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We demonstrate the efficiency of reproducing kernel Hilbert space method on the seventh-order boundary value problems
satisfying boundary conditions.These results have been compared with the results that are obtained by variational iterationmethod
(VIM), homotopy perturbationmethod (HPM), Adomian decompositionmethod (ADM), variation of parametersmethod (VPM),
and homotopy analysis method (HAM). Obtained results show that our method is very effective.

1. Introduction

Consider the seventh-order boundary value problem [1–5]:

𝑢
(7)
(𝑥) = 𝑁 (𝑥, 𝑢 (𝑥)) , 0 ≤ 𝑥 ≤ 1, (1)

with boundary conditions

𝑢
(𝑖)
(0) = 𝐴 𝑖, 𝑖 = 0, 1, 2, 3,

𝑢
(𝑗)
(1) = 𝐵𝑗, 𝑗 = 0, 1, 2.

(2)

The analytical solution of seventh-order differential equa-
tions are rarely exists in literature. However, there are various
numerical methods for the solution of (1)-(2).The aim of this
work is to apply reproducing kernel Hilbert space method
(RKHSM) [6–28] to solve the seventh-order boundary value
problems. Numerical results of the seventh-order boundary
value problems have been obtained by this method in our
work. This study shows that the proposed method can be
considered as an alternative technique for solving linear and
nonlinear problems in science and engineering [29–31].

The paper is organized as follows. Section 2 introduces
several reproducing kernel spaces. We provide the main
results and the exact and approximate solutions of (1)-(2)
in Section 3. We have proved that the approximate solution

converges to the exact solution uniformly. Some numerical
experiments are illustrated in Section 4. There are some
conclusions in the last section.

2. Reproducing Kernel Spaces

In this section, we define some useful reproducing kernel
spaces.

Definition 1. We define the space𝐻12 [0, 1] by

𝐻
1

2 [0, 1] = {𝑓 | 𝑓 is absolutely continuous in [0, 1] ,

𝑓

(𝑥) ∈ 𝐿

2
[0, 1] , 𝑥 ∈ [0, 1]} .

(3)

The inner product and the norm in 𝐻
1
2 [0, 1] are defined,

respectively, by

⟨𝑓, 𝑔⟩
𝐻1
2

= 𝑓 (0) 𝑔 (0) + ∫

1

0

𝑓

(𝑥) 𝑔

(𝑥) 𝑑𝑥,

𝑢, 𝑓 ∈ 𝐻
1

2 [0, 1] ,





𝑓



𝐻1
2

= √⟨𝑓, 𝑓⟩
𝐻1
2

, 𝑓 ∈ 𝐻
1

2 [0, 1] .

(4)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 745287, 9 pages
http://dx.doi.org/10.1155/2014/745287

http://dx.doi.org/10.1155/2014/745287


2 Abstract and Applied Analysis

The space 𝐻
1
2 [0, 1] is a reproducing kernel space and its

reproducing kernel function 𝑟𝑥 is given by

𝑟𝑥 (𝑦) = {

1 + 𝑥, 𝑥 ≤ 𝑦,

1 + 𝑦, 𝑥 > 𝑦.

(5)

Definition 2. We define the space 𝑇82 [0, 1] by the following:

𝑇
8

2 [0, 1] = {𝑓 | 𝑓, 𝑓

, 𝑓

, 𝑓
(3)
, 𝑓
(4)
, 𝑓
(5)
, 𝑓
(6)
, 𝑓
(7)

are absolutely continuous in [0, 1] ,

𝑓
(8)

∈ 𝐿
2
[0, 1] , 𝑥 ∈ [0, 1] ,

𝑓 (0) = 𝑓

(0) = 𝑓


(0) = 𝑓

(3)
(0) = 𝑓 (1)

= 𝑓

(1) = 𝑓


(1) = 0} .

