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We made use of groundwater flow and mass transport equations to investigate the crucial potential risk of water pollution from
hydraulic fracturing especially in the case of the Karoo system in South Africa. This paper shows that the upward migration of
fluids will depend on the apertures of the cement cracks and fractures in the rock formation.The greater the apertures, the quicker
the movement of the fluid. We presented a novel sampling method, which is the combination of the Monte Carlo and the Latin
hypercube sampling. The method was used for uncertainties analysis of the apertures in the groundwater and mass transport
equations. The study reveals that, in the case of the Karoo, fracking will only be successful if and only if the upward methane
and fracking fluid migration can be controlled, for example, by plugging the entire fracked reservoir with cement.

1. Introduction

In the recent decade, shale gas has become one of the mainly
functional natural gases for industrial countries. For instance
in USA, it was supposed in 2009 that natural gas demand
was accepted to augment from 23 tcf per year to 30–34 tcf
per year in 2025 [1–5]. However, usual gases were not able
to keep happy such a need. Consequently to gratify this
demand, the alternative gas sources such as shale gas were
expected to be the most important paraphernalia of this
construction. It is perhaps important to recall that shale are
fissile rocks composed of layers of fine-grained sediments
[5–10]. Several techniques have been put in place to extract
this shale gas from the fissile rocks. By using the advanced
techniques of horizontal drilling and hydraulic fracturing, it
now seems to be economically feasible to extract natural gas
from the Marcellus shale [11]. Even though these techniques
are well recognized, they are not without potential risk.
Hydraulic fracturing uses high-pressure solutions to create
and prop open fractures in rock to improve the flow of oil,
gas, or water [12]. More than 750 different chemicals, ranging
from benign to toxic, have been used in hydraulic fracturing
solutions [12]. Although these additives are less than 2% by

volume of the total fracturing fluid, hydraulic fracturing is
a water-intensive process and at least 50m3 of chemicals
would be used for a typical 10,000m3 hydraulic fracturing
project [11, 12]. The crucial unknown is the potential risk of
water contamination from hydraulic fracturing especially in
the case of the Karoo system in South Africa.

2. Statement of the Problem

Water is not only the most abundant substance on earth,
but also the substance on which all forms of life depend.
No wonder then that man has always been preoccupied with
precious resource.The largest volume of water on the earth is
in the oceans (which cover nearly 75% of its surface), but this
water is not potable or suitable for domestic and industrial
purposes. Man, therefore, always had to rely on other fresh
water sources to satisfy his needs for potable water.

The science on contamination of drinking water from
shale gas drilling, fracking, and production, is recent and
incomplete. A peer-reviewed, archival journal study from
Duke University [13] found apparent migration of substantial
amounts of methane from gas wells to private water wells
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as far out as 1000m in the Marcellus play in Pennsylvania
[12]. This is illustrated in the Figure 1 below. It is therefore
important to investigate the possible effect of these pollutions
to the shallow and deeper aquifer after the closure of the
fracking area. The questions that arise at this level are the
following: what happen after closure of the fracking zone if
there is a leakage of the capped borehole? At which extent
the private borehole of the neighbourhood will be affected?
These questions can find answer only by presenting a suitable
model for this situation. Figure 1 shows approximately the
possible situation that takes place during the fracking process,
in particular, the potential gas migration paths along a well.
However, Figure 2 shows the insufficient cement coverage
leading to possible migrations of gas along paths well.

To achieve this, we consider the case where 1000 ha was
fracked from 30 wells as indicated in Figure 3.

The following assumptions will be considered in this
study.

(1) Measure the potentiometric measure at the bottom
of the well (this will give the total piesometric head
of the organic shale (i.e., hydrostatic + hydrodynamic
pressures) which will include the artesian pressures of
the Karoo).

(2) Because the organic Ecca shale is over-pressurized
(from Soekor wells), gas and water will flow from the
well.

(3) Now (a) if pressures rebuild 100%, the organic shale
is not enclosed by impermeable boundaries and the
fresh water in the area will be polluted sooner or later
from the deep organic water. (b) But if pressures do
not recover, the well is situated in a closed systemwith
impermeable boundaries and there will be no water
pollution from depth.

(4) The over-pressured organic shale at, for example,
3000m.

(5) The potentiometric head is higher than the water-
table in the fresh water aquifer.

(6) The organic shale is not bounded by impervious
boundaries.

