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An epidemic model with time delay has been proposed and analyzed. In this model the effect of awareness programs driven by
media on the prevalence of an infectious disease is studied. It is assumed that pathogens are transmitted via direct contact between
the susceptible and the infective populations and further assumed that the growth rate of cumulative density of awareness programs
increases at a rate proportional to the infective population.The model is analyzed by using stability theory of differential equations
and numerical simulations. Both equilibria have been proved to be globally asymptotically stable. The results we obtained and
numerical simulations suggest the increasing of the dissemination rate and implementation rate can reduce the proportion of the
infective population.

1. Introduction

Infectious diseases that cause mortality, disability, and social
and economic disruption are a major threat to mankind,
which are responsible for a quarter of all deaths annually
in the world [1–3]. Once an infectious disease appears
and spreads in a region, the Center of Disease Control
and Prevention will do its best to stop the propagation of
the disease [4]. One of the measures is to tell people the
appropriate preventive knowledge of diseases as soon as
possible through media and education which make people
take precautions to reduce their chances of being infected
[5]. As the awareness disseminates, people will change their
behaviors to alter their susceptibility.There is much evidence
that media coverage can play an important role in the spread
and control of infectious diseases [6–11]. In [8] Cui and
others established a framework of transmission coefficient
with media coverage which is a decreasing function of the
number of the infective individuals and they observed a
classic threshold-type behavior, with the disease becoming
extinct when 𝑅

0
< 1 and going to a globally asymptotically

stable equilibrium when 𝑅
0
> 1, and they concluded that

media coverage is critical in disease eradication.
The models studying the spread of infectious diseases are

very useful in evaluating strategies to control the diseases

in populations. Recently some authors studied the impacts
of media coverage and education on the spread of infectious
diseases in a given region [12–14]. In [12]Misra et al. proposed
a nonlinear mathematical model for the effects of awareness
programs on the spread of infectious diseases and assumed
the growth rate of awareness programs impacting the popu-
lation is proportional to the number of infective individuals.
The model analysis showed that the spread of an infectious
disease can be controlled by using awareness programs but
the disease remains endemic due to immigration. Yorke and
London [15] proposed an SIS type compartmental model
for sexually transmitted infections with the assumption that
the whole population is aware of risk but only a certain
proportion choose to respond by limiting their contacts with
the infective population. As a result the spread of infection is
controlled, leading to a reduction of the number of individu-
als becoming infected. A nonlinearmathematical model with
delay to capture the dynamics of effect of awareness programs
on the prevalence of any epidemic is proposed and analyzed
[16], which assumed it increases at a rate proportional to the
number of the deaths of infective individuals.

Some scholars focus on the contact rate andmost of them
assume that media campaigning will aid in modifying the
contact rate between susceptible and infective individuals
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[17–27]. To prevent the unboundedness of the contact rate,
Capasso [17] used a saturated incidence rate of the form
𝛽𝑆𝐼/(1 + 𝛽𝛿𝐼); Liu and coworkers [23, 24] used a nonlinear
incidence rate given by 𝑘𝐼𝑙𝑆/(1 + 𝛼𝐼ℎ) to incorporate the
effect of behavioral changes. In [25], the authors study how
media coverage influences the dynamics of infectious disease
by using SIRS model with the contact rate (𝛽

1
− 𝛽
2
𝐼/(𝑚 +

𝐼)), where 𝛽
1
, 𝛽
2
, and 𝑚 are positive constants. Tchuenche

and Bauch used an exponentially decreasing function 𝑒−𝑀(𝑡)
to reveal the force of media [27]. Cui et al. used a similar
function as [13] and developed an 𝑆𝐼𝑅model using incidence
rate 𝜇𝑒(−𝑚𝐼)𝑆𝐼 to investigate the impact of media coverage
on the transmission [28]. Stability analysis of the model
has shown that Hopf bifurcation can occur which causes
oscillatory phenomena when𝑚 is sufficiently small. Numeri-
cal simulations suggested that the media impact was stronger
when the basic reproduction number 𝑅

0
> 1. Liu et al. [29]

described the impact of media coverage using the transmis-
sion coefficient 𝛽𝑒(−𝛼1𝐸−𝛼2𝐼−𝛼3𝐻), where 𝐻 is the number of
hospitalized individuals. And this impact leads to the change
of avoidance and contact patterns at both individual and
community levels. Liu and Xiao [30] introduce a segmented
function to describe the saturated media impact 𝑒−𝑚𝐼𝑐 when
formulating an epidemic model. A Filippov epidemic model
with media coverage is proposed to describe the real charac-
teristics of media impact in the spread of infectious diseases
by incorporating a piecewise continuous transmission rate
𝛽𝑒
(−𝛼𝜖𝐼)

𝑆𝐼 in [31]. Mathematical and bifurcation analysis with
regard to the local, global stability of equilibria and local
sliding bifurcations are performed. Bhunu et al. [32] and
Tchuenche and Bauch[27] focused on the different types of
population in their work.