(6)

The inner product and the norm in 𝑇
8
2 [0, 1] are defined,

respectively, by

⟨𝑓, 𝑔⟩
𝑇8
2

=

7

∑

𝑖=0

𝑓
(𝑖)
(0) 𝑔
(𝑖)
(0)

+ ∫

1

0

𝑓
(8)
(𝑥) 𝑔
(8)
(𝑥) 𝑑𝑥, 𝑓, 𝑔 ∈ 𝑇

8

2 [0, 1] ,





𝑓



𝑇8
2

= √⟨𝑓, 𝑓⟩
𝑇8
2

, 𝑓 ∈ 𝑇
8

2 [0, 1] .

(7)

The space 𝑇82 [0, 1] is a reproducing kernel space; that is, for
each fixed 𝑦 ∈ [0, 1] and any 𝑓 ∈ 𝑇

8
2 [0, 1], there exists a

function 𝑅𝑦 such that

𝑓 = ⟨𝑓, 𝑅𝑦⟩𝑇8
2

. (8)

Theorem 3. The space 𝑇82 [0, 1] is a reproducing kernel Hilbert
space whose reproducing kernel function 𝑅𝑦 is given by

𝑅𝑦 (𝑥) =

{
{
{
{
{

{
{
{
{
{

{

16

∑

𝑖=1

𝑐𝑖 (𝑦) 𝑥
𝑖−1
, 𝑥 ≤ 𝑦,

16

∑

𝑖=1

𝑑𝑖 (𝑦) 𝑥
𝑖−1
, 𝑥 > 𝑦,

(9)

where 𝑐𝑖(𝑦) and 𝑑𝑖(𝑦) can be obtained by Maple 16 and proof
of Theorem 3 is given in Appendix.

3. Exact and Approximate Solutions of (1)-(2)
in 𝑇
8
2 [0, 1]

The solution of (1)-(2) is given in the reproducing kernel
space 𝑇82 [0, 1]. The linear operator

𝐿 : 𝑇
8

2 [0, 1] → 𝐻
1

2 [0, 1]
(10)

is bounded. After homogenizing the boundary conditions, we
obtain

𝐿V = 𝑀(𝑥, V (𝑥)) , 0 ≤ 𝑥 ≤ 1,

V(𝑖) (0) = 0, 𝑖 = 0, 1, 2, 3,

V(𝑗) (1) = 0, 𝑗 = 0, 1, 2.

(11)

We choose a countable dense subset 𝑃 = {𝑥𝑖}
∞
𝑖=1 in [0, 1] and

let

Ψ𝑥 (𝑦) = 𝐿
∗
𝑟𝑥 (𝑦) , (12)

where 𝐿∗ is conjugate operator of 𝐿 and 𝑟𝑥 is given by (5).
Furthermore, for simplicity let Ψ𝑖(𝑥) = Ψ𝑥

𝑖

(𝑥); namely,

Ψ𝑖 (𝑥)
def
= Ψ𝑥

𝑖
(𝑥) = 𝐿

∗
𝑟𝑥
𝑖
(𝑥) . (13)

Now one can deduce the following lemmas.

Lemma 4. {Ψ𝑖(𝑥)}
∞
𝑖=1 is complete system of 𝑇82 [0, 1].

Proof. For 𝑓 ∈ 𝑇
8
2 [0, 1], let ⟨𝑓, Ψ𝑖⟩ = 0 (𝑖 = 1, 2, . . .); that is,

⟨𝑓, 𝐿
∗
𝑟𝑥
𝑖

⟩ = (𝐿𝑓) (𝑥𝑖) = 0. (14)

Note that {𝑥𝑖}
∞
𝑖=1 is the dense set in [0, 1]; therefore, (𝐿𝑓)(𝑥) =

0. It follows that 𝑓(𝑥) = 0 from the existence of 𝐿−1.

Lemma 5. The following formula holds:

Ψ𝑖 (𝑥) = (𝐿]𝑅𝑥 (])) (𝑥𝑖) , (15)

where the subscript ] of operator 𝐿] indicates that the operator
𝐿 applies to function of ].