(7) In all the 𝑛 boreholes, the cement annulus will crack
and form preferential flow paths given enough time
and are closed on top.

(8) There are private boreholes in the neighbourhood of
the area.

(9) The aquifer is confined, such that we have a per-
meability barrier, such that, after the closure of the
boreholes, as the fluid pressure will increase in a rock,
the fluid pressure approaches the lithostatic pressure
and the forces act at the sediment grain contact.

3. Mathematical Formulation

The mathematical equation describing the flow of water via
an aquifer can be found in [16–19]. In this paper, we use
the simple analytical solution describing the relationship

between the apertures and the discharge rate. It is assumed
that the upward flow of water along the faulty cement annuli
can be approximated by the well-known cubic law (parallel
plate model for fractures). We can represent a fracture as
a planar void with two flat parallel surfaces. The hydraulic
conductivity of this fracture is defined as follows:

𝐾
𝑓
= (2𝑏)

2 𝜌𝑔

12𝜇

, (1)

where 2𝑏 is the fracture aperture, 𝜌 is the density of water, 𝑔
is acceleration due to gravity, and 𝜇 is the viscosity of water.

The mean groundwater velocity through the fracture 𝑉
𝑤

can be calculated as the product of the fracture hydraulic
conductivity and the hydraulic gradient:

𝑉
𝑤
= 𝐾
𝑓

𝛿𝑖

𝛿𝑧

, (2)

where 𝛿𝑖/𝛿𝑧 is the hydraulic gradient.
The transmissivity of an individual fracture is then

𝑇
𝑓
= (2𝑏)

3 𝜌𝑔

12𝜇

, (3)

and the flux along the fracture is

𝑄 = 𝑇
𝑓

𝛿𝑖

𝛿𝑧

, (4)

where 𝑄 is flow in m3/d per m width.
The validity of the cubic law for laminar flow of fluids

through open fractures consisting of parallel planar plates
has been established over a wide range of conditions with
apertures ranging down to a minimum of 0.2 𝜇m. Artificially
induced tension fractures and the laboratory setup used
radial as well as straight flow geometries. Apertures ranged
from 250 down to 4 𝜇m, which was the minimum size that
could be attained under a normal stress of 20MPa.The cubic
law was found to be valid whether the fracture surfaces were
held open or were being closed under stress, and the results
are not dependent on rock type. Permeability was uniquely
defined by fracture aperture and was independent of the
stress history used in these investigations. The apertures in
this study are considered uncertain because, it is very difficult
even in the field or real world problem to measure accurately
the apertures. The next section is therefore devoted to the
discussion underpinning the evaluation of uncertainties in
this model.

4. Parameter Uncertainties Analysis

Parameter uncertainty can be defined as uncertainty that
arises in selecting values for parameters in the various
models. There are many parameters in this assessment that
are uncertain. First, there are insufficient data about the site
climatic, geological, and hydrological conditions. As a result,
such parameters as sorption coefficients, moisture content,
river flow rate, river depth and width, hydraulic gradient
in the aquifer, and erosion rate are taken from the general
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Figure 1: Illustration of migration along the path (figure from Alberta Energy Utilities Board) [14].

Figure 2: Illustration of insufficient cement coverage [15].

literature. Some parameters used need to be specified more
accurately, for example, evaporation or distance between
the disposal facility and the river and between the disposal
facility and residences. On the other hand, the sensitivity
analysis aims at quantifying the individual contribution from
each parameter’s uncertainty to the uncertainty of outputs.
Correlations between parameters may also be inferred from
sensitivity analysis. It is a frequent routine and recommended
to perform the uncertainty and sensitivity analysis in tandem
[20–23]. In this section, we present a discussion underpin-
ning the parameter uncertainties analysis of the solution of

the transmissivity, discharge rate, and velocity as function of
aperture.