In order to better describe population mixed condi-
tions, some authors study infectious diseases models on the
different networks [33, 34]. Funk et al. have overlaid the
model of information spread of a contagious disease on
two, not necessarily identical networks, with more informed
individuals acting to reduce their susceptibility [35]. Liu et
al. took into the random perturbation [36]. In [37], the
authors extended the classical SIRS epidemic model from a
deterministic framework to a stochastic differential equation,
and then they gave the conditions of existence of unique
positive solution and the stochastic extinction and discussed
the exponential p-stability and global stability.

Most of the articles, such as [12], assume that, due
to awareness programs, driven by media, some susceptible
individuals will avoid their contacts with the infectious
individuals resulting in formation of a new class in the
population and this newly formed aware class may contract
infection only if they lose awareness. But we regard it is
unreasonable. In fact sometimes even if persons are conscious
of diseases, they will also be infected. Therefore we propose
a mathematical model for predicting the future course of any
epidemic by considering this newly formed aware class into
the model.

The rest of this paper is organized as follows. In the next
section, to capture the dynamics of effect of cumulative den-
sity of awareness programs on the prevalence of any epidemic

a mathematical model is proposed and analyzed. Then we
analyze the local and global stability of the disease-free and
the unique endemic equilibrium in Section 3. Furthermore,
in Section 4 we perform some numerical examples to validate
the analytical findings in Section 3 and introduce the impor-
tance of the dissemination rate and implementation rate
in disease control. In Section 5 we discuss the above content.

2. Mathematical Model and
Equilibrium Analysis

In this paper due to the awareness programs about the
disease, susceptible individuals are rarely in contact with the
infective ones and form a different class, namely, aware sus-
ceptible class; thus the total population is divided into three
classes, the susceptible population, the aware population, and
the infective population, and the proportions of them in the
total population are 𝑋(𝑡), 𝑌(𝑡), and 𝑋

𝑚
(𝑡). Assuming that at

time 𝑡 the cumulative density of awareness programs driven
by media in that region is𝑀(𝑡), which increases at a rate pro-
portional 𝜇 to the infective population and consumes due to
causes like inefficiency and psychological barriers at 𝜇

0
, thus

𝑀

(𝑡) = 𝜇𝑌 (𝑡) − 𝜇

0
𝑀(𝑡) . (1)

In fact people cannot takemeasures to protect themselves
in time after the media reports the disease, so we introduce a
time delay 𝜏 that represents the interval between the report
time and the time of taking measures. We assume that a
proportion of infected individuals recover through treatment
and, after recovery, a fraction 𝑞 of recovered people will
become aware and join the aware susceptible class whereas
the remaining fraction 𝑝 (𝑝 + 𝑞 = 1) will become unaware
susceptible. Keeping the above facts inmind, the dynamics of
a model are governed by the following systems of nonlinear
ordinary differential equations:

𝑋

(𝑡) = 𝑏 − 𝛽𝑋 (𝑡) 𝑌 (𝑡) + 𝜆0𝑋𝑚 (𝑡)

− 𝜆𝑋 (𝑡)𝑀 (𝑡 − 𝜏) − 𝑑𝑋 (𝑡) + 𝑝]𝑌 (𝑡) ,

𝑋


𝑚
(𝑡) = 𝜆𝑋 (𝑡)𝑀 (𝑡 − 𝜏) − (𝜆0 + 𝑑)𝑋𝑚 (𝑡)

− 𝛼𝑋
𝑚
(𝑡) 𝑌 (𝑡) + 𝑞]𝑌 (𝑡) ,

𝑌

(𝑡) = 𝛽𝑋 (𝑡) 𝑌 (𝑡) − (] + 𝑑) 𝑌 (𝑡)

+ 𝛼𝑋
𝑚
(𝑡) 𝑌 (𝑡) ,

𝑀

(𝑡) = 𝜇𝑌 (𝑡) − 𝜇0𝑀(𝑡) .

(2)

Here𝑋(0) > 0, 𝑌(0) ≥ 0, and 𝑋
𝑚
(0) ≥ 0.

Assume diseases spread due to the direct contact between
susceptible and infective individuals only. In the abovemodel,
the rate of immigration of susceptible population is 𝑏. 𝛼 is
the contact rate of aware susceptible with infective population
and 𝛽 (𝛼 < 𝛽) is the contact rate of unaware ones. The con-
stant 𝜆 represents the dissemination rate of awareness among
unaware susceptible due to which they form a different
class; then 𝜆

0
denotes the rate of transfer of aware susceptible
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to unaware class. The constants ], 𝑑 represent the recovery
rate and the natural death rate, respectively. All the above con-
stants are assumed to be positive. Using the fact that 𝑋(𝑡) +
𝑋
𝑚
(𝑡) + 𝑌(𝑡) = 1, the system (2) becomes as follows:

𝑋


𝑚
(𝑡) = 𝜆 (1 − 𝑋

𝑚
(𝑡) − 𝑌 (𝑡))𝑀 (𝑡 − 𝜏)

− (𝜆
0
+ 𝑑)𝑋

𝑚 (𝑡) − 𝛼𝑋𝑚 (𝑡) 𝑌 (𝑡) + 𝑞]𝑌 (𝑡) ,

𝑌

(𝑡) = 𝛽 (1 − 𝑋

𝑚
(𝑡) − 𝑌 (𝑡)) 𝑌 (𝑡)

− (] + 𝑑) 𝑌 (𝑡) + 𝛼𝑋𝑚 (𝑡) 𝑌 (𝑡) ,

𝑀

(𝑡) = 𝜇𝑌 (𝑡) − 𝜇

0
𝑀(𝑡) .

