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We study the existence of positive solution for the eigenvalue problem of semipositone fractional order differential equation with
multipoint boundary conditions by using known Krasnosel’skii’s fixed point theorem. Some sufficient conditions that guarantee the
existence of at least one positive solution for eigenvalues 𝜆 > 0 sufficiently small and 𝜆 > 0 sufficiently large are established.

1. Introduction

In this paper, we study the existence of positive solutions to
the following eigenvalue problem of semipositone fractional
order differential equation with multipoint boundary condi-
tions:

−Dt
𝛼

𝑥 (𝑡) = 𝜆𝑓 (𝑡, 𝑥 (𝑡) ,Dt
𝛾

𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

Dt
𝛾

𝑥 (0) = 0, Dt
𝛾+1

𝑥 (0) = 0,

Dt
𝛾

𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
Dt
𝛾

𝑥 (𝜉
𝑗
) ,

(1)

where 3 < 𝛼 ≤ 4, 0 < 𝛾 ≤ 𝛼 − 2, 0 < 𝜉
1
< 𝜉
2
< ⋅ ⋅ ⋅ <

𝜉
𝑚−2

< 1, 𝑎
𝑗
∈ [0, +∞) with 0 < ∑

𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
< 1, 𝜆 is

a positive parameter, and 𝐷
𝛼

𝑡
, 𝐷
𝛾

𝑡
are the standard Rieman-

Liouville derivative. Throughout the paper, we assume that
𝑓 is semipositone; that is, 𝑓 : [0, 1] × [0, +∞) → R is
continuous and there exists 𝑀 > 0, such that 𝑓(𝑡, 𝑥) ≥ −𝑀,
for any (𝑡, 𝑥) ∈ [0, 1] × [0,∞).

The multipoint boundary value problems (BVPs for
short) for ordinary differential equations arise in a variety
of different applied mathematics and physics. Recently, Feng
and Bai [1] investigated the existence of positive solutions

for a semipositone second-order multipoint boundary value
problem:

𝑥
󸀠󸀠

(𝑡) + 𝜆𝑓 (𝑡, 𝑥 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑥
󸀠

(0) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝑥 (𝜉
𝑗
) , 𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑏
𝑗
𝑥 (𝜉
𝑗
) .

(2)

By using Krasnosel’skii’s fixed point theorem, some sufficient
conditions that guarantee the existence of at least one positive
solution are obtained. In [2], a (𝑛 − 1, 1)-type conjugate
boundary value problem for the nonlinear fractional differ-
ential equation,

Dt
𝛼

𝑥 (𝑡) + 𝜆𝑓 (𝑡, 𝑥 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑥
𝑗

(0) = 0, 0 ≤ 𝑗 ≤ 𝑛 − 2, 𝑥 (1) = 0,

(3)

is considered. Based on the nonlinear alternative of Leray-
Schauder type and Krasnosel’skii’s fixed-point theorems, the
existence of positive solution of the semipositone boundary
value problems (3) for a sufficiently small 𝜆 > 0 was
given. In recent paper [3], Zhang et al. established the
existence of multiple positive solutions for a general higher
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order fractional differential equation with derivatives and a
negatively Carathèodory perturbed term:

−D
𝛼

𝑥 (𝑡)

= 𝑝 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡) ,D
𝜇
1𝑥 (𝑡) ,D

𝜇
2𝑥 (𝑡) , . . . ,D

𝜇
𝑛−1𝑥 (𝑡))

− 𝑔 (𝑡, 𝑥 (𝑡) ,D
𝜇
1𝑥 (𝑡) ,D

𝜇
2𝑥 (𝑡) , . . . ,D

𝜇
𝑛−1𝑥 (𝑡)) ,

D
𝜇
𝑖𝑥 (0) = 0, 1 ≤ 𝑖 ≤ 𝑛 − 1,

D
𝜇
𝑛−1
+1

𝑥 (0) = 0, D
𝜇
𝑛−1𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝜇
𝑛−1𝑥 (𝜉

𝑗
) .

(4)

Some local and nonlocal growth conditions were adopted to
guarantee the existence of at least two positive solutions for
the higher order fractional differential equation (4). For the
recent work in application, the reader is referred to [4–20].

Inspired by the above work, in this paper we study the
existence of positive solutions to the semipositone BVP (1).
Here we also emphasize that the main results of this paper
contain not only the cases for 𝜆 > 0 sufficiently small, but
also for 𝜆 > 0 sufficiently large, which is different from [2, 3].