4.1. Samples Generation. The LHS method [24] is a type
of stratified MC sampling [25]. The sampling region is
partitioned into a specific manner by dividing the range of
each component of 𝑥. We will only consider the case where
the components of 𝑥 are independent or can be transformed
into an independent base. Moreover, the sample generation
for correlated components with Gaussian distribution can be
easily achieved [26]. As originally described, in the following
manner, LHS operates to generate a sample size 𝑁 from
the 𝑛 variables 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
. The range of each variable is

partitioned into 𝑁 nonoverlapping intervals on the basis of
equal probability size 1/𝑁. One value from each interval is
selected at random with respect to the probability density in
the interval. The 𝑁 values thus obtained for 𝑥

1
are paired

in a random manner with the 𝑁 values of 𝑥
2
. These 𝑁

pairs are combined in a random manner with the 𝑁 values
of 𝑥
3
to form 𝑁 triplets, and so on, until a set of 𝑁𝑛-

tuples is formed. This set of 𝑛-tuples is the Latin hypercube
sample. Thus, for given values of𝑁 and 𝑛, there exist (𝑁!)𝑛−1
possible interval combinations for a LHS. A 10-run LHS for 3
normalized variables (range [0, 1]) with the uniform p.d.f. is
listed below. In this case, the equal probability spaced values
are 0, . . . , 0.8, 1.
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Figure 3: Example of fracking area [9].

4.1.1. Efficiency of LHSMC. Consider the case that 𝑥 denotes
an 𝑛-vectors random variable with p.d.f. 𝑓

𝑥
(𝑥) for 𝑥 ∈ 𝑆. Let

ℎ denote an objective function given by ℎ = 𝑞(𝑥). Consider
now the following class of estimators:

𝑇 =

1

𝑁

𝑁

∑

𝑖=1

𝑔 (𝐻
𝑖
) , (5)

where 𝑔(⋅) is an arbitrary known function and𝐻
𝑖
= 𝑞(𝑥

𝑖
). If

𝑔(ℎ) = ℎ, that is, if ℎ is a fixed point for 𝑔, then 𝑇 represents
an estimator of [ℎ]. If 𝑔(ℎ) = 𝐻

𝑖
, one obtains the 𝑟th sample

moment. By choosing 𝑔(ℎ) = 𝑢(𝑐−ℎ) (𝑢(⋅) is a step function),
one achieves the empirical distribution function of ℎ at the
point 𝑐. Now consider the following theorems.

Theorem 1. If 𝑥𝑖’s are generated by LHS method, then the
statistic 𝑇 in (5) is an unbiased estimator of the mean of (ℎ),
that is,

𝐸 [𝑇] = 𝐸 [𝑔 (ℎ)] . (6)

In this paper, we present a modified Latin hypercube
sample called the Monte Carlo hypercube sampling method
(MCHSM), and the method is presented in the next subsec-
tion.

4.2. Proposed Methodology (Combination of Monte Carlo
and Hypercube Sampling). It was demonstrated that the
hypercube sample method was more efficient and less time
consuming than the Monte Carlo simulation. However, this
Monte Carlo simulation still presents some worth. In this
section, we propose a methodology that combines both the
Monte Carlo simulation and the Latin hypercube sampling
as follows. Assuming that the uncertain parameter is 𝛽 and
ranges within [𝑎, 𝑏], then the first step in this method consists
of generating the sampling via the Monte Carlo sampling
within [𝑎, 𝑏]. The next step is to reduce the number of
sampling by calculating the mean, the variance, and the
standard deviation of the generated sample. These statistical
parameters can then further be used to construct a distri-
bution function, for instance, the normal distribution. With

constructed distribution in hand, one can further apply the
hypercube sample method to generate the final samples.

5. Applications

Iman and Conover [27] applied the LHS approach to cumu-
lative distribution function (c.d.f.) estimation of the three
computer models: (1) environmental radionuclide move-
ment, (2) multicomponent aerosol dynamics, and (3) salt
dissolution in bedded salt formations. They reported a good
agreement of c.d.f. estimations. In this section, the application
of Monte Carlo Latin hypercube sampling to groundwater
pollution will be discussed. In agreement with the real
world problem, we assume that unknown parameters in
(2), (3), and (4) are boundaries, that is, 𝑓 = 𝑐(𝛿

𝑖
), 𝛿
𝑖
∈

[𝑎
𝑖
, 𝑏
𝑖
], 𝑖 = 1, 2, . . . , 5. Then according to the Monte Carlo

Latin hypercube technique, we first generate sample via the
Monte Carlo sampling and this is presented below in the
histogram. We generated the sampling of apertures via the
Monte Carlo and we represent it in Figure 4 below, where 𝑥-
axis represents the possible values of apertures. In Figure 5, we
present the cumulative distribution function of apertures and
their respective probabilities. Finally, in Figure 6, we present
the Normal distribution of the generated apertures viaMonte
Carlo simulation.

