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By employing known Guo-Krasnoselskii fixed point theorem, we investigate the eigenvalue interval for the existence and
nonexistence of at least one positive solution of nonlinear fractional differential equation with integral boundary conditions.

1. Introduction

Fractional calculus has been receiving more and more atten-
tion in view of its extensive applications in the mathematical
modelling coming from physical and other applied sciences;
see books [1–5]. Recently, the existence of solutions (or
positive solutions) of nonlinear fractional differential equa-
tion has been investigated in many papers (see [6–28] and
references cited therein). However, in terms of the eigenvalue
problem of fractional differential equation, there are only a
few results [29–33].

To the best of author’s knowledge, no paper has con-
sidered the eigenvalue problem of the following nonlinear
fractional differential equation with integral boundary con-
ditions:

𝐶
𝐷
𝛼
𝑢 (𝑡) + 𝜆𝑓 (𝑡, 𝑢 (𝑡)) = 0,

0 < 𝑡 < 1, 𝑛 < 𝛼 ≤ 𝑛 + 1, 𝑛 ≥ 2, 𝑛 ∈ 𝑁.

𝑢 (0) = 𝑢
󸀠󸀠
(0) = 𝑢

󸀠󸀠󸀠
(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛)
(0) = 0,

𝑢 (1) = 𝜉∫

1

0

𝑢 (𝑠) 𝑑𝑠,

(1)

where 0 < 𝜉 < 2, 𝐶𝐷𝛼 is the Caputo fractional derivative, and
𝑓 : [0, 1] × [0,∞) → [0,∞) is a continuous function.

Our proof is based upon the properties of the Green
function and Guo-Krasnoselskii’s fixed point theorem given

in [34]. Our purpose here is to give the eigenvalue interval
for nonlinear fractional differential equation with integral
boundary conditions.Moreover, according to the range of the
eigenvalue 𝜆, we establish some sufficient conditions for the
existence and nonexistence of at least one positive solution of
the problem (1).

2. Preliminaries

For the convenience of the readers, we first present some
background materials.

Definition 1. For a function 𝑓 : [0,∞) → R, the Caputo
derivative of fractional order 𝛼 is defined as

𝐶
𝐷
𝛼
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓
(𝑛)

(𝑠) 𝑑𝑠,

𝑛 = [𝛼] + 1,

(2)

where [𝛼] denotes the integer part of the real number 𝛼.

Definition 2. The Riemann-Liouville fractional integral of
order 𝛼 for a function 𝑓 is defined as

𝐼
𝛼
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝛼 > 0, (3)

provided that such integral exists.
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Lemma 3. Let 𝛼 > 0; then

𝐼
𝛼 𝐶

𝐷
𝛼
𝑢 (𝑡) = 𝑢 (𝑡) + 𝐶0 + 𝐶1𝑡 + 𝐶2𝑡

2
+ ⋅ ⋅ ⋅ + 𝐶𝑛−1𝑡

𝑛−1
, (4)

for some 𝐶
𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑛, 𝑛 = [𝛼] + 1.

Lemma4 (see [34]). Let𝐸 be a Banach space, and let𝑃 ⊂ 𝐸 be
a cone. Assume thatΩ1,Ω2 are open subsets of 𝐸 with 0 ∈ Ω1,
Ω1 ⊂ Ω2, and let 𝑇 : 𝑃 ∩ (Ω2 \ Ω1) → 𝑃 be a completely
continuous operator such that

(i) ‖𝑇𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈ 𝑃 ∩ 𝜕Ω1, and ‖𝑇𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈

𝑃 ∩ 𝜕Ω2, or

(ii) ‖𝑇𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈ 𝑃 ∩ 𝜕Ω1, and ‖𝑇𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈

𝑃 ∩ 𝜕Ω2.

Then 𝑇 has a fixed point in 𝑃 ∩ (Ω
2
\ Ω
1
).