(3)

Now it is sufficient to study system (3) in detail rather than
system (2).

For the analysis of system (3), we need the region of
attraction which is given by the set: Ω = {(𝑋

𝑚
, 𝑌,𝑀) ∈ R3

+
:

0 ≤ 𝑋
𝑚
, 𝑌 ≤ 1, 0 ≤ 𝑀 < 𝜇/𝜇

0
}, which attracts all solutions

initiating in the interior of the positive orthant.
Define the basic reproduction number 𝑅

0
= 𝛽/(] +

𝑑). There are two equilibria, the disease-free equilibrium
𝐸
0
(0, 0, 0) and the endemic equilibrium 𝐸

∗
(𝑋
∗

𝑚
, 𝑌
∗
,𝑀
∗
); the

existence of 𝐸
0
is trivial; then we prove the existence of 𝐸

∗
in

detail. In 𝐸
∗
(𝑋
∗

𝑚
, 𝑌
∗
,𝑀
∗
) the values of𝑋∗

𝑚
,𝑀∗ are obtained

by solving the following algebraic equations (for 𝑌 ̸= 0):

𝜆 (1 − 𝑋
𝑚
− 𝑌)𝑀 − (𝜆

0
+ 𝑑)𝑋

𝑚
− 𝛼𝑋
𝑚
𝑌 + 𝑞]𝑌 = 0, (4)

𝛽 (1 − 𝑋
𝑚
− 𝑌)𝑌 − (] + 𝑑) 𝑌 + 𝛼𝑋

𝑚
𝑌 = 0, (5)

𝜇𝑌 − 𝜇
0
𝑀 = 0. (6)

Using (5) and (6), we get

𝑋
∗

𝑚
=
𝛽 (1 − 𝑌

∗
) − (] + 𝑑)

𝛽 − 𝛼
, (7)

𝑀
∗
=
𝜇

𝜇
0

𝑌
∗
. (8)

Further, using (7) and (8) in (4), we obtain a quadratic
equation in 𝑌∗ as

𝑃
1
𝑌
∗2
+ 𝑃
2
𝑌
∗
+ 𝑃
3
= 0, (9)

where

𝑃
1
= 𝛼 (𝜆𝜇 + 𝜇

0
𝛽) ,

𝑃
2
= (] + 𝑑 − 𝛽) (𝜆𝜇 + 𝛼𝜇

0
)

+ 𝑞]𝜇
0
(𝛽 − 𝛼) + 𝜇

0
𝛽 (𝛽 + 𝑑) ,

𝑃
3
= 𝜇
0
(𝜆
0
+ 𝑑) (] + 𝑑 − 𝛽) .

(10)

Solving (9) we get

𝑌
∗
=

−𝑃
2
± √𝑃
2

2
− 4𝑃
1
𝑃
3

2𝑃
1

.
(11)

We obtain 𝑃
1
> 0 and 𝑃

3
< 0 when 𝑅

0
> 1 and get 𝑌∗ =

(−𝑃
2
+ √𝑃
2

2
− 4𝑃
1
𝑃
3
)/2𝑃
1
for 𝑌∗ > 0.

Remark. From the expression of 𝑌∗, it is easy to note that
(𝑑𝑌
∗
/𝑑𝜆) < 0 and (𝑑𝑌∗/𝑑𝜇) < 0, which shows that

the equilibrium number of infective individuals decreases
as the rate of dissemination and the implementation rate of
awareness programs increase.

3. Stability Analysis

In this section we present the local and global stability of 𝐸
0

and 𝐸
∗
.

3.1. The Stability of the Disease-Free Equilibrium

Theorem 1. When 𝜏 ≥ 0, the disease-free equilibrium
𝐸
0
(0, 0, 0) is locally asymptotically stable if𝑅

0
< 1 and becomes

unstable if 𝑅
0
> 1.

Proof. The Jacobian matrix corresponding to system (4) is
given as follows:

𝐽 =

[
[
[
[

[

−𝜆𝑀 − 𝛼𝑌 − 𝜆
0
− 𝑑 −𝜆𝑀 − 𝛼𝑋

𝑚
+ 𝑞] 𝜆 (1 − 𝑌 − 𝑋

𝑚
) 𝑒
−𝜂𝜏

(𝛼 − 𝛽)𝑌 (𝛼 − 𝛽)𝑋
𝑚
− 2𝛽𝑌 + (𝛽 − ] − 𝑑) 0

0 𝜇 −𝜇
0

]
]
]
]

]

, (12)

where 𝜂 is the eigenvalue. Then the characteristic equation is

[𝜂 + (𝜆
0
+ 𝑑)] [𝜂 + (] + 𝑑 − 𝛽)] (𝜂 + 𝜇

0
) = 0. (13)

We get 𝜂
1
= −(𝜆

0
+𝑑) < 0, 𝜂

2
= 𝛽−(]+𝑑), and 𝜂

3
= −𝜇
0
< 0.