Proof. Consider the following:

Ψ𝑖 (𝑥) = ⟨Ψ𝑖 (𝜉) , 𝑅𝑥 (𝜉)⟩𝑇8
2

= ⟨𝐿
∗
𝑟𝑥
𝑖
(𝜉) , 𝑅𝑥 (𝜉)⟩𝑇8

2

= ⟨(𝑟𝑥
𝑖

) (𝜉) , (𝐿]𝑅𝑥 (])) (𝜉)⟩𝐻1
2

= (𝐿]𝑅𝑥 (])) (𝑥𝑖) .

(16)

This completes the proof.

Remark 6. Theorthonormal system {Ψ𝑖(𝑥)}
∞

𝑖=1 of𝑇
8
2 [0, 1] can

be derived fromGram-Schmidt orthogonalization process of
{Ψ𝑖(𝑥)}

∞
𝑖=1,

Ψ𝑖 (𝑥) =

𝑖

∑

𝑘=1

𝛽𝑖𝑘Ψ𝑘 (𝑥) , (𝛽𝑖𝑖 > 0, 𝑖 = 1, 2, . . .) , (17)

where 𝛽𝑖𝑘 are orthogonal coefficients.

In the following, we will give the representation of the
exact solution of (11) in the reproducing kernel space𝑇82 [0, 1].
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Theorem 7. If 𝑢 is the exact solution of (11), then

𝑢 =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝑀(𝑥𝑘, 𝑢 (𝑥𝑘)) Ψ𝑖 (𝑥) , (18)

where {𝑥𝑖}
∞
𝑖=1 is a dense set in [0, 1].

Proof. From the (17) and uniqueness of solution of (11), we
have

𝑢 =

∞

∑

𝑖=1

⟨𝑢, Ψ𝑖⟩𝑇8
2

Ψ𝑖 =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘⟨𝑢, 𝐿
∗
𝑟𝑥
𝑘

⟩
𝑇8
2

Ψ𝑖

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘⟨𝐿𝑢, 𝑟𝑥
𝑘

⟩
𝐻1
2

Ψ𝑖 =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘⟨𝑀, 𝑟𝑥
𝑘

⟩
𝐻1
2

Ψ𝑖

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝑀(𝑥𝑘, 𝑢 (𝑥𝑘)) Ψ𝑖 (𝑥) .

(19)

This completes the proof.

Now the approximate solution 𝑢𝑛 can be obtained by
truncating the 𝑛-term of the exact solution 𝑢 as

𝑢𝑛 =

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝑀(𝑥𝑘, 𝑢 (𝑥𝑘)) Ψ𝑖 (𝑥) . (20)

Lemma 8. Assume 𝑢 is the solution of (11) and 𝑟𝑛 is the error
between the approximate solution 𝑢𝑛 and the exact solution 𝑢.
Then the error sequence 𝑟𝑛 is monotone decreasing in the sense
of ‖ ⋅ ‖𝑇8

2

and ‖𝑟𝑛(𝑥)‖𝑇8
2

→ 0.

Proof. From (18) and (20), we obtain





𝑢 − 𝑢𝑛




𝑇8
2

=












∞

∑

𝑖=𝑛+1

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝑀(𝑥𝑘, 𝑢 (𝑥𝑘)) Ψ𝑖 (𝑥)










𝑇8
2

. (21)

Thus




𝑢 − 𝑢𝑛




𝑇8
2

→ 0, 𝑛 → ∞. (22)

In addition





𝑢 − 𝑢𝑛






2

𝑇8
2

=












∞

∑

𝑖=𝑛+1

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝑀(𝑥𝑘, 𝑢 (𝑥𝑘)) Ψ𝑖 (𝑥)












2

𝑇8
2

=

∞

∑

𝑖=𝑛+1

(

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝑀(𝑥𝑘, 𝑢 (𝑥𝑘)) Ψ𝑖(𝑥)𝑇8
2

)

2

.

(23)

Then, ‖𝑢 − 𝑢𝑛‖𝑇8
2

is monotonically decreasing in 𝑛.

Remark 9. The seventh-order boundary value problems have
come out in construction engineering, beam column theory,
and chemical reactions. Therefore solutions of the seventh-
order boundary value problems are very important in the
literature.The reproducing kernel function for seventh-order
boundary value problem has not been calculated till now.