2. Preliminaries and Lemmas

Definition 1 (see [21–24]). The fractional integral of order 𝛼 >

0 of a function 𝑥 : (𝑎, +∞) → 𝑅 is given by

𝐼
𝛼

𝑥 (𝑡) =
1

Γ (𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

𝑥 (𝑠) 𝑑𝑠, (5)

provided that the right-hand side is pointwisely on (𝑎, +∞).

Definition 2 (see [21–24]). The Riemann-Liouville fractional
derivative of order 𝛼 > 0 of a function 𝑥: (𝑎, +∞) → 𝑅 is
given by

𝐷
𝛼

𝑡
𝑥 (𝑡) =

1

Γ (𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑥 (𝑠) 𝑑𝑠, (6)

where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of the number
𝛼, and 𝑡 > 𝑎, provided that the right-hand side is defined on
(𝑎, +∞).

Lemma 3 (see [21–24]). Assuming that 𝑥 ∈ 𝐿
1

[0, 1] with a
fractional derivative of order 𝛼 > 0, then

𝐼
𝛼

𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝑥 (𝑡) + 𝑐

1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛
𝑡
𝛼−𝑛

, (7)

where 𝑐
𝑖
∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, 𝑛 = [𝛼] + 1.

Lemma 4 (see [3]). Suppose that ℎ ∈ 𝐿
1

[0, 1]. Then the
following boundary value problem

Dt
𝛼−𝛾

𝑥 (𝑡) + ℎ (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝑥
󸀠

(0) = 0, 𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝑥 (𝜉
𝑗
)

(8)

has a unique solution

𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (9)

where

𝐺 (𝑡, 𝑠) = 𝑔 (𝑡, 𝑠) +
𝑡
𝛼−𝛾−1

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝑔 (𝜉
𝑗
, 𝑠) (10)

is the Green function of the boundary value problem (8) and

𝑔 (𝑡, 𝑠) =

{{{{

{{{{

{

(𝑡 (1 − 𝑠))
𝛼−𝛾−1

− (𝑡 − 𝑠)
𝛼−𝛾−1

Γ (𝛼 − 𝛾)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(𝑡 (1 − 𝑠))
𝛼−𝛾−1

Γ (𝛼 − 𝛾)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(11)
Lemma 5 (see [2]). The function 𝑔(𝑡, 𝑠) in Lemma 4 has the
following properties:

(R1) 𝑔(𝑡, 𝑠) = 𝑔(1 − 𝑠, 1 − 𝑡), for 𝑡, 𝑠 ∈ [0, 1];
(R2) Γ(𝛼 − 𝛾)𝑘(𝑡)𝑞(𝑠) ≤ 𝑔(𝑡, 𝑠) ≤ (𝛼 − 𝛾 − 1)𝑞(𝑠), for 𝑡, 𝑠 ∈

[0, 1];
(R3) Γ(𝛼 − 𝛾)𝑘(𝑡)𝑞(𝑠) ≤ 𝑔(𝑡, 𝑠) ≤ (𝛼 − 𝛾 − 1)𝑘(𝑡), for 𝑡, 𝑠 ∈

[0, 1], where

𝑘 (𝑡) =
𝑡
𝛼−𝛾−1

(1 − 𝑡)

Γ (𝛼 − 𝛾)
, 𝑞 (𝑡) =

𝑠(1 − 𝑠)
𝛼−𝛾−1

Γ (𝛼 − 𝛾)
. (12)

Lemma 6. The following boundary value problem

Dt
𝛼−𝛾

𝑥 (𝑡) + 𝜆𝑀 = 0, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝑥
󸀠

(0) = 0, 𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝑥 (𝜉
𝑗
)

(13)

has a unique solution 𝑤, which satisfies

𝑤 (𝑡) ≤
4𝜆𝑀𝜎 (𝑡)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

,

𝜎 (𝑡) = (1 −

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
)𝑘 (𝑡)

+

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝑘 (𝜉
𝑗
) 𝑡
𝛼−𝛾−1

≤ 𝑡
𝛼−𝛾−1

.