So 𝜂
2
< 0 when 𝑅

0
< 1; 𝜂

2
> 0 when 𝑅

0
> 1.

Theorem 2. When 𝜏 ≥ 0, the disease-free equilibrium 𝐸
0
is

globally asymptotically stable in Ω if 𝑅
0
< 1.

Proof. To establish the global stability of the disease-free
equilibrium 𝐸

0
, we use Lyapunov’s method and consider the

following positive definite function without 𝜏:

𝑉 =
1

2
𝑌
2
. (14)

Now differentiating 𝑉 with respect to 𝑡, we get
𝑑𝑉

𝑑𝑡
= [𝛽 − (] + 𝑑)] 𝑌2 − 𝛽𝑌3 − (𝛽 − 𝛼)𝑋𝑚𝑌

2
. (15)
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When𝑅
0
< 1,𝑑𝑉/𝑑𝑡 ≤ 0.The largest compact invariant set in

{(𝑋
𝑚
, 𝑌,𝑀) ∈ Ω : 𝑉


= 0} when 𝑅

0
< 1 is the singleton {𝐸

0
}.

Then LaSalle’s invariance principle implies that 𝐸
0
is globally

asymptotically stable inΩ.

3.2. The Stability of the Endemic Equilibrium. Linearizing
system (4) about 𝐸

∗
, let 𝑥 = 𝑋

𝑚
− 𝑋
∗

𝑚
,𝑦 = 𝑌 − 𝑌∗, and

𝑚 = 𝑀 −𝑀
∗ and get

𝑑𝑢

𝑑𝑡
= 𝑀
1
𝑢 (𝑡) + 𝑀2𝑢 (𝑡 − 𝜏) , (16)

where

𝑢 (𝑡) = [𝑥 (𝑡) , 𝑦 (𝑡) , 𝑚 (𝑡)]
𝑇
,

𝑀
1
= [

[

− (𝜆𝑀
∗
+ 𝛼𝑌
∗
+ 𝜆
0
+ 𝑑) 𝑞] − 𝜆𝑀∗ − 𝛼𝑋∗

𝑚
0

(𝛼 − 𝛽)𝑌
∗

−𝛽𝑌
∗

0

0 𝜇 −𝜇
0

]

]

,

𝑀
2
= [

[

0 0 𝜆 (1 − 𝑌
∗
− 𝑋
∗

𝑚
)

0 0 0

0 0 0

]

]

.

(17)

We have the disease-free equilibrium 𝐸


0
(0, 0, 0) and the

endemic equilibrium 𝐸


∗
(𝑥
∗
, 𝑦
∗
, 𝑚
∗
), where the stability of

𝐸
∗
about system (3) is corresponding with 𝐸

0
. The charac-

teristic equation of the above system at 𝐸
0
is

𝜂
3
+ 𝑄
1
𝜂
2
+ 𝑄
2
𝜂 + 𝑄

3
= 𝑄
4
𝑒
−𝜂𝜏
, (18)

where 𝜂 is the eigenvalue and

𝑄
1
= 𝐴 + 𝛽𝑌

∗
+ 𝜇
0
,

𝑄
2
= 𝛽𝑌
∗
𝐴 + (𝐴 + 𝛽𝑌

∗
) 𝜇
0
+ (𝛼 − 𝛽)𝑌

∗
𝐵,

𝑄
3
= 𝛽𝑌
∗
𝜇
0
𝐴 + (𝛼 − 𝛽) 𝜇

0
𝑌
∗
𝐵,

𝑄
4
= (𝛽 − 𝛼) 𝜇𝑌

∗
𝐶,

𝐴 = 𝜆𝑀
∗
+ 𝛼𝑌
∗
+ 𝜆
0
+ 𝑑,

𝐵 = 𝜆𝑀
∗
+ 𝛼𝑋
∗

𝑚
− 𝑞],

𝐶 = 𝜆 (𝑌
∗
+ 𝑋
∗

𝑚
− 1) .

(19)

The stability of the endemic equilibrium 𝐸
∗
of system (3) is

stated in the following theorems.

Theorem3. When 𝜏 ≥ 0, the endemic equilibrium𝐸
∗
is locally

asymptotically stable if 𝑅
0
> 1.