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

RKHSM
AS

x

u
(
x
)

Figure 1: Comparison of analytical solution and RKHSM solution
for Example 10.
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Figure 2: Comparison of absolute error of VIM,HPM, andRKHSM
for Example 10.

All computations are performed by Maple 16. The RKHSM
does not require discretization of the variables, that is, time
and space, and it is not affected by computational round-off
errors and one is not faced with necessity of large computer
memory and time. The accuracy of the RKHSM for the
seventh-order boundary value problems is controllable and
absolute errors are small with present choice of 𝑥 (see Tables
1–6 and Figures 1–6). The obtained numerical results justify
the advantage of this methodology. We gave transformations
to homogenize the boundary conditions for all examples.
Additionally, we improved our programme to find numerical
results. As shown in Tables 1, 3, and 5 all the numerical results
have been found in very short time.

4. Numerical Results

In this section, three numerical examples are provided to
show the accuracy of the present method.
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0.0 0.2 0.4 0.6 0.8 1.0

RKHSM
AS

x

u
(
x
)

0.0

0.1

0.2

0.3

0.4

Figure 3: Comparison of analytical solution and RKHSM solution
for Example 11.
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Figure 4: Comparison of absolute error of ADM, VPM, HAM, and
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Figure 5: Comparison of analytical solution and RKHSM solution
for Example 12.
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Figure 6: Comparison of absolute error of ADM, HAM, and
RKHSM for Example 12.

Example 10. We first consider the seventh-order nonlinear
boundary value problem:

𝑢
(7)
(𝑥) = 𝑒

−𝑥
𝑢
2
(𝑥) , 0 < 𝑥 < 1,

𝑢 (0) = 𝑢

(0) = 𝑢


(0) = 𝑢

(3)
(0) = 1,

𝑢 (1) = 𝑢

(1) = 𝑢


(1) = 𝑒.

(24)

The exact solution of (24) is given as [1]

𝑢 (𝑥) = 𝑒
𝑥
. (25)

After homogenizing the boundary conditions of (24), we
obtain

V(7) (𝑥) = 𝑒
−𝑥
[V (𝑥) + 1 + 𝑥 +

𝑥
2

2

+

𝑥
3

6

+ 𝑥
4
(

21

2

𝑒 −

57

2

)

+𝑥
5
(

87

2

− 16𝑒) + 𝑥
6
(

13

2

𝑒 −

53

3

) ]

2

,

0 ≤ 𝑥 ≤ 1,

V (0) = V (0) = V (0) = V(3) (0) = 0,

V (1) = V (1) = V (1) = 0,

(26)

where we used the following transformation:

V (𝑥) = 𝑢 (𝑥) − 1 − 𝑥 −

𝑥
2

2

−

𝑥
3

6

− 𝑥
4
(

21

2

𝑒 −

57

2

)

− 𝑥
5
(

87

2

− 16𝑒) − 𝑥
6
(

13

2

𝑒 −

53

3

) .

(27)

Using the RKHSM for this example we obtain Tables 1-2 and
Figures 1-2.
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Example 11. We now consider the seventh-order linear BVP

𝑢
(7)
(𝑥) = −𝑢 (𝑥) − 𝑒

𝑥
(35 + 12𝑥 + 2𝑥

2
) , 0 ≤ 𝑥 ≤ 1,

𝑢 (0) = 0, 𝑢

(0) = 1,

𝑢

(0) = 0, 𝑢

(3)
(0) = −3,

𝑢 (1) = 0, 𝑢

(1) = −𝑒, 𝑢


(1) = −4𝑒.

(28)

The exact solution of (28) is given as [3]

𝑢 (𝑥) = 𝑥 (1 − 𝑥) 𝑒
𝑥
. (29)

After homogenizing the boundary conditions of (28), we
get

V(7) (𝑥) + V (𝑥) = − 𝑒
𝑥
(35 + 12𝑥 + 2𝑥

2
) − 𝑥

+

𝑥
3

2

− 𝑥
4
(3𝑒 −

17

2

) − 𝑥
5
(

27

2

− 5𝑒)

− 𝑥
6
(2𝑒 −

11

2

) , 0 ≤ 𝑥 ≤ 1,

V (0) = V (0) = V (0) = V(3) (0) = 0,

V (1) = V (1) = V (1) = 0,

(30)

where, we used the following transformation

V (𝑥) = 𝑢 (𝑥) − 𝑥 + 𝑥

3

2 − 𝑥
4
(3𝑒 −

17

2

)

− 𝑥
5
(

27

2

− 5𝑒) − 𝑥
6
(2𝑒 −

11

2

) .