(14)

Proof. By Lemma 4, the unique solution of (13) is

𝑤 (𝑡) = 𝜆𝑀∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠. (15)

So

𝑤 (𝑡) = 𝜆𝑀∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 ≤ 𝜆𝑀(𝛼 − 𝛾 − 1)

× ∫

1

0

(𝑘 (𝑡) +
∑
𝑚−2

𝑗=1
𝑎
𝑗
𝑘 (𝜉
𝑗
)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

𝑡
𝛼−𝛾−1

)𝑑𝑠

≤
4𝜆𝑀𝜎 (𝑡)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

,

(16)
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and by 𝛼 − 𝛾 ≥ 2, we have Γ(𝛼 − 𝛾) ≥ 1, so

𝜎 (𝑡) = (1 −

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
)𝑘 (𝑡) +

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝑘 (𝜉
𝑗
) 𝑡
𝛼−𝛾−1

=
1

Γ (𝛼 − 𝛾)
(1 −

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
)𝑡
𝛼−𝛾−1

(1 − 𝑡)

+
1

Γ (𝛼 − 𝛾)

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
(1 − 𝜉

𝑗
) 𝑡
𝛼−𝛾−1

≤ (1 −

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
)𝑡
𝛼−𝛾−1

+

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
𝑡
𝛼−𝛾−1

= 𝑡
𝛼−𝛾−1

.

(17)

The basic space used in this paper is𝐸 = 𝐶([0, 1];R), whereR
is the set of real numbers. Obviously, the space 𝐸 is a Banach
space if it is endowed with the norm as follows:

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 , (18)

for any 𝑦 ∈ 𝐸. Let

𝑃 = {𝑦 ∈ 𝐸 : 𝑦 (𝑡) ≥
1

8
𝜎 (𝑡)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩} , (19)

and then 𝑃 is a cone of 𝐸.
Now let V(𝑡) = Dt

𝛾

𝑥(𝑡); then the boundary value problem
(1) is equivalent to the following boundary value problem:

−Dt
𝛼−𝛾V (𝑡) = 𝜆𝑓 (𝑡, 𝐼

𝛾V (𝑡) , V (𝑡)) , 𝑡 ∈ (0, 1) ,

V (0) = V󸀠 (0) = 0, V (1) =
𝑚−2

∑

𝑗=1

𝑎
𝑗
V (𝜉
𝑗
) .

(20)

Define a modified function [⋅]
∗ for any 𝜑 ∈ 𝐶[0, 1] by

[𝜑 (𝑡)]
∗

= {
𝜑 (𝑡) , 𝜑 (𝑡) ≥ 0,

0, 𝜑 (𝑡) < 0,
(21)

and consider

−Dt
𝛼−𝛾

𝑦 (𝑡)

= 𝜆 [𝑓 (𝑡, 𝐼
𝛾

[𝑦 (𝑡) − 𝑤 (𝑡)]
∗

, [𝑦 (𝑡) − 𝑤 (𝑡)]
∗

) +𝑀] ,

𝑡 ∈ (0, 1) ,

𝑦 (0) = 𝑦
󸀠

(0) = 0, 𝑦 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝑦 (𝜉
𝑗
) .

(22)

Lemma 7. The BVP (1) and the BVP (22) are equivalent.
Moreover, if 𝑦 is a positive solution of the problem (22) and
satisfies 𝑦(𝑡) ≥ 𝑤(𝑡), 𝑡 ∈ [0, 1], then 𝐼𝛾[𝑦(𝑡)−𝑤(𝑡)] is a positive
solution of the boundary value problem (1).

Proof. Since 𝑦 is a positive solution of the BVP (22) such that
𝑦(𝑡) ≥ 𝑤(𝑡) for any 𝑡 ∈ [0, 1], we have

−Dt
𝛼−𝛾

𝑦 (𝑡)

= 𝜆 [𝑓 (𝑡, 𝐼
𝛾

[𝑦 (𝑡) − 𝑤 (𝑡)] , [𝑦 (𝑡) − 𝑤 (𝑡)]) + 𝑀] ,

𝑡 ∈ (0, 1) ,

𝑦 (0) = 𝑦
󸀠

(0) = 0, 𝑦 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝑦 (𝜉
𝑗
) .

(23)

Let V = 𝑦 − 𝑤, and then we have

Dt
𝛼−𝛾V (𝑡) = Dt

𝛼−𝛾

𝑦 (𝑡) −Dt
𝛼−𝛾

𝑤 (𝑡) ,

𝑤 (0) = 𝑤
󸀠

(0) = 0, 𝑤 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝑤(𝜉
𝑗
) .