Proof. When 𝜏 = 0, the characteristic equation is of the form

𝜂
3
+ 𝑄
1
𝜂
2
+ 𝑄
2
𝜂 + (𝑄

3
− 𝑄
4
) = 0. (20)

It is easy to see that

𝑄
1
= 𝐴 + 𝛽𝑌

∗
+ 𝜇
0

= 𝜆𝑀
∗
+ 𝛼𝑌
∗
+ 𝜆
0
+ 𝑑 + 𝛽𝑌

∗
+ 𝜇
0
> 0,

𝑄
2
= 𝛽𝑌
∗
𝐴 + (𝐴 + 𝛽𝑌

∗
) 𝜇
0
+ (𝛼 − 𝛽)𝑌

∗
𝐵

= 𝛽𝑌
∗
𝜆𝑀
∗
+ 𝛽𝑌
∗
𝛼𝑌
∗
+ 𝛽𝑌
∗
(𝜆
0
+ 𝑑)

+ 𝛽𝑌
∗
𝜇
0
+ 𝜆𝑀

∗
+ 𝛼𝑌
∗
+ 𝜆
0
+ 𝑑

+ (𝛼 − 𝛽)𝑌
∗
𝜆𝑀
∗
+ (𝛼 − 𝛽)𝑌

∗
𝛼𝑋
∗

𝑚

+ (𝛽 − 𝛼)𝑌
∗]𝑞

= 𝛼𝜆𝑌
∗
𝑀
∗
+ 𝛼
2
𝑌
∗
𝑋
∗

𝑚
+ 𝛼𝑌
∗
(1 − 𝑋

∗

𝑚
)

+ (𝛽 − 𝛼) ]𝑞𝑌∗ + 𝛼𝛽𝑌∗2 + 𝛽𝑌∗ (𝜆
0
+ 𝑑)

+ 𝛽𝜇
0
𝑌
∗
+ 𝜆𝑀

∗
+ 𝜆
0
+ 𝑑 > 0.

𝑄
3
− 𝑄
4

= 𝛽𝑌
∗
𝜇
0
𝐴 + (𝛼 − 𝛽) 𝜇

0
𝑌
∗
𝐵

+ (𝛼 − 𝛽) 𝜇𝑌
∗
𝐶

= 𝛽𝑌
∗
𝜇
0
𝜆𝑀
∗
+ 𝛽𝑌
∗
𝜇
0
𝛼𝑌
∗

+ 𝛽𝑌
∗
𝜇
0
(𝜆
0
+ 𝑑) + 𝛼𝜇

0
𝑌
∗
𝜆𝑀
∗

+ 𝛼𝜇
0
𝑌
∗
𝛼𝑋
∗

𝑚
− 𝛼𝜇
0
𝑌
∗]𝑞 − 𝛽𝜇

0
𝑌
∗
𝜆𝑀
∗

− 𝛽𝜇
0
𝑌
∗
𝛼𝑋
∗

𝑚
+ 𝛽𝜇
0
𝑌
∗]𝑞 − (𝛽 − 𝛼) 𝜇𝑌∗𝐶

= (𝛽 − 𝛼) 𝜇
0
]𝑞𝑌∗2 + 𝜇

0
𝛼𝛽𝑋
∗

𝑚
𝑌
∗
𝑥
∗
(𝑦
∗
)
−1

+ 𝛽𝜇
0
𝛼𝑌
∗2
+ 𝛽𝜇
0
(𝜆
0
+ 𝑑)𝑌

∗

+ 𝛼𝜆𝜇
0
𝑌
∗
𝑀
∗
+ (𝛽 − 𝛼) 𝜆𝜇𝑌

∗
(1 − 𝑌

∗
− 𝑋
∗

𝑚
) > 0,

𝑄
1
𝑄
2
− (𝑄
3
− 𝑄
4
)

= (𝐴 + 𝛽𝑌
∗
+ 𝜇
0
) [𝛽𝑌
∗
𝐴 + (𝐴 + 𝛽𝑌

∗
) 𝜇
0
+ (𝛼 − 𝛽)𝑌

∗
𝐵]

− [𝛽𝑌
∗
𝜇
0
𝐴 + (𝛼 − 𝛽) 𝜇

0
𝑌
∗
𝐵 − (𝛽 − 𝛼) 𝜇𝑌

∗
𝐶]

= (𝐴 + 𝛽𝑌
∗
+ 𝜇
0
) 𝛽𝑌
∗
𝐴 + 𝐴

2
𝜇
0

+ (𝛽𝑌
∗
+ 𝜇
0
) (𝐴 + 𝛽𝑌

∗
) 𝜇
0

+ (𝐴 + 𝛽𝑌
∗
) (𝛼 − 𝛽)𝑌

∗
𝐵 + (𝛼 − 𝛽)𝑌

∗
𝜇𝐶

= (𝛽 − 𝛼) 𝜇𝜆𝑌
∗
(𝑌
∗
+ 𝑋
∗

𝑚
) + 𝛼𝜆𝜇𝑌

∗

+ (𝐴 + 𝛽𝑌
∗
) [𝐴𝛽𝑌

∗
+ (𝛼 − 𝛽)𝑌

∗
𝐵]

+ (𝛽 − 𝛼) 𝜇𝜆𝑌
∗
𝑥
∗
(𝑦
∗
)
−1
+ 𝜇
0
𝛽𝑌
∗
𝐴

+ 𝐴
2
𝜇
0
+ (𝛽𝑌

∗
+ 𝜇
0
) (𝐴 + 𝛽𝑌

∗
) 𝜇
0
.