(31)

Using RKHSM for this example we obtain Tables 3-4 and
Figures 3-4.

Example 12. Consider the following seventh-order nonlinear
BVP

𝑢
(7)
(𝑥) = 𝑢 (𝑥) 𝑢


(𝑥) + 𝑒

−2𝑥
(2 + 𝑒

𝑥
(𝑥 − 8) − 3𝑥 + 𝑥

2
) ,

0 ≤ 𝑥 ≤ 1,

𝑢 (0) = 1, 𝑢

(0) = −2,

𝑢

(0) = 3, 𝑢

(3)
(0) = −4,

𝑢 (1) = 0, 𝑢

(1) =

−1

𝑒

, 𝑢

(1) =

2

𝑒

.

(32)

The exact solution of (32) is given as [3]

𝑢 (𝑥) = (1 − 𝑥) 𝑒
−𝑥
. (33)

After homogenizing the boundary conditions of (32), we
have

V(7) (𝑥) − (−2 + 3𝑥 − 2𝑥2 + 4𝑥3 (
6

𝑒

− 2) + 5𝑥
4
(4 −

11

𝑒

) + 6𝑥
5
(

5

𝑒

−

11

6

)) V (𝑥)

− (1 − 2𝑥 +

3

2

𝑥
2
−

2

3

𝑥
3
+ 𝑥
4
(

6

𝑒

− 2) + 𝑥
5
(4 −

11

𝑒

) + 𝑥
6
(

5

𝑒

−

11

6

)) V (𝑥)

=
[

[

[

(1 − 2𝑥 +

3

2

𝑥
2
−

2

3

𝑥
3
+ 𝑥
4
(

6

𝑒

− 2) + 𝑥
5
(4 −

11

𝑒

) + 𝑥
6
(

5

𝑒

−

11

6

))

(−2 + 3𝑥 − 2𝑥
2
+ 4𝑥
3
(

6

𝑒

− 2) + 5𝑥
4
(4 −

11

𝑒

) + 6𝑥
5
(

5

𝑒

−

11

6

))

]

]

]

+ V (𝑥) V (𝑥) + 𝑒−2𝑥 (2 + 𝑒𝑥 (𝑥 − 8) − 3𝑥 + 𝑥2) , 0 ≤ 𝑥 ≤ 1,

V (0) = V (0) = V (0) = V(3) (0) = 0,

V (1) = V (1) = V (1) = 0,

(34)

where we used the following transformation:

𝑢 (𝑥) = V (𝑥) + 1 − 2𝑥 +
3

2

𝑥
2
−

2

3

𝑥
3

+ 𝑥
4
(

6

𝑒

− 2) + 𝑥
5
(4 −

11

𝑒

) + 𝑥
6
(

5

𝑒

−

11

6

) .

(35)

Using RKHSM for this example we obtain Tables 5-6 and
Figures 1–6.

Remark 13. Using ourmethodwe chose 36 points on [0, 1]. In
Tables 1–6, we computed the absolute errors |𝑢(𝑥, 𝑡)−𝑢𝑛(𝑥, 𝑡)|
at the points {(𝑥𝑖) : 𝑥𝑖 = 𝑖, 𝑖 = 0.0, 0.1, . . . , 1.0}. The RKHSM
tested on three problems, one linear and two nonlinear. A
comparison with VIM [1], HPM [2], ADM [3], VPM [4], and
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Table 1: Numerical results for Example 10 (time (s): 1.645).