Lemma 5. Let 𝑛 < 𝛼 ≤ 𝑛+1, 𝑛 ≥ 2, 𝑛 ∈ 𝑁, and 𝜉 ̸= 2. Assume
𝑦 ∈ 𝐶[0, 1]; then the unique solution of the problem

𝐶
𝐷
𝛼
𝑢 (𝑡) + 𝑦 (𝑡) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢
󸀠󸀠
(0) = 𝑢

󸀠󸀠󸀠
(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛)
(0) = 0,

𝑢 (1) = 𝜉∫

1

0

𝑢 (𝑠) 𝑑𝑠,

(5)

is given by the expression

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, (6)

where

𝐺 (𝑡, 𝑠)

=

{{{{{

{{{{{

{

2𝑡(1 − 𝑠)
𝛼−1

(𝛼 − 𝜉 + 𝜉𝑠) − (2 − 𝜉) 𝛼(𝑡 − 𝑠)
𝛼−1

(2 − 𝜉) Γ (𝛼 + 1)
,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

2𝑡(1 − 𝑠)
𝛼−1

(𝛼 − 𝜉 + 𝜉𝑠)

(2 − 𝜉) Γ (𝛼 + 1)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(7)

Proof. It is well known that the equation 𝐶𝐷𝛼𝑢(𝑡) + 𝑦(𝑡) = 0

can be reduced to an equivalent integral equation:

𝑢 (𝑡) = −𝐼
𝛼
𝑦 (𝑡) −

𝑛

∑

𝑖=0

𝑏
𝑖
𝑡
𝑖
= −∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 −

𝑛

∑

𝑖=0

𝑏
𝑖
𝑡
𝑖
,

(8)

for some 𝑏
𝑖
∈ R (𝑖 = 0, 1, 2, . . . , 𝑛).

By the conditions 𝑢(0) = 𝑢
󸀠󸀠
(0) = 𝑢

󸀠󸀠󸀠
(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛)
(0) =

0 and 𝑢(1) = 𝜉 ∫
1

0
𝑢(𝑠)𝑑𝑠, we can get that 𝑏

0
= 𝑏
2
= 𝑏
3
= ⋅ ⋅ ⋅ =

𝑏
𝑛
= 0 and

𝑏
1 = −∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 − 𝜉∫

1

0

𝑢 (𝑠) 𝑑𝑠. (9)

Hence, we have

𝑢 (𝑡) = − ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 + 𝑡 ∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠

+ 𝜉𝑡 ∫

1

0

𝑢 (𝑠) 𝑑𝑠.

(10)

Put ∫1
0
𝑢(𝑠)𝑑𝑠 = 𝐴; then, from (10), we deduce that

𝐴 = ∫

1

0

𝑢 (𝑡) 𝑑𝑡

= − ∫

1

0

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 𝑑𝑡

+∬

1

0

𝑡(1 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 𝑑𝑡 + ∫

1

0

𝜉𝐴𝑡 𝑑𝑡

= − ∫

1

0

(1 − 𝑠)
𝛼

𝛼Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 +

1

2
∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 +

1

2
𝜉𝐴,

(11)

which implies that

𝐴 = −
2

2 − 𝜉
∫

1

0

(1 − 𝑠)
𝛼

𝛼Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠

+
1

2 − 𝜉
∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠.

(12)

Replacing this value in (10), we obtain the following
expression for function 𝑢(𝑡):

𝑢 (𝑡) = − ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠

+ 𝑡 ∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 −

2𝜉

2 − 𝜉
∫

1

0

𝑡(1 − 𝑠)
𝛼

𝛼Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠

+
𝜉

2 − 𝜉
∫

1

0

𝑡(1 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠

= − ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠

+ ∫

1

0

2𝑡(1 − 𝑠)
𝛼−1

(𝛼 − 𝜉 + 𝜉𝑠)

(2 − 𝜉) 𝛼Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠

= ∫

𝑡

0

( (2𝑡(1 − 𝑠)
𝛼−1

(𝛼 − 𝜉 + 𝜉𝑠) − (2 − 𝜉) 𝛼(𝑡 − 𝑠)
𝛼−1

)

× ((2 − 𝜉) Γ (𝛼 + 1))
−1
𝑦 (𝑠) 𝑑𝑠)

+ ∫

1

𝑡

2𝑡(1 − 𝑠)
𝛼−1

(𝛼 − 𝜉 + 𝜉𝑠)

(2 − 𝜉) Γ (𝛼 + 1)
𝑦 (𝑠) 𝑑𝑠

= ∫

1

0

𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠.

