𝑝(𝑘)−1, and ℎ2 = {ℎ2(𝑘)} and

ℎ2(𝑘) = 𝑞(𝑘)
1/𝑝(𝑘)

|𝑢∗(𝑘)|.
It is easy to check that V1, ℎ1 ∈ 𝑙

𝑟(𝑘) and V2, ℎ2 ∈ 𝑙
𝑝(𝑘).Then

using Lemma 11, for 𝑗 > ]1, we have

∑

|𝑘|>𝑇

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑘, 𝑢𝑗 (𝑘)) − 𝑓 (𝑘, 𝑢∗ (𝑘))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

≤ (
𝜖

𝑝−
+
𝜖

𝑟−
)

× (
󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩𝑟(𝑘)

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩𝑝(𝑘) +

󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩𝑟(𝑘)

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩𝑝(𝑘)

+
󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩𝑟(𝑘)

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩𝑝(𝑘) +

󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩𝑟(𝑘)

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩𝑝(𝑘)) .

(38)
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Now we show that ‖V1‖𝑟(𝑘) is bounded. We may assume that
‖V1‖𝑟(𝑘) > 1; otherwise, ‖V1‖𝑟(𝑘) is bounded obviously. By
Lemmas 4 and 5, we have

󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩𝑟(𝑘) ≤ [∑

𝑘∈𝑍

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗(𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

]

1/𝑟
−

≤
󵄩󵄩󵄩󵄩󵄩
𝑢𝑗
󵄩󵄩󵄩󵄩󵄩

𝑝
+

/𝑟
−

≤ 𝑀
𝑝
+

/𝑟
−

∗
.

(39)

Let 𝑀1 = {1,𝑀
𝑝
+

/𝑟
−

∗
}; then ‖V1‖𝑟(𝑘) ≤ 𝑀1; that is, ‖V1‖𝑟(𝑘)

is bounded. Using the similar arguments as above, we obtain
that ‖V2‖𝑝(𝑘), ‖ℎ1‖𝑟(𝑘), and ‖ℎ2‖𝑝(𝑘) are bounded; that is, there
exist three positive constants𝑀2,𝑀3, and𝑀4 such that

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩𝑝(𝑘) ≤ 𝑀2,

󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩𝑟(𝑘) ≤ 𝑀3,

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩𝑝(𝑘) ≤ 𝑀4. (40)

This, combined with (38), gives us

∑

|𝑘|>𝑇

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑘, 𝑢𝑗 (𝑘)) − 𝑓 (𝑘, 𝑢∗ (𝑘))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

≤ 𝜖 (
1

𝑝−
+
1

𝑟−
)

× (𝑀1𝑀2 +𝑀1𝑀4 +𝑀3𝑀2 +𝑀3𝑀4) ∀𝑗 > ]1.
(41)

By continuity of the finite sum and (30), there exists ]2 ∈ 𝑍
+

such that

∑

|𝑘|≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑘, 𝑢𝑗 (𝑘)) − 𝑓 (𝑘, 𝑢∗ (𝑘))

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨
≤ 𝜖 ∀𝑗 ≥ ]2.

(42)

Let ] = max{]1, ]2}. Combining (41) and (42) together, we
have

∑

𝑘∈𝑍

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑘, 𝑢𝑗 (𝑘)) − 𝑓 (𝑘, 𝑢∗ (𝑘))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

≤ 𝜖 (
1

𝑝−
+
1

𝑟−
)

× (𝑀1𝑀2 +𝑀1𝑀4 +𝑀3𝑀2 +𝑀3𝑀4) + 𝜖 ∀𝑗 > ].
(43)

Thus, (31) holds.
Finally, we show that {𝑢𝑗} possesses a convergent subse-

quence. Since 𝐼󸀠(𝑢𝑗) → 0 and 𝑢𝑗 ⇀ 𝑢∗, it follows at once
that

lim
𝑗→+∞

⟨𝐼
󸀠
(𝑢𝑗) − 𝐼

󸀠
(𝑢∗) , 𝑢𝑗 − 𝑢∗⟩ = 0. (44)