𝑥 Exact solution Approximate solution Absolute error Relative error
0.0 1.0 1.0 0.0 0.0
0.1 1.1051709180756476248 1.1051709180727538232 2.893 × 10

−12
2.618 × 10

−12

0.2 1.2214027581601698339 1.2214027581330885422 2.708 × 10
−11

2.217 × 10
−11

0.3 1.3498588075760031040 1.3498588075089984856 6.700 × 10
−11

4.963 × 10
−11

0.4 1.4918246976412703178 1.4918246975765762858 6.469 × 10
−11

4.336 × 10
−11

0.5 1.6487212707001281468 1.6487212707474912552 4.736 × 10
−11

2.872 × 10
−11

0.6 1.8221188003905089749 1.8221188006600701498 2.695 × 10
−10

1.479 × 10
−10

0.7 2.0137527074704765216 2.0137527079512967073 4.808 × 10
−10

2.387 × 10
−10

0.8 2.2255409284924676046 2.2255409289689961077 4.765 × 10
−10

2.141 × 10
−10

0.9 2.4596031111569496638 2.4596031113394646558 1.825 × 10
−10

7.420 × 10
−11

1.0 2.7182818284590452354 2.7182818284590452354 0.0 0.0

Table 2: Comparison of absolute error of HPM, VIM, and RKHSM for Example 10.

𝑥 Absolute error [2] Absolute error [1] Absolute error [RKHSM]
0.0 0.0 0.0 0.0
0.1 2.15 × 10

−8
3.8478 × 10

−12
2.8938016 × 10

−12

0.2 2.45 × 10
−7

1.2366 × 10
−10

2.70812917 × 10
−11

0.3 8.42 × 10
−7

2.7788 × 10
−10

6.70046184 × 10
−11

0.4 1.69 × 10
−6

7.5864 × 10
−10

6.46940320 × 10
−11

0.5 2.42 × 10
−6

1.1571 × 10
−9

4.73631084 × 10
−11

0.6 2.62 × 10
−6

1.3132 × 10
−9

2.695611749 × 10
−10

0.7 2.06 × 10
−6

1.2228 × 10
−9

4.808201857 × 10
−10

0.8 1.05 × 10
−6

6.6023 × 10
−10

4.765285031 × 10
−10

0.9 2.14 × 10
−7

1.6534 × 10
−10

1.825149920 × 10
−10

1.0 4.44 × 10
−16

1.3265 × 10
−11

0.0

HAM [5] was made and it was seen that the present method
yields good results (see Tables 1–6 and Figures 1–6).

5. Conclusion

In this paper, we introduced an algorithm for solving
the seventh-order problem with boundary conditions. For
illustration purposes, we chose three examples which were
selected to show the computational accuracy. It may be
concluded that the RKHSM is very powerful and efficient
in finding exact solution for a wide class of boundary value
problems. The approximate solution obtained by the present
method is uniformly convergent. Clearly, the series solution
methodology can be applied to much more complicated
nonlinear differential equations and boundary value prob-
lems. However, if the problem becomes nonlinear, then the
RKHSM does not require discretization or perturbation and
it does not make closure approximation. Results of numerical
examples show that the present method is an accurate and
reliable analytical method for the seventh-order boundary
value problem.

Appendix

Proof of Theorem 3. Let 𝑓 ∈ 𝑇
8
2 [0, 1]. By Definition 2 we have

⟨𝑓, 𝑅𝑦⟩𝑇8
2

=

7

∑

𝑖=0

𝑓
(𝑖)
(0) 𝑅
(𝑖)

𝑦 (0) + ∫

1

0

𝑓
(8)
(𝑥) 𝑅
(8)

𝑦 (𝑥) 𝑑𝑥.

(A.1)

Through several integrations by parts for (A.1) we have

⟨𝑓, 𝑅𝑦⟩𝑇8
2

=

7

∑

𝑖=0

𝑢
(𝑖)
(0) [𝑅

(𝑖)

𝑦 (0) − (−1)
(7−𝑖)

𝑅
(15−𝑖)

𝑦 (0)]

+

7

∑

𝑖=0

(−1)
(7−𝑖)

𝑢
(𝑖)
(1) 𝑅
(15−𝑖)

𝑦 (1)

+ ∫

1

0

𝑢 (𝑥) 𝑅
(16)

𝑦 (𝑥) 𝑑𝑥.