(13)

This completes the proof.
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Lemma 6. Let 𝐺 be the Green function, which is given by the
expression (7). For 0 < 𝜆 < 2, the following property holds:

𝑡 𝐺 (1, 𝑠) ≤ 𝐺 (𝑡, 𝑠) ≤
2𝛼

𝜉 (𝛼 − 2)
𝐺 (1, 𝑠) , ∀𝑡, 𝑠 ∈ (0, 1) .

(14)

The proof is similar to that of Lemma 2.4 in [7], so we omit it.
Consider the Banach space 𝑋 = 𝐶[0, 1] with general

norm
‖𝑢‖ = sup

𝑡∈[0,1]

|𝑢 (𝑡)| . (15)

Define the cone 𝑃 = {𝑢 ∈ 𝑋 : 𝑢(𝑡) ≥ (𝜉(𝛼 − 1)/2𝛼)𝑡‖𝑢‖}.
Suppose 𝑢 is a solution of (1). It is clear from Lemma 5

that

𝑢 (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, ∀𝑡 ∈ [0, 1] . (16)

Define the operator 𝑆
𝜆
: 𝑃 → 𝑋 as follows:

(𝑆𝜆𝑢) (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, ∀𝑡 ∈ [0, 1] . (17)

Lemma 7. 𝑆
𝜆 : 𝑃 → 𝑃 is completely continuous.

Proof. Since 0 < 𝜉 < 2, it is obvious that 𝐺(𝑡, 𝑠) ≥ 0. So we
have

󵄩󵄩󵄩󵄩𝑆𝜆𝑢
󵄩󵄩󵄩󵄩 = sup
𝑡∈[0,1]

𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≤ 𝜆∫

1

0

2𝛼

𝜉 (𝛼 − 2)
𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(𝑆
𝜆
𝑢) (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≥
𝜉 (𝛼 − 2)

2𝛼
𝑡𝜆∫

1

0

2𝛼

𝜉 (𝛼 − 2)
𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≥
𝜉 (𝛼 − 2)

2𝛼
𝑡
󵄩󵄩󵄩󵄩𝑆𝜆𝑢

󵄩󵄩󵄩󵄩 .

(18)

Therefore, 𝑆
𝜆
(𝑃) ⊂ 𝑃. The other proof is similar to that in [7],

so we omit it.

3. Main Result

For convenience, we list the denotation:

𝐹0 = lim
𝑢→0

+

sup
𝑡∈[0,1]

𝑓 (𝑡, 𝑢 (𝑡))

𝑢
,

𝐹∞ = lim
𝑢→+∞

sup
𝑡∈[0,1]

𝑓 (𝑡, 𝑢 (𝑡))

𝑢
,

𝑓
0
= lim
𝑢→0

+

inf
𝑡∈[0,1]

𝑓 (𝑡, 𝑢 (𝑡))

𝑢
,

𝑓∞ = lim
𝑢→+∞

inf
𝑡∈[0,1]

𝑓 (𝑡, 𝑢 (𝑡))

𝑢
.

(19)

Next, we will establish some sufficient conditions for the
existence and nonexistence of positive solution for problem
(1).

Theorem 8. Let 𝑙 ∈ (0, 1) be a constant. Then for each

𝜆 ∈ ((
𝜉 (𝛼 − 2) 𝑙𝑓∞

2𝛼
∫

1

0

𝑠𝐺 (1, 𝑠) 𝑑𝑠)

−1

,

(
2𝛼𝐹
0

𝜉 (𝛼 − 2)
∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠)

−1

) ,

(20)

problem (1) has at least one positive solution.