According to the (MCHSM), we next generate a final
sample of apertures from the cumulative distribution func-
tion. In this sample, we have generated 26 apertures using the
cumulative function of the apertures generated via theMonte
Carlo simulation, to each aperture, and we have associated a
probability and the graphical representation is given below.
Figure 7 shows the selected apertures obtained from the
Latin hypercube sampling and of course their corresponding
probability.

Using (2), (3), and (4) and expressing the relationship
between velocity, transmissivity, and discharge rate, the val-
ues of the selected apertures can be used now to evaluate their
correspondent transmissivity, velocity seepage, and discharge
rate. The relations have been depicted in Figures 8, 9, and 10.
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Figure 4: Histogram of the generated samples via Monte Carlo
simulation of aperture (m).
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Figure 5: Cumulative distribution of the generated aperture (m) via
Monte Carlo simulation.
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Figure 6: Normal distribution of the generated apertures via Monte
Carlo simulation.
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Figure 7: Selected aperture via the Latin hypercube sampling and
its corresponding probability.
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Figure 8: Selected apertures and their associated transmissivity
(m2/day).

5.1. Cumulative Functions. The distribution for the transmis-
sivity, velocity seepage, and discharge rate is presented as
a cumulative distribution function (CDF) or as a comple-
mentary cumulative distribution function (CCDF), which is
simply oneminus the CDF. Hence, in our case the cumulative
distribution function can be approximated as follows:

prob (𝑓 (𝛼) > 𝐹 (𝛼)) =
26

∑

𝑖=1

𝛿
𝐹(𝛼)

(𝑓
𝑖
)

1

26

, (7)

where

𝛿
𝐹(𝛼)

(𝑓
𝑖
) = {

1 if𝑓
𝑖
> 𝐹 (𝛼) ,

0 if𝑓
𝑖
< 𝐹 (𝛼) .

(8)

And prob(𝑓(𝛼) > 𝐹(𝛼)) is the probability that a value larger
than 𝐹(𝛼)will occur.The distribution function approximated
above provides the most complete representation of the
uncertainty in the transmissivity, velocity, or discharge rate
that is derived from the distributions. Figures 11 and 12 show
the cumulative functions of the transmissivity, discharge rate,
and velocity.

Figures 13 and 14 show the normal distribution of the
selected discharge rate and transmissivity.
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Figure 9: Selected apertures and their associated velocity (m/day).
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Figure 10: Selected apertures and their associated discharge rate
(m3/day).
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Figure 11: Cumulative distribution function for selected discharge
rate (m3/day).
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Figure 12: Cumulative distribution function for selected transmis-
sivity (m2/day).

5.2. Variance of the Sampling and Repeatability Uncertainty

5.2.1. Variance of the Sample. The form of estimator of the
variance of 𝑐(𝑥, 𝑡) is given by

Var (𝑓) = 1

26 − 1

26

∑

𝑖=1

(𝑓
𝑖
− 𝑓)

2

. (9)

The goodness of an unbiased estimator can be measured
by its variance. The variance approximated here provides a
summary of this distribution but with the inevitable loss of
resolution that occurs when the information is contained in
20 numbers [28].

5.2.2. Repeatability Uncertainty. It is important noting that
repeatability uncertainty is equal to the standard deviation
of the sample data [29]. In the case under investigation, the
mathematical expression is given as follows:

𝑆 (𝑓) = √
1

10 − 1

10

∑

𝑖=1

(𝑓
𝑖
− 𝑓)

2

. (10)

5.3. Develop the Error Model. An error model is an algebraic
expression that defines the total error in the value of a
quantity in terms of all relevant measurement process or
component errors.The errormodel for the quantity𝑓(𝛼), that
can be transmissivity or discharge rate, can be calculated with
the formula below:

𝜀
𝑓(𝛼)