(A.2)

Note that property of the reproducing kernel

⟨𝑢, 𝑅𝑦⟩𝑇8
2

= 𝑢 (𝑦) . (A.3)
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Table 3: Numerical results for Example 11 (time (s): 3.123).

𝑥 Exact solution Approximate solution Absolute error
0.0 0.0 0.0 0.0
0.1 0.099465382626808286232 0.099465382626808285898 3.34𝐸 − 19

0.2 0.19542444130562717342 0.19542444130562716451 8.91𝐸 − 18

0.3 0.28347034959096065184 0.28347034959096048526 1.6658𝐸 − 16

0.4 0.35803792743390487627 0.35803792743390483786 3.841𝐸 − 17

0.5 0.41218031767503203670 0.41218031767503200826 2.844𝐸 − 17

0.6 0.43730851209372215398 0.43730851209372205668 9.730𝐸 − 17

0.7 0.42288806856880006954 0.42288806856879998460 8.494𝐸 − 17

0.8 0.35608654855879481674 0.35608654855879479280 2.394𝐸 − 17

0.9 0.22136428000412546974 0.22136428000412540564 6.410𝐸 − 17

1.0 0.0 1.24053𝐸 − 20 1.24053𝐸 − 20

Table 4: Comparison of absolute error of VPM, ADM, HAM, and RKHSM.

𝑥 Absolute error [4] Absolute error [3] Absolute error [5] Absolute error [RKHSM]
0.0 0.0 0.0 0.0 0.0
0.1 8.55607𝐸 − 13 1.23082𝐸 − 13 5.39291𝐸 − 14 3.34𝐸 − 19

0.2 9.94041𝐸 − 12 3.7792𝐸 − 13 4.85167𝐸 − 14 8.91𝐸 − 18

0.3 3.52244𝐸 − 11 2.37421𝐸 − 13 3.92464𝐸 − 14 1.6658𝐸 − 16

0.4 7.3224𝐸 − 10 3.62099𝐸 − 13 2.21489𝐸 − 14 3.841𝐸 − 17

0.5 1.08769𝐸 − 10 9.39249𝐸 − 14 3.84137𝐸 − 14 2.844𝐸 − 17

0.6 1.29035𝐸 − 10 4.82947𝐸 − 13 2.10831𝐸 − 13 9.730𝐸 − 17

0.7 1.51466𝐸 − 10 1.09135𝐸 − 13 1.99785𝐸 − 13 8.494𝐸 − 17

0.8 2.717974𝐸 − 10 1.64868𝐸 − 14 3.29736𝐸 − 13 2.394𝐸 − 17

0.9 7.48179𝐸 − 10 7.25975𝐸 − 13 1.77622𝐸 − 12 6.410𝐸 − 17

1.0 2.1729𝐸 − 09 4.54747𝐸 − 13 1.65159𝐸 − 12 1.24053𝐸 − 20

Now, if

𝑅
(4)

𝑦 (0) + 𝑅
(11)

𝑦 (0) = 0,

𝑅
(5)

𝑦 (0) − 𝑅
(10)

𝑦 (0) = 0,

𝑅
(6)

𝑦 (0) + 𝑅
(9)

𝑦 (0) = 0,

𝑅
(7)

𝑦 (0) − 𝑅
(8)

𝑦 (0) = 0,

𝑅
(8)

𝑦 (1) = 0,

𝑅
(9)

𝑦 (1) = 0,

𝑅
(10)

𝑦 (1) = 0,

𝑅
(11)

𝑦 (1) = 0,

𝑅
(12)

𝑦 (1) = 0,

(A.4)

then (A.2) implies that

𝑅
(16)

𝑦 (𝑥) = 𝛿 (𝑥 − 𝑦) , (A.5)

when 𝑥 ̸= 𝑦, then

𝑅
(16)

𝑦 (𝑥) = 0, (A.6)

and therefore

𝑅𝑦 (𝑥) =

{
{
{
{
{

{
{
{
{
{

{

16

∑

𝑖=1

𝑐𝑖 (𝑦) 𝑥
𝑖−1
, 𝑥 ≤ 𝑦,

16

∑

𝑖=1

𝑑𝑖 (𝑦) 𝑥
𝑖−1
, 𝑥 > 𝑦.