(21)
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From 𝑄
3
− 𝑄
4
> 0, we can get 𝐴𝛽𝑌∗ + (𝛼 − 𝛽)𝑌∗𝐵 > 0; thus

𝑄
1
𝑄
2
− (𝑄
3
− 𝑄
4
) > 0. According to Hurwitz criterion, we

can know all the 𝜂’s have negative real parts; then 𝐸
0
is locally

asymptotically stable.
When 𝜏 > 0, notice that (18) does not have nonnegative

real roots. If it has roots with nonnegative real parts they
must be complex and should have been obtained from a
pair of complex conjugate roots which cross the imaginary
axis. Consequently, (18) must have a pair of purely imaginary
solutions for some 𝜏 > 0. Assume that 𝜂 = 𝑖𝜔 (𝜔 > 0) is a root
of (18) without loss of generality. That is the case if and only
if 𝜔 satisfies the equation

−𝜔
3
𝑖 − 𝑄
1
𝜔
2
+ 𝑄
2
𝜔𝑖 + 𝑄

3
= 𝑄
4 (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) . (22)

Separating the real and imaginary parts, we have the follow-
ing system, satisfied by 𝜔:

𝑄
3
− 𝑄
1
𝜔
2
= 𝑄
4
cos𝜔𝜏,

𝜔
3
− 𝑄
2
𝜔 = 𝑄

4
sin𝜔𝜏.

(23)

To eliminate the trigonometric functions we square both
sides of each equation above and we add the squared above
equations to obtain the following forth order equation in 𝜔:

𝜔
6
+ (𝑄
2

1
− 2𝑄
2
) 𝜔
4
+ (𝑄
2

2
− 2𝑄
1
𝑄
3
) 𝜔
2
+ (𝑄
2

3
− 𝑄
2

4
) = 0.

(24)

To reduce this fourth order equation in 𝜔 to a quadratic
equation let 𝜑 = 𝜔2 and denote the coefficients by

𝜑
3
+ 𝑅
1
𝜑
2
+ 𝑅
2
𝜑 + 𝑅
3
= 0, (25)

where

𝑅
1
= 𝑄
2

1
− 2𝑄
2

= (𝐴 + 𝛽𝑌
∗
+ 𝜇
0
)
2

− 2 [𝛽𝑌
∗
𝐴 + (𝐴 + 𝛽𝑌

∗
) 𝜇
0
+ (𝛼 − 𝛽)𝑌

∗
𝐵]

= 𝐴
2
+ 𝛽
2
𝑌
∗2
+ 𝜇
2

0
+ 2 (𝛽 − 𝛼)𝑌

∗
𝐵

= 𝐴
2
+ 𝛽
2
𝑌
∗2
+ 𝜇
2

0
+ 2 (𝛽 − 𝛼)𝑌

∗
(𝜆𝑀
∗
+ 𝛼𝑋
∗

𝑚
)

+ 2]𝑞𝛽𝑌∗𝑦∗(𝑥∗)−1 > 0,

𝑅
2
= 𝑄
2

2
− 2𝑄
1
𝑄
3

= [𝛽𝑌
∗
𝐴 + (𝛼 − 𝛽)𝑌

∗
𝐵]
2

+ 𝜇
2

0
[𝐴
2
+ 𝛽
2
𝑌
∗2
+ (𝛽 − 𝛼)𝑌

∗
𝐵]

= [𝛽𝑌
∗
𝐴 + (𝛼 − 𝛽)𝑌

∗
𝐵]
2

+ 𝜇
2

0
[𝐴
2
+ 𝛽
2
𝑌
∗2
(𝛽 − 𝛼)𝑌

∗
(𝜆𝑀
∗
+ 𝛼𝑋
∗

𝑚
)

+2]𝑞𝛽𝑌∗𝑦∗(𝑥∗)−1] > 0.

𝑅
3
= 𝑄
2

3
− 𝑄
2

4
= (𝑄
3
+ 𝑄
4
) (𝑄
3
− 𝑄
4
) ,

𝑄
3
+ 𝑄
4

= 𝛽𝑌
∗
𝜇
0
𝐴 + (𝛼 − 𝛽) 𝜇

0
𝑌
∗
𝐵 + (𝛽 − 𝛼) 𝜇𝑌

∗
𝐶

= 𝛽𝑌
∗
𝜇
0
𝐴 + (𝛽 − 𝛼) 𝜇

0
𝑌
∗]𝑞

+ (𝛼 − 𝛽) 𝜇
0
𝑌
∗
(𝜆𝑀
∗
+ 𝛼𝑋
∗

𝑚
)

+ (𝛽 − 𝛼) 𝜇𝑌
∗
𝜆 (𝑌
∗
+ 𝑋
∗

𝑚
) + (𝛼 − 𝛽) 𝜇𝑌

∗
𝜆

= 𝛽𝑌
∗
𝜇
0
(𝜆𝑀
∗
+ 𝛼𝑌
∗
+ 𝜆
0
+ 𝑏) + (𝛽 − 𝛼) 𝜇

0
𝑌
∗]𝑞

+ (𝜇
0
𝜆𝑀
∗
+ 𝜇
0
𝛼𝑋
∗

𝑚
+ 𝜇𝜆) 𝜆𝑌

∗
𝑦
∗
(𝑥
∗
)
−1

+ (𝛽 − 𝛼) 𝜇𝑌
∗
𝜆 (𝑌
∗
+ 𝑋
∗

𝑚
) > 0.