This, combined with (31), gives us

lim
𝑗→+∞

{∑

𝑘∈𝑍

𝑎 (𝑘) [
󵄨󵄨󵄨󵄨󵄨
Δ𝑢𝑗 (𝑘 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−2

Δ𝑢𝑗 (𝑘 − 1)

−
󵄨󵄨󵄨󵄨Δ𝑢∗ (𝑘 − 1)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−2

Δ𝑢∗ (𝑘 − 1) ]

× (Δ𝑢𝑗 (𝑘 − 1) − Δ𝑢∗ (𝑘 − 1))

+ ∑

𝑘∈𝑍

𝑞 (𝑘) [
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−2

𝑢𝑗 (𝑘)

−
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−2

𝑢∗ (𝑘) ]

× (𝑢𝑗 (𝑘) − 𝑢∗ (𝑘))} = 0.

(45)

The following two inequalities are taken from [20] and
will play an important role in the proof of our main result:

[(
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝑝−2
𝜉 −
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨
𝑝−2
𝜂) (𝜉 − 𝜂)]

× (
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨)
2−𝑝
≥
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨
2
, 1 < 𝑝 < 2,

2
𝑝
[(
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝑝−2
𝜉 −
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨
𝑝−2
𝜂) (𝜉 − 𝜂)] ≥

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨
𝑝
, 𝑝 ≥ 2,

(46)

for every 𝜉 and 𝜂 in 𝑅. We define

𝑅𝑗 (𝑘) = 𝑎 (𝑘) [
󵄨󵄨󵄨󵄨󵄨
Δ𝑢𝑗 (𝑘 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−2

Δ𝑢𝑗 (𝑘 − 1)

−
󵄨󵄨󵄨󵄨Δ𝑢∗ (𝑘 − 1)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−2

Δ𝑢∗ (𝑘 − 1) ]

× (Δ𝑢𝑗 (𝑘 − 1) − Δ𝑢∗ (𝑘 − 1)) ∀𝑘 ∈ 𝑍.

𝑄𝑗 (𝑘) = 𝑞 (𝑘) [
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−2

𝑢𝑗 (𝑘) −
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−2

𝑢∗ (𝑘)]

× (𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)) ∀𝑘 ∈ 𝑍.

(47)

This, combined with (45), produces at once

lim
𝑗→+∞

∑

𝑘∈𝑍

𝑅𝑗 (𝑘) = 0, lim
𝑗→+∞

∑

𝑘∈𝑍

𝑄𝑗 (𝑘) = 0. (48)

Now we show that 𝜑(𝑢𝑗 − 𝑢∗) → 0 as 𝑗 → +∞. That is,

lim
𝑗→+∞

∑

𝑘∈𝑍

𝑎 (𝑘)
󵄨󵄨󵄨󵄨󵄨
Δ𝑢𝑗 (𝑘 − 1) − Δ𝑢∗ (𝑘 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

= 0, (49)

lim
𝑗→+∞

∑

𝑘∈𝑍

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

= 0. (50)

Let us first prove (50). Since {𝑢𝑗} and 𝑢∗ are bounded in 𝐸,
there exists a constant 𝑀∗ > 1 such that 𝜑(𝑢𝑗) ≤ 𝑀

∗ and
𝜑(𝑢∗) ≤ 𝑀

∗ for all 𝑗 ∈ 𝑍+. We denote

𝑊1 = {𝑘 ∈ 𝑍 : 1 < 𝑝 (𝑘) < 2} ,

𝑊2 = {𝑘 ∈ 𝑍 : 𝑝 (𝑘) ≥ 2} .