Proof. First, for any 𝜀 > 0, from (20) we have

(
𝜉 (𝛼 − 2) 𝑙 (𝑓∞ − 𝜀)

2𝛼
∫

1

0

𝑠𝐺 (1, 𝑠) 𝑑𝑠)

−1

≤ 𝜆 ≤ (
2𝛼 (𝐹
0
+ 𝜀)

𝜉 (𝛼 − 2)
∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠)

−1

.

(21)

On the one hand, by the definition of 𝐹
0
, there exists 𝑟

1
>

0 such that, for any 𝑢 ∈ [0, 𝑟
1
], we have

𝑓 (𝑡, 𝑢) ≤ (𝐹
0
+ 𝜀) 𝑢. (22)

ChooseΩ
1
= {𝑢 ∈ 𝑋 : ‖𝑢‖ ≤ 𝑟

1
}. For 𝑢 ∈ 𝑃 ∩ 𝜕Ω

1
, we have

󵄩󵄩󵄩󵄩𝑆𝜆𝑢
󵄩󵄩󵄩󵄩 = sup
𝑡∈[0,1]

𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≤ 𝜆∫

1

0

2𝛼

𝜉 (𝛼 − 2)
𝐺 (1, 𝑠) (𝐹0 + 𝜀) 𝑢 (𝑠) 𝑑𝑠

≤ 𝜆
2𝛼 (𝐹
0
+ 𝜀)

𝜉 (𝛼 − 2)
∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠 ‖𝑢‖ ≤ ‖𝑢‖ .

(23)

On the other hand, by the definition of 𝐹
∞
, there exists

𝑟
2
> 𝑟
1
such that, for any 𝑢 ∈ [𝑟

2
, +∞), we have

𝑓 (𝑡, 𝑢) ≥ (𝑓
∞
− 𝜀) 𝑢. (24)

Take Ω
2
= {𝑢 ∈ 𝑋 : ‖𝑢‖ ≤ 𝑟

2
}. For 𝑢 ∈ 𝑃 ∩ 𝜕Ω

2
, we have

󵄩󵄩󵄩󵄩𝑆𝜆𝑢
󵄩󵄩󵄩󵄩 ≥ (𝑆

𝜆
𝑢) (𝑙) ≥ 𝜆∫

1

0

𝑙𝐺 (1, 𝑠) (𝑓∞ − 𝜀) 𝑢 (𝑠) 𝑑𝑠

≥ 𝜆𝑙
𝜉 (𝛼 − 2) 𝑓∞

2𝛼
∫

1

0

𝑠𝐺 (1, 𝑠) 𝑑𝑠 ‖𝑢‖ ≥ ‖𝑢‖ .

(25)

According to (23), (25), and Lemma 4, 𝑆
𝜆 has at least one

fixed point 𝑢 ∈ 𝑃 ∩ (Ω
2
\ Ω
1
) with 𝑟

1
≤ ‖𝑢‖ ≤ 𝑟

2
, which is

a positive solution of (1).

Remark 9. If 𝐹
0
= 0 and 𝑓

∞
= ∞, then we can get

2𝛼𝐹
0

𝜉 (𝛼 − 2)
∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠 = 0,

𝜉 (𝛼 − 2) 𝑙𝑓∞

2𝛼
∫

1

0

𝑠𝐺 (1, 𝑠) 𝑑𝑠 = +∞.

(26)
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Theorem 8 implies that, for 𝜆 ∈ (0, +∞), problem (1) has at
least one positive solution.

Theorem 10. Let 𝑙 ∈ (0, 1) be a constant. Then for each

𝜆 ∈ ((
𝜉 (𝛼 − 2) 𝑙𝑓0

2𝛼
∫

1

0

𝑠𝐺 (1, 𝑠) 𝑑𝑠)

−1

,

(
2𝛼𝐹∞

𝜉 (𝛼 − 2)
∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠)

−1

) ,

(27)

problem (1) has at least one positive solution.