(26)

So all the coefficients of (25) are positive numbers. Then
according to Lemma 3.3.1 in [38], (25) has no positive real
roots; that is, we may not get any positive value of 𝜔, which
satisfy the transcendental equation (18). So all the 𝜂’s have
negative real parts for all values of the delay 𝜏 ≥ 0; then 𝐸

0

is locally asymptotically stable.Thus when 𝜏 ≥ 0, 𝐸
∗
is locally

asymptotically stable if 𝑅
0
> 1.

Theorem 4. When 𝜏 ≥ 0, the endemic equilibrium 𝐸
∗
is

globally asymptotically stable in Ω if 𝑅
0
> 1.

Proof. Using Lyapunov’s method, we consider the following
positive function:

𝑉 =
1

2
𝑦
2
. (27)

The derivative of 𝑉 along the system is given by

𝑑𝑉

𝑑𝑡
= (𝛼 − 𝛽)𝑌

∗
𝑥 − 𝛽𝑌

∗
𝑦 ≤ 0. (28)

The largest compact invariant set when 𝑉 = 0 is the
singleton {𝐸

0
}. Then LaSalle’s invariance principle implies

that 𝐸
0
is globally asymptotically stable; that is, 𝐸

∗
is globally

asymptotically stable inΩ.

4. Numerical Simulations and Results

To check the feasibility of our analysis of 𝜏 > 0, we present
some numerical computations in this section using Matlab
by choosing the following set of parameter values: 𝛽 = 0.35,
𝜆 = 0.08, 𝜆

0
= 0.02, 𝛼 = 0.2, 𝑑 = 0.002, ] = 0.43, 𝑝 = 0.15,

𝑞 = 0.85, 𝜇 = 0.002, 𝜇
0
= 0.02, and 𝜏 = 1 when 𝑅

0
< 1.

Let 𝛽 = 0.5; it may be checked that the condition 𝑅
0
> 1
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Figure 1: The stability of 𝐸
0
and 𝐸

∗
with different initial values.
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Figure 2: The stability of 𝑋
𝑚
, 𝑌 with variational 𝜆.

of existence of the endemic equilibrium 𝐸
∗
. The equilibrium

values for this data are obtained as

𝑋
∗

𝑚
= 0.201, 𝑌

∗
= 0.014, 𝑀

∗
= 0.001. (29)

The basic reproduction number 𝑅
0
, for the above set of

parameter values, is found to be 1.157.
For the above parameter values, we select five sets of

different initial starts; then the computer generated graphs of
aware population, infective population, and cumulative den-
sity of awareness programs, respectively, have been drawn in
Figure 1, which shows that all the trajectories initiating inside
the region of attraction approach towards 𝐸

0
and 𝐸

∗
, respec-

tively. Both of the equilibria 𝐸
0
and 𝐸

∗
are locally asymptot-

ically stable for given set of parameter values that numerical
simulations support the analysis given in Section 3. In fact,
they are globally asymptotically stable inΩ aswe have proved.

In the following, we research the relationships of𝑋∗
𝑚
, 𝑌∗

and the dissemination rate 𝜆, the implementation rate 𝜇
separately.Wemake 𝜆, 𝜇 change from 0 to 0.4 and get the per-
formances of 𝑋

𝑚
(𝑡) and 𝑌(𝑡), the trajectories of which with

respect to time 𝑡 for different 𝜆 and 𝜇 are shown in Figures
2 and 3, respectively. And there are no awareness programs
when 𝜆 and 𝜇 are equal to zero. As shown in Figures 2 and

3, 𝑋∗
𝑚
both increase and 𝑌∗ both reduce as the increase of 𝜆

and 𝜇, which proves the conclusions of the remark. And 𝜆, 𝜇
are greater influence on 𝑌∗ than 𝑋∗

𝑚
, which state awareness

programs have a positive effect on prevention of diseases. In
addition the reason why 𝑋∗

𝑚
(𝑌∗) has a similar trend as the

variations of 𝜆 and 𝜇 is that 𝜆 and 𝜇 have a similar influence
on 𝑋∗
𝑚
(𝑌∗). From the figure we obtain that 𝜇 can postpone

the time of the balance of equilibrium; thus we can have
more time to formulate measures to prevent diseases. There
really is an effort here tomake it clear that 𝜆 and 𝜇 (awareness
programs) play a key role in the prevention and control of
diseases.