(51)
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By (46), we have

∑

𝑘∈𝑊
2

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤ ∑

𝑘∈𝑊
2

2
𝑝
+

𝑞 (𝑘) (
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−2

𝑢𝑗 (𝑘)

−
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−2

𝑢∗ (𝑘) )

× (𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)) ≤ 2
𝑝
+

∑

𝑘∈𝑍

𝑄𝑗 (𝑘) ,

(52)

∑

𝑘∈𝑊
1

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

= ∑

𝑘∈𝑊
1

𝑞 (𝑘) [
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

]
𝑝(𝑘)/2

≤ ∑

𝑘∈𝑊
1

(𝑄𝑗 (𝑘))
𝑝(𝑘)/2

× {𝑞 (𝑘) [
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨]
𝑝(𝑘)

}

(2−𝑝(𝑘))/2

≤ ∑

𝑘∈𝑊
1

(𝑄𝑗 (𝑘))
𝑝(𝑘)/2

× [2
𝑝
+

𝑞 (𝑘) (
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)
)]

(2−𝑝(𝑘))/2

≤ 2
𝑝
+

(2−𝑝
−

)/2

× ∑

𝑘∈𝑍

(𝑄𝑗 (𝑘))
𝑝(𝑘)/2

× [𝑞 (𝑘) |𝑢𝑗 (𝑘) |
𝑝(𝑘)
+ 𝑞 (𝑘)

󵄨󵄨󵄨󵄨𝑢∗ (𝑘)
󵄨󵄨󵄨󵄨
𝑝(𝑘)
]
(2−𝑝(𝑘))/2

.

(53)

Let

𝑝1 (𝑘) =
2

𝑝 (𝑘)
, 𝑟1 (𝑘) =

2

2 − 𝑝 (𝑘)
,

V𝑗∗ (𝑘) = (𝑄𝑗 (𝑘))
𝑝(𝑘)/2

,

𝑤𝑗∗ (𝑘) = [𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+ 𝑞 (𝑘)
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)
]

(2−𝑝(𝑘))/2

.

(54)

Then it is easy to check that V𝑗∗ = {V𝑗∗(𝑘)} ∈ 𝑙𝑝
1

(𝑘) and 𝑤𝑗∗ =
{𝑤𝑗∗(𝑘)} ∈ 𝑙𝑟

1

(𝑘). By Lemma 11 and (53), we have

∑

𝑘∈𝑊
1

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤ 2
𝑝
+

(2−𝑝
−

)/2
(1 +

𝑝
+

2
−
𝑝
−

2
)
󵄩󵄩󵄩󵄩󵄩
V𝑗∗
󵄩󵄩󵄩󵄩󵄩𝑝
1

(𝑘)

󵄩󵄩󵄩󵄩󵄩
𝑤𝑗∗
󵄩󵄩󵄩󵄩󵄩𝑟
1

(𝑘)
.

(55)

Since

lim
𝑗→+∞

∑

𝑘∈𝑍

𝑄𝑗 (𝑘) = 0,

∑

𝑘∈𝑍

[𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+ 𝑞 (𝑘)
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)
]

≤ 𝜑 (𝑢𝑗) + 𝜑 (𝑢∗) ≤ 2𝑀
∗
.

(56)

It is easy to see that ‖V𝑗∗‖𝑝
1

(𝑘)
→ 0 as 𝑗 → +∞ and ‖𝑤𝑗∗‖𝑟

1

(𝑘)

is bounded for all 𝑗 ∈ 𝑍+. This, combined with (52) and (55),
gives us

lim
𝑗→+∞

∑

𝑘∈𝑍

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

= lim
𝑗→+∞

∑

𝑘∈𝑊
1

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+ lim
𝑗→+∞

∑

𝑘∈𝑊
2

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

= 0.

(57)

Using the similar arguments, we have (49). So𝜑(𝑢𝑗−𝑢∗) → 0

as 𝑗 → +∞. By Lemma 5, it follows that ‖𝑢𝑗 − 𝑢∗‖ → 0 as
𝑗 → +∞, and the proof is completed.

Proof of Theorem 1. The proof consists of two steps.

Step 1. We use Lemma 9 to show that (1) has a nontrivial
solution in 𝐸.