Proof. First, it follows from (27) that, for any 𝜀 > 0,

(
𝜉 (𝛼 − 2) 𝑙 (𝑓0 − 𝜀)

2𝛼
∫

1

0

𝑠𝐺 (1, 𝑠) 𝑑𝑠)

−1

≤ 𝜆 ≤ (
2𝛼 (𝐹
∞
+ 𝜀)

𝜉 (𝛼 − 2)
∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠)

−1

.

(28)

By the definition of 𝑓
0
, there exists 𝑟

1
> 0 such that, for

any 𝑢 ∈ [0, 𝑟
1
], we have

𝑓 (𝑡, 𝑢) ≥ (𝑓
0
+ 𝜀) 𝑢. (29)

Choose Ω
1
= {𝑢 ∈ 𝑋 : ‖𝑢‖ ≤ 𝑟

1
}. For 𝑢 ∈ 𝑃 ∩ 𝜕Ω

1
, we have

‖𝑢‖ = 𝑟
1
. Similar to the proof inTheorem 8, it holds from (28)

and (29) that
󵄩󵄩󵄩󵄩𝑆𝜆𝑢

󵄩󵄩󵄩󵄩 ≥ (𝑆
𝜆
𝑢) (𝑙)

≥ 𝜆𝑙
𝜉 (𝛼 − 2) 𝑓0

2𝛼
∫

1

0

𝑠𝐺 (1, 𝑠) 𝑑𝑠 ‖𝑢‖ ≥ ‖𝑢‖ .

(30)

Note 𝐹
∞ = lim𝑢→+∞sup𝑡∈[0,1]𝑓(𝑡, 𝑢(𝑡))/𝑢. There exists

𝑟3 > 𝑟1, such that

𝑓 (𝑡, 𝑢) ≤ (𝐹∞ + 𝜀) 𝑢, 𝑢 ∈ (𝑟3, +∞) . (31)

We consider the problem on two cases. (I) Suppose 𝑓 is
bounded. There exists𝑀 > 0, such that 𝑓(𝑡, 𝑢(𝑡)) ≤ 𝑀, ∀𝑢 ∈

(𝑟
3
, +∞). Choose 𝑟

4
= max{𝑟

3
,𝑀𝜆(2𝛼/𝜉(𝛼−2)) ∫

1

0
𝐺(1, 𝑠)𝑑𝑠}.

LetΩ󸀠
2
= {𝑢 ∈ 𝑋 : ‖𝑢‖ ≤ 𝑟

4
}. For 𝑢 ∈ 𝑃 ∩ 𝜕Ω

󸀠

2
, we have

󵄩󵄩󵄩󵄩𝑆𝜆𝑢
󵄩󵄩󵄩󵄩 = sup
𝑡∈[0,1]

𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≤ 𝜆∫

1

0

2𝛼

𝜉 (𝛼 − 2)
𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≤ 𝜆𝑀
2𝛼

𝜉 (𝛼 − 2)
∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠 ‖𝑢‖ ≤ 𝑟4

= ‖𝑢‖ .

(32)

(II) Suppose 𝑓 is unbounded. There exists 𝑟
5
> 𝑟
3
such

that

𝑓 (𝑡, 𝑢 (𝑡)) ≤ 𝑢, 𝑢 ∈ (𝑟5, +∞) . (33)

LetΩ󸀠󸀠
2
= {𝑢 ∈ 𝑋 : ‖𝑢‖ ≤ 𝑟

5
}. For 𝑢 ∈ 𝑃 ∩ 𝜕Ω

󸀠󸀠

2
, we have

󵄩󵄩󵄩󵄩𝑆𝜆𝑢
󵄩󵄩󵄩󵄩 ≤ 𝜆∫

1

0

2𝛼

𝜉 (𝛼 − 2)
𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≤ 𝜆
2𝛼 (𝐹
∞
+ 𝜀)

𝜉 (𝛼 − 2)
∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠 ‖𝑢‖ ≤ ‖𝑢‖ .