5. Discussion

Themedia is widely acknowledged as a key tool for influenc-
ing people’s behaviors towards the disease to devise proper
policies for controlling the epidemic. Awareness programs
through media make people be aware about the disease
and take various precautions to reduce their chances of
being infected. In this paper, we propose and analyze a
mathematical model to study the effect of awareness pro-
grams driven by media and the delay on the prevalence
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Figure 3: The stability of 𝑋
𝑚
, 𝑌 with variational 𝜇.

of an infectious disease. It is assumed that pathogens are
transmitted via direct contact between the susceptible and
the infective populations. Assume further that cumulative
density of awareness programs increases at a rate propor-
tional to the infective population. The model exhibits two
equilibria; the disease-free equilibrium has been shown to be
stable for basic reproduction number 𝑅

0
< 1. For 𝑅

0
> 1,

it becomes unstable, which leads to the existence of an
endemic equilibrium.The endemic equilibriums are globally
asymptotically stable. The delay 𝜏 has no effect on the
stability of the system.The numerical simulations and results
that prove the stability of equilibria suggest that if we want
to reduce the proportions of the infective population and
increase the aware population,we can increase the dissemina-
tion rate 𝜆 and implementation rate 𝜇. They are conducive to
controlling the spread of diseases.
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[21] M. Liu, G. Röst, and G. Vas, “SIS model on homogeneous net-
works with threshold type delayed contact reduction,” Comput-
ers & Mathematics with Applications, vol. 66, no. 9, pp. 1534–
1546, 2013.

[22] M. Elenbaas, H. G. Boomgaarden, A. R. T. Schuck, and C. H.
de Vreese, “The impact of media coverage and motivation on
performance-relevant information,” Political Communication,
vol. 30, no. 1, pp. 1–16, 2013.

[23] W. M. Liu, H. W. Hethcote, and S. A. Levin, “Dynamical
behavior of epidemiological models with nonlinear incidence
rates,” Journal of Mathematical Biology, vol. 25, no. 4, pp. 359–
380, 1987.

[24] W. M. Liu, S. A. Levin, and Y. Iwasa, “Influence of nonlinear
incidence rates upon the behavior of SIRS epidemiological
models,” Journal of Mathematical Biology, vol. 23, no. 2, pp. 187–
204, 1986.

[25] Y. Liu and J. Cui, “The impact of media coverage on the dynam-
ics of infectious disease,” International Journal of Biomathemat-
ics, vol. 1, no. 1, pp. 65–74, 2008.

[26] H. Zhao, Y. Lin, and Y. Dai, “An SIRS epidemic model incor-
porating media coverage with time delay,” Computational and
MathematicalMethods inMedicine, vol. 2014, Article ID 680743,
10 pages, 2014.

[27] J. M. Tchuenche and C. T. Bauch, “Dynamics of an infectious
disease where media coverage influences transmission,” ISRN
Biomathematics, vol. 2012, Article ID 581274, 10 pages, 2012.

[28] J. Cui, Y. Sun, and H. Zhu, “The impact of media on the control
of infectious diseases,” Journal of Dynamics and Differential
Equations, vol. 20, no. 1, pp. 31–53, 2008.

[29] R. S. Liu, J. H. Wu, and H. P. Zhu, “Media/psychological impact
on multiple outbreaks of emerging infectious diseases,” Com-
putational and Mathematical Methods in Medicine, vol. 8, no. 3,
pp. 153–164, 2007.

[30] Y. Y. Liu and Y. N. Xiao, “An epidemic model with saturated
media/psychological impact,” Applied Mathematics and Mech-
anics, vol. 34, no. 4, pp. 99–407, 2013.

[31] A. Wang and Y. Xiao, “A Filippov system describing media
effects on the spread of infectious diseases,” Nonlinear Analysis:
Hybrid Systems, vol. 11, pp. 84–97, 2014.

[32] C. P. Bhunu, S. Mushayabasa, and H. Kojouharov, “Mathemat-
ical analysis of an HIV/AIDS model: impact of educational
programs and abstinence in sub-Saharan Africa,” Journal of

Mathematical Modelling and Algorithms, vol. 10, no. 1, pp. 31–55,
2011.

[33] Y. Wang, J. D. Cao, Z. Jin, H. F. Zhang, and G. Q. Sun, “Impact
ofmedia coverage on epidemic spreading in complex networks,”
PhysicaA: StatisticalMechanics and Its Applications, vol. 392, no.
23, pp. 5824–5835, 2013.

[34] X. Yuan, Y. Xue, and M. Liu, “Analysis of an epidemic model
with awareness programs by media on complex networks,”
Chaos, Solitons & Fractals, vol. 48, no. 1, pp. 1–11, 2013.

[35] S. Funk, E.Gilad, C.Watkins, andV.A.A. Jansen, “The spread of
awareness and its impact on epidemic outbreaks,” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 106, no. 16, pp. 6872–6877, 2009.

[36] W. Liu, “A SIRS epidemic model incorporating media coverage
with random perturbation,” Abstract and Applied Analysis, vol.
2013, Article ID 792308, 9 pages, 2013.

[37] L. Wang, H. L. Huang, A. C. Xu, and W. M. Wang, “Stochastic
extinction in an SIRS epidemic model incorporating media
coverage,” Abstract and Applied Analysis, vol. 2013, Article ID
891765, 8 pages, 2013.

[38] H. M. Wei, X. Z. Li, and M. Martcheva, “An epidemic model of
a vector-borne disease with direct transmission and time delay,”
Journal of Mathematical Analysis and Applications, vol. 342, no.
2, pp. 895–908, 2008.