First we prove that 𝐼 satisfies (J1) of Lemma 9. It follows
from (32) that

|𝐹 (𝑘, 𝑢 (𝑘))| ≤
1

2𝑝+
𝑞 (𝑘) |𝑢 (𝑘)|

𝑝(𝑘)
, (58)

for |𝑢(𝑘)| ≤ 𝜌 and 𝑘 ∈ 𝑍. Then, let 𝛿 = 𝑞(1/𝑝
−

)

∗
𝜌
(𝑝
+

/𝑝
−

)
< 1, for

all 𝑢 ∈ 𝜕𝐵𝛿 ∩ 𝐸, we have |𝑢(𝑘)| ≤ 𝜌 and

𝐼 (𝑢) = ∑

k∈𝑍
[
𝑎 (𝑘)

𝑝 (𝑘)
|Δ𝑢 (𝑘 − 1)|

𝑝(𝑘)
+
𝑞 (𝑘)

𝑝 (𝑘)
|𝑢 (𝑘)|

𝑝(𝑘)
]

− ∑

𝑘∈𝑍

𝐹 (𝑘, 𝑢 (𝑘))

≥ ∑

𝑘∈𝑍

1

𝑝+
[𝑎 (𝑘) |Δ𝑢 (𝑘 − 1)|

𝑝(𝑘)
+ 𝑞 (𝑘) |𝑢 (𝑘)|

𝑝(𝑘)
]

− ∑

𝑘∈𝑍

1

2𝑝+
𝑞 (𝑘) |𝑢 (𝑘)|

𝑝(𝑘)

≥ ∑

𝑘∈𝑍

1

2𝑝+
[𝑎 (𝑘) |Δ𝑢 (𝑘 − 1)|

𝑝(𝑘)
+ 𝑞 (𝑘) |𝑢 (𝑘)|

𝑝(𝑘)
]

≥
1

2𝑝+
‖𝑢‖
𝑝
+

=
1

2𝑝+
𝛿
𝑝
+

> 0,

(59)

and hence 𝐼 satisfies (J1) of Lemma 9.
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Next, we prove that 𝐼 satisfies (J2) of Lemma 9. Let 𝑒 =
{𝑒(𝑘)} ∈ 𝐸 and

𝑒 (𝑘) = {
0, if 𝑘 ̸= 0,

1, if 𝑘 = 0.
(60)

Then

𝐹 (𝑘, 𝑒 (𝑘)) = {
0, if 𝑘 ̸= 0,

𝐹 (0, 1) , if 𝑘 = 0.
(61)

By Lemma 7, for 𝑠 > 1, we have

∑

𝑘∈𝑍

𝐹1 (𝑘, 𝑠𝑒 (𝑘)) = 𝐹1 (0, 𝑠) ≥ 𝑠
𝛽
𝐹1 (0, 1) , 𝐹1 (0, 1) > 0,

∑

𝑘∈𝑍

𝐹2 (𝑘, 𝑠𝑒 (𝑘)) = 𝐹2 (0, 𝑠) ≤ 𝑠
𝜏
𝐹2 (0, 1) , 𝐹2 (0, 1) ≥ 0.

(62)

Then

𝐼 (𝑠𝑒) = ∑

𝑘∈𝑍

[
𝑎 (𝑘)

𝑝 (𝑘)
|𝑠Δ𝑒 (𝑘 − 1)|

𝑝(𝑘)
+
𝑞 (𝑘)

𝑝 (𝑘)
|𝑠𝑒 (𝑘)|

𝑝(𝑘)
]

− ∑

𝑘∈𝑍

[𝐹1 (𝑘, 𝑠𝑒 (𝑘)) − 𝐹2 (𝑘, 𝑠𝑒 (𝑘))]

≤
𝑎 (0)

𝑝 (0)
𝑠
𝑝(0)
+
𝑎 (1)

𝑝 (1)
𝑠
𝑝(1)
+
𝑞 (0)

𝑝 (0)
𝑠
𝑝(0)

− 𝑠
𝛽
𝐹1 (0, 1) + 𝑠

𝜏
𝐹2 (0, 1) .