= 𝜀
𝐷
𝑟

𝑓
𝐷
𝑟

+ 𝜀
𝑞
𝑟

𝑓
𝑞
𝑟

+ 𝜀
𝑢
𝑟

𝑓
𝑢
𝑟

+ 𝜀
𝜆
𝑓
𝜆
+ 𝜀
𝛾
𝑓
𝛾
, (11)

where 𝜀
𝑓(𝛼)

is the error in the transmissivity or discharge
rate; 𝜀

𝐷
𝑟

is the error in measurement of viscosity of water;
𝜀
𝑞
𝑟

is the error in the measurement of aperture; 𝜀
𝑢
𝑟

is the
error in measurement of hydraulic conductivity; 𝜀

𝛾
is the

error in the measurement of gradient; 𝜀
𝜆
is the error in the

measurement of density of water; and 𝑐
𝐷
𝑟

, 𝑐
𝑞
𝑟

, 𝑐
𝑢
𝑟

, 𝑐
𝛾
, and 𝑐

𝜆
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Figure 13: Normal distribution for selected transmissivity (m2/day).
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are the first-order sensitivity coefficients that determine the
relative contribution of the errors in𝐷

𝑟
, 𝑞
𝑟
, 𝑢
𝑟
, 𝛾, and𝜆 to the

total error in 𝑓(𝛼). For this purpose, we chose the following
definition of error:

𝜀
𝛼
𝑖

=

maximum value −minimum value
maximum value × 100

, 𝑖 = 1, . . . , 5.

(12)

Then,

𝜀
𝐷
𝑟

= 0.008571428, 𝜀
𝑞
𝑟

= 0.008601823,

𝜀
𝑢
𝑟

= 0.007959183, 𝜀
𝛾
= 0.0091, 𝜀

𝜆
= 0.009.

(13)

Here, we also chose

𝛼
𝑖
=

1

5

5

∑

𝑘=1

𝛼
𝑖
𝑘

, 𝑖 = 1, . . . , 5. (14)

5.4. Uncertainty in Quantities or Variables. The uncertainty
in a quantity or variable is the square root of the variable’s
mean square error or variance. In mathematical terms, this is
expressed as follows:

𝑢
𝑐(𝛼,𝑥,𝑡)

= (𝜀
2

𝐷
𝑟

𝑐
2

𝐷
𝑟

(𝑥, 𝑡) + 𝜀
2

𝑞
𝑟

𝑐
2

𝑞
𝑟

(𝑥, 𝑡) + 𝜀
2

𝑢
𝑟

𝑐
2

𝑢
𝑟

(𝑥, 𝑡)

+ 𝜀
2

𝜆
𝑐
2

𝜆
(𝑥, 𝑡) + 𝜀

2

𝛾
𝑐
2

𝛾
(𝑥, 𝑡))

1/2

.

(15)

Providing that the correlation coefficients for the error in
𝐷
𝑟
, 𝑞
𝑟
, 𝑢
𝑟
, 𝛾, and 𝜆 are equal to zero.

5.5. Skewness and Kurtosis Tests. Descriptive statistics, such
as skewness and kurtosis, can provide relevant information
about the normality of the data sample. Skewness is a
measure of how symmetric the data distribution is about
its mean. Kurtosis is a measure of the “peakedness” of the
distribution [27–29]. In mathematical terms for the case
under investigation, these are expressed as follows: since
𝑓
1
(𝛼), . . . , 𝑓

26
(𝛼) are our sampled functions from a sample of

size 26, with mean 𝑓 and standard deviation var(𝑓), then the
sample coefficient of skewness 𝑐

3
and coefficient of kurtosis 𝑐

4

are given by [27–29]

𝑐
3
=

(1/ (26 − 1))∑
26

1
(𝑓
𝑖
− 𝑓)

3

var [(𝑓3)]
.

(16)

The following formula shows the response of the analytical
expression of the sample coefficient of skewness:

𝑐
4
=

(1/ (26 − 1))∑
26

1
(𝑓
𝑖
− 𝑓)

4

var (𝑓)4
. (17)

The above study is very important in groundwater study
because, to have a clear knowledge of aquifer parameters,
several measurements of each parameter must be done, and
once these parameters are known, they can be exposed
to aleatory uncertainty analysis. In order to point out the
possible influence or effect of aperture, in Figures 15 and 16,
we present the vertical parallel model with different aperture.

6. Effect of Uncertainty of Aperture on
the Advection Dispersion Equation

The consequence of a tracer test of sets of concentration
of data is obtained at one or more observation wells or at
pumping well at discrete time [30]. The analysis of data
starts out from a solution of the analytical or numerical
transport equation and determines a set of unknown trans-
port parameters appearing in the solution such that the
derivation between measured and calculated concentration
values becomes minimal in the least-squares sense [31]. The
choice of the solution together with the determined set of
parameters constitutes an interpretation of the tracer test
data.