(34)

Combining (I) and (II), take Ω
2 = {𝑢 ∈ 𝑋 : ‖𝑢‖ ≤ 𝑟2}; here,

𝑟2 ≥ max{𝑟4, 𝑟5}. Then for 𝑢 ∈ 𝑃 ∩ 𝜕Ω2, we have
󵄩󵄩󵄩󵄩𝑆𝜆𝑢

󵄩󵄩󵄩󵄩 ≤ ‖𝑢‖ . (35)

Hence, (30) and (42) together with Lemma 4 imply that
𝑆
𝜆
has at least one fixed point 𝑢 ∈ 𝑃 ∩ (Ω

2
\ Ω
1
) with 𝑟

1
≤

‖𝑢‖ ≤ 𝑟
2
, which is a positive solution of (1).

Theorem 11. Assume 𝐹
0
< +∞ and 𝐹

∞
< +∞. Problem (1)

has no positive solution provided

𝜆 < (
2𝛼𝑘

𝜉 (𝛼 − 2)
∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠)

−1

, (36)

where 𝑘 is a constant defined in (38).

Proof. Since 𝐹
0
< +∞ and 𝐹

∞
< +∞, together with the

definitions of 𝐹
0
and 𝐹
∞
, there exist positive constants 𝑘

1
, 𝑘
2
,

𝑟
1
, and 𝑟

2
satisfying 𝑟

1
< 𝑟
2
such that

𝑓 (𝑡, 𝑢) ≤ 𝑘
1
𝑢, 𝑢 ∈ [0, 𝑟

1
] ,

𝑓 (𝑡, 𝑢) ≤ 𝑘
2
𝑢, 𝑢 ∈ [𝑟

2
, +∞] .

(37)

Take

𝑘 = max
{

{

{

𝑘
1, 𝑘2, sup
(𝑡,𝑢)∈(0,1)×(𝑘1 ,𝑘2)

𝑓 (𝑡, 𝑢)

𝑢

}

}

}

. (38)

It follows that 𝑓(𝑡, 𝑢) ≤ 𝑘𝑢 for any 𝑢 ∈ (0, +∞). Suppose
that V(𝑡) is a positive solution of (1). That is,

(𝑆
𝜆
V) (𝑡) = V (𝑡) , ∀𝑡 ∈ 𝐽. (39)

In sequence,

‖V‖ = 󵄩󵄩󵄩󵄩𝑆𝜆V
󵄩󵄩󵄩󵄩 = sup
𝑡∈[0,1]

𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V (𝑠)) 𝑑𝑠

≤ 𝜆∫

1

0

2𝛼

𝜉 (𝛼 − 2)
𝐺 (1, 𝑠) 𝑓 (𝑠, V (𝑠)) 𝑑𝑠

≤ 𝜆𝑘
2𝛼

𝜉 (𝛼 − 2)
∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠 ‖V‖ < ‖V‖ ,

(40)

which is a contradiction. Hence, (1) has no positive solution.

Theorem 12. Assume 𝑓
0
> 0 and 𝑓

∞
> 0. Problem (1) has no

positive solution provided

𝜆 > (
𝜉𝑘 (𝛼 − 2)

2𝛼
∫

1

0

𝑠
2
𝐺 (1, 𝑠) 𝑑𝑠)

−1

, (41)

where 𝑘 is a constant defined in (43).
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Proof. Since 𝑓
0
> 0 and 𝑓

∞
> 0, together with the definitions

of 𝑓
0
and 𝑓

∞
, there exist positive constants 𝑘

1
, 𝑘
2
, 𝑟
1
, and 𝑟

2

satisfying 𝑟
1
< 𝑟
2
such that

𝑓 (𝑡, 𝑢) ≥ 𝑘
1
𝑢, 𝑢 ∈ [0, 𝑟

1
] ,

𝑓 (𝑡, 𝑢) ≥ 𝑘2𝑢, 𝑢 ∈ [𝑟2, +∞] .