(63)

Since 𝐹1(0, 1) > 0 and 𝑝(0), 𝑝(1), 𝜏 are smaller than 𝛽, we
can choose 𝑠∗ large enough such that 𝐼(𝑠∗𝑒) < 0. So we
have verified all assumptions of Lemma 9; we know that 𝐼
possesses a critical value 𝛼 ≥ (1/2𝑝+)𝛿𝑝

+

> 0, where

𝛼 = inf
ℎ∈Γ

max
𝑠∈[0,1]

𝐼 (ℎ (𝑠)) ,

Γ = {ℎ ∈ 𝐶 ([0, 1] , 𝐸) : ℎ (0) = 0, ℎ (1) = 𝑠
∗
𝑒} .

(64)

A critical point𝑢∗ of 𝐼 corresponding to𝛼 is nonzero as𝛼 > 0.

Step 2.We prove that (1) has a ground state in 𝐸.
Let

𝐾 = {𝑢 ∈ 𝐸 : 𝐼
󸀠
(𝑢) = 0, 𝑢 ̸= 0} (65)

be the critical set of 𝐼. Obviously,𝐾 is a nonempty set. Denote

𝑐 = inf {𝐼 (𝑢) : 𝑢 ∈ 𝐾} . (66)

Since 𝑢 ∈ 𝐾, we have

𝐼 (𝑢) = 𝐼 (𝑢) −
1

𝛽
⟨𝐼
󸀠
(𝑢) , 𝑢⟩ ≥ (

1

𝑝+
−
1

𝛽
)𝜑 (𝑢) ≥ 0.

(67)

Then 0 ≤ 𝑐 ≤ 𝐼(𝑢).

Suppose that {𝑢𝑗} ⊂ 𝐾 such that 𝐼(𝑢𝑗) → 𝑐. Obviously,
{𝑢𝑗} is a P.S. sequence. By Lemma 12, we can choose a
subsequence, still denoted by {𝑢𝑗}, such that

lim
𝑗→∞

󵄩󵄩󵄩󵄩󵄩
𝑢𝑗 − 𝑢0

󵄩󵄩󵄩󵄩󵄩
= 0, 𝑢0 ∈ 𝐸. (68)

Then 𝐼(𝑢𝑗) → 𝐼(𝑢0) and 𝐼(𝑢0) = 𝑐. Now we prove that 𝑢0 is
nonzero. If 𝑢0 = 0, then there exists a positive integer𝑊 such
that for all 𝑗 > 𝑊, we have

󵄩󵄩󵄩󵄩󵄩
𝑢𝑗
󵄩󵄩󵄩󵄩󵄩
≤ 𝑞
(1/𝑝
−

)

∗
𝜌
(𝑝
+

/𝑝
−

)
< 1. (69)

By (32), it follows that

⟨𝐼
󸀠
(𝑢𝑗) , 𝑢𝑗⟩ = ∑

𝑘∈𝑍

[𝑎 (𝑘)
󵄨󵄨󵄨󵄨󵄨
Δ𝑢𝑗 (𝑘 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+ 𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

−𝑓 (𝑘, 𝑢𝑗 (𝑘)) 𝑢𝑗 (𝑘) ]

≥ ∑

𝑘∈𝑍

[𝑎 (𝑘)
󵄨󵄨󵄨󵄨󵄨
Δ𝑢𝑗 (𝑘 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

]

−
1

2
∑

𝑘∈𝑍

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≥
1

2
𝜑 (𝑢𝑗) ≥

1

2

󵄩󵄩󵄩󵄩󵄩
𝑢𝑗
󵄩󵄩󵄩󵄩󵄩

𝑝
+

> 0,

(70)

which is in contradiction to 𝐼󸀠(𝑢𝑗) = 0.Thus, 𝑢0 is the ground
state solution of (1). The proof is completed.
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