(A.7)

Since

𝑅
(16)

𝑦 (𝑥) = 𝛿 (𝑥 − 𝑦) , (A.8)

we have

𝑅
(𝑘)

𝑦+
(𝑦) = 𝑅

(𝑘)

𝑦−
(𝑦) , 𝑘 = 0, . . . , 14,

𝑅
(15)

𝑦+
(𝑦) − 𝑅

(15)

𝑦−
(𝑦) = 1.

(A.9)

Since 𝑅𝑦 ∈ 𝑇
8
2 [0, 1], it follows that

𝑅𝑦 (0) = 𝑅


𝑦 (0) = 𝑅


𝑦 (0) = 𝑅
(3)

𝑦 (0) = 𝑅𝑦 (1)

= 𝑅


𝑦 (1) = 𝑅


𝑦 (1) = 0.

(A.10)

From (A.4)–(A.10), the unknown coefficients 𝑐𝑖(𝑦) and
𝑑𝑖(𝑦) (𝑖 = 1, 2, . . . , 16) can be obtained. This completes the
proof.
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Table 5: Numerical results for Example 12 (time (s): 5.234).

𝑥 Exact solution Approximate solution Absolute error
0.0 1.0 1.0 0.0
0.1 0.81435367623236361584 0.81435367623236697064 3.35480 × 10

−15

0.2 0.65498460246238548694 0.65498460246237032242 1.516452 × 10
−14

0.3 0.51857275447720250625 0.51857275447711724998 8.525627 × 10
−14

0.4 0.40219202762138358044 0.40219202762145521926 7.163882 × 10
−14

0.5 0.30326532985631671180 0.30326532985631655134 1.6046 × 10
−16

0.6 0.21952465443761057305 0.21952465443760682026 3.75279 × 10
−15

0.7 0.14897559113742285441 0.14897559113743255406 9.69965 × 10
−15

0.8 0.089865792823444318286 0.089865792823449635588 5.317302 × 10
−15

0.9 0.040656965974059911188 0.040656965974059021714 8.89474 × 10
−16

1.0 0.0 2.708848 × 10
−22

2.708848 × 10
−22

Table 6: Comparison of absolute error of ADM, HAM, and RKHSM.

𝑥 Absolute error [3] Absolute error [5] Absolute error [RKHSM]
0.0 1.67932𝐸 − 12 0.0 0.0

0.1 2.96696𝐸 − 12 4.15223𝐸 − 14 3.3548𝐸 − 15

0.2 1.26055𝐸 − 12 4.18332𝐸 − 13 1.516452𝐸 − 14

0.3 2.10898𝐸 − 12 1.21736𝐸 − 12 8.525627𝐸 − 14

0.4 6.68926𝐸 − 12 1.95471𝐸 − 12 7.163882𝐸 − 14

0.5 7.21923𝐸 − 12 2.03731𝐸 − 12 1.6046𝐸 − 16

0.6 9.75339𝐸 − 12 1.37063𝐸 − 12 3.75279𝐸 − 15

0.7 2.19552𝐸 − 12 4.66988𝐸 − 13 9.69965𝐸 − 15

0.8 4.24917𝐸 − 12 4.8378𝐸 − 14 5.317302𝐸 − 15

0.9 2.27311𝐸 − 13 6.00561𝐸 − 14 8.89474𝐸 − 16

1.0 4.42298𝐸 − 12 1.29172𝐸 − 15 2.708848𝐸 − 22
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the reproducing Kernel Hilbert space method to solve MHD
Jeffery-Hamel flows problem in nonparallel walls,”Abstract and
Applied Analysis, vol. 2013, Article ID 239454, 12 pages, 2013.

[25] M. Inc, A. Akgül, and A. Kiliçman, “A novel method for
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