The condition of permanent injection is rarely achieved
for in situ tracer due to the cost of large amount of tracers
and difficulty of monitoring a constant injection flow rate.
But it is the first approach to real pollution plumes which
are generally detected only after a long period of inflow and
subsequent transport under natural aquifer conditions [31].
The corresponding solution is obtained by convolution of
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Figure 15: Vertical parallelmodel platemodel for different apertures
for a period of 14 years.

the Dirac-input solution. Options for constant dispersivities
in flow time are given as follows:

𝐶 (𝑥, 𝑦, 𝑡)

=

𝑞𝑐
0

4𝜋𝑟𝑛V𝛼
𝐿
𝛼
𝑇

× ∫

𝑡

0

1

𝜏

exp[−(𝑥 − V𝜏)2

4V𝜏𝛼
𝐿

−

𝑦
2

4V𝜏𝛼
𝑇

] exp (−𝜆𝜏) 𝑑𝜏.

(18)

𝑞 is the injection rate of the fluid, 𝑐
0
is the concentration of

injected tracer fluid, 𝑑 is the thickness of the aquifer, 𝑛 is the
effective porosity, V is the velocity of the fluid, 𝛼

𝐿
, 𝛼
𝑇
are the

longitudinal dispersivities, and 𝜆 is the radioactive decay.
However in the case under investigation, we are not

dealing with the radioactive pollution meaning in this case
𝜆 = 0; also we consider only 𝑥-direction; then the above
equation can be reduced to

𝐶 (𝑥, 𝑡) =

𝑞𝑐
0

4𝜋𝑟𝑛√𝜋𝑡𝛼𝐿

exp[−(𝑥 − V𝑡)2

4𝑡𝛼
𝐿

] . (19)

The above equation will be called the one-dimensional
uniform flow with permanent injection. The one-
dimensional solution equation (19) we then used to investi-
gate the effect of uncertainties of the selected injection rate
of the tracer fluid is presented earlier in the previous section.

In order to view the numerical results of the above
equation, we have made use of the selected 26-injection rate
presented earlier as corresponding injection rate from the
selected apertures. In addition to this, we chose a typical
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Figure 16:Vertical parallelmodel platemodel for different apertures
for a period of 47.5 years. The upward movement of water together
with pollution could be very rapid in the case where there aperture
size is very large (e.g; >1mm) and very slow for small apertures
(converging to typical matrix diameter void opening).
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Figure 17: Influence of the aperture size on the value of the
concentration for a fixed distance. Time in days.

effective porosity to be 0.05, the longitudinal dispersivities to
be 75, the ratio of the borehole to be 0.08m, the velocity to
be 5.1m/day, and finally the initial concentration to be 100
percent. The graphical representation is depicted in Figure 17
for a fixed distance of 5m. FromFigure 17, it is very important
to realize that the size of the aperture plays an important role
while dealing with the investigation of the plume. Each size
of aperture gives different value of the injection rate and this
value of injection gives a different plume; this is depicted in
Figure 17.
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Figure 18: Numerical simulation of the plume as function of space
(m) and time (day).
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Figure 19: Numerical simulation of the plume as function of time
(day) and space (m).
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Figure 20: Numerical simulation of the plume as function of time
(day) and space (m).

We present in Figures 18, 19, and 20 some contour plots
of some concentrations as function of time and space. This is
depicted in Figures 18, 19, and 20.

7. Conclusion

In the recent decade, the idea of fracking has become more
and more pronounced in the developed countries. The real
motive behind this fracking is the extraction of shale gas
which is one of themost useful natural gasses. In our study,we
used the mathematical equations describing the relationship
between the apertures and the transmissivity, the seepage
velocity, and the discharge rate, respectively, to investigate
the influence of different apertures in the migration of the
pollution through the geological formation called aquifers.
To achieve this, we presented a relatively new sampling
method, which combines both theMonte Carlo and the Latin
hypercube sampling. The method was used to investigate
possible risks and uncertainties associated with the process of
fracking to extract shale’s gas especially in the case of Karoo
system in South Africa. The study reveals that, in the case of
the Karoo, the idea of fracking will be successful if and only
if a well and the entire fracked reservoir are plugged with, for
example, cement, otherwise many aquifers in the Karoo will
be polluted.
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