(42)

Take

𝑘 = min{𝑘
1
, 𝑘
2
, inf
(𝑡,𝑢)∈(0,1)×(𝑘1 ,𝑘2)

𝑓 (𝑡, 𝑢)

𝑢
} . (43)

It follows that 𝑓(𝑡, 𝑢) ≥ 𝑘𝑢 for any 𝑢 ∈ (0, +∞). Suppose that
V(𝑡) is a positive solution of (1). That is,

(𝑆
𝜆
V) (𝑡) = V (𝑡) , ∀𝑡 ∈ 𝐽. (44)

In sequence,

‖V‖ ≥ 𝜆∫

1

0

𝑠𝐺 (1, 𝑠) 𝑓 (𝑠, V (𝑠)) 𝑑𝑠

≥ 𝜆𝑘
𝜉 (𝛼 − 2)

2𝛼
∫

1

0

𝑠
2
𝐺 (1, 𝑠) 𝑑𝑠 ‖V‖ > ‖V‖ ,

(45)

which is a contradiction. Hence, (1) has no positive solution.

Example 13. Consider the fractional differential equation

𝐶
𝐷
5/2

𝑢 (𝑡) + 𝜆𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢
󸀠󸀠
(0) = 0, 𝑢 (1) = ∫

1

0

𝑢 (𝑠) 𝑑𝑠.

(46)

In this example, take

𝑓 (𝑡, 𝑢 (𝑡)) =

(500𝑢
2
+ 𝑢) (7 − 𝑡

2
)

𝑢 + 7
. (47)

Obviously, we have

𝐹
0 = lim
𝑢→0

+

sup
𝑡∈[0,1]

(500𝑢
2
+ 𝑢) (7 − 𝑡

2
)

𝑢 (𝑢 + 7)
= 1,

𝑓∞ = lim
𝑢→+∞

inf
𝑡∈[0,1]

(500𝑢
2
+ 𝑢) (7 − 𝑡

2
)

𝑢 (𝑢 + 7)
= 3000.

(48)

Since 𝛼 = 5/2 and 𝜉 = 1, through a computation, we can
get

∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠

= ∫

1

0

2𝑡(1 − 𝑠)
𝛼−1

(𝛼 − 𝜉 + 𝜉𝑠) − (2 − 𝜉) 𝛼(𝑡 − 𝑠)
𝛼−1

(2 − 𝜉) Γ (𝛼 + 1)
𝑑𝑠

= ∫

1

0

2(1 − 𝑠)
3/2

(3/2 + 𝑠) − (5/2) (1 − 𝑠)
3/2

Γ (7/2)
𝑑𝑠

≤
1

Γ (7/2)
,

∫

1

0

𝑠𝐺 (1, 𝑠) 𝑑𝑠

= ∫

1

0

2𝑠(1 − 𝑠)
3/2

(3/2 + 𝑠) − (5/2) 𝑠 (1 − 𝑠)
3/2

Γ (7/2)
𝑑𝑠

= ∫

1

0

𝑠(1 − 𝑠)
3/2

2Γ (7/2)
𝑑𝑠 ≥

2

35Γ (7/2)
.

(49)

Choose 𝑙 = 2/3; we have

(
𝜉 (𝛼 − 2) 𝑙𝑓∞

2𝛼
∫

1

0

𝑠𝐺 (1, 𝑠) 𝑑𝑠)

−1

≤
7Γ (7/2)

80
<
Γ (7/2)

10
≤ (

2𝛼𝐹
0

𝜉 (𝛼 − 2)
∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠)

−1

.

(50)

Theorem 8 implies that, for 𝜆 ∈ (7Γ(7/2)/80, Γ(7/2)/10), the
problem (46) has at least one positive solution.

Remark 14. In particular, if we take 𝑓(𝑡, 𝑢(𝑡)) = 𝑢
2
(1 + 𝑡) in

Example 13, then 𝐹0 = 0 and 𝑓∞ = ∞. Remark 9 implies
that problem (46) has at least one positive solution for 𝜆 ∈

(0, +∞).
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