(24)

Substitute (24) into (23), that is (20), which implies that
𝐼
𝛾

[𝑦(𝑡) − 𝑤(𝑡)] is a positive solution of the BVP (1).

It follows from Lemma 4 that the BVP (22) is equivalent
to the integral equation

𝑦 (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

, [𝑦 (𝑠) − 𝑤 (𝑠)]
∗

)

+𝑀] .

(25)

Thus it is sufficient to find fixed points 𝑦(𝑡) ≥ 𝑤(𝑡), 𝑡 ∈ [0, 1]

for the mapping 𝑇 defined by

(𝑇𝑦) (𝑡)

= 𝜆∫

1

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

, [𝑦 (𝑠) − 𝑤 (𝑠)]
∗

)

+𝑀] .

(26)

Lemma 8. 𝑇 : 𝑃 → 𝑃 is a completely continuous operator.

Proof. For any fixed 𝑦 ∈ 𝑃, there exists a constant 𝐿 > 0 such
that ‖𝑦‖ ≤ 𝐿, and

0 ≤ [𝑦 (𝑠) − 𝑤 (𝑠)]
∗

≤ 𝑦 (𝑠) ≤
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 𝐿,

0 ≤ 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛾−1

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

Γ (𝛾)
𝑑𝑠

≤
𝐿

Γ (𝛾)
.

(27)

Take

𝑁 = max
[0,1]×[0,𝐿/Γ(𝛾)]×[0,𝐿]

𝑓 (𝑡, 𝑢, V) , (28)
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then

(𝑇𝑦) (𝑡)

= 𝜆∫

1

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]

≤ 𝜆 (𝑀 +𝑁)∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 < +∞.

(29)

This implies that the operator 𝑇 : 𝑃 → 𝐸 is bounded.
Next for any 𝑦 ∈ 𝑃, by Lemma 5, we have

󵄩󵄩󵄩󵄩𝑇𝑦
󵄩󵄩󵄩󵄩

= max
0≤𝑡≤1

{𝜆∫

1

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]}

≤ 𝜆 (𝛼 − 𝛾 − 1)∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]

+
𝜆

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

×

𝑚−2

∑

𝑗=1

𝑎
𝑗
∫

1

0

𝑔 (𝜉
𝑗
, 𝑠) [𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

≤ 4𝜆{∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]

+
1

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

×

𝑚−2

∑

𝑗=1

𝑎
𝑗
∫

1

0

𝑔 (𝜉
𝑗
, 𝑠) [𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠}

≤
4𝜆

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

× {∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

, [𝑦 (𝑠) − 𝑤 (𝑠)]
∗

)

+𝑀] +

𝑚−2

∑

𝑗=1

𝑎
𝑗
∫

1

0

𝑔 (𝜉
𝑗
, 𝑠)

× [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠)−𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

)

+𝑀] 𝑑𝑠} .

(30)

On the other hand, it follows from Lemma 5, Γ(𝛼 − 𝛾) ≥ 1,
and 𝜎(𝑡) ≤ 𝑡

𝛼−𝛾−1 that

(𝑇𝑦) (𝑡)

≥ 𝜆Γ (𝛼 − 𝛾) 𝑘 (𝑡)

× ∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

+
𝜆𝑡
𝛼−𝛾−1

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

×

𝑚−2

∑

𝑗=1

𝑎
𝑗
∫

1

0

𝑔 (𝜉
𝑗
, 𝑠) [𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

≥
1

2
𝜆𝑘 (𝑡) ∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

+
𝜆𝑡
𝛼−𝛾−1

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

×

𝑚−2

∑

𝑗=1

𝑎
𝑗
∫

1

0

𝑔 (𝜉
𝑗
, 𝑠) [𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

=
1

2
{𝜆𝑘 (𝑡) ∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

+
𝜆𝑡
𝛼−𝛾−1

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

×

𝑚−2

∑

𝑗=1

𝑎
𝑗
∫

1

0

𝑔 (𝜉
𝑗
, 𝑠) [𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠}

+
𝜆𝑡
𝛼−𝛾−1

2 (1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
)
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×

𝑚−2

∑

𝑗=1

𝑎
𝑗
∫

1

0

𝑔 (𝜉
𝑗
, 𝑠) [𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

≥
1

2
𝜆{𝑘 (𝑡) ∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

+
𝑡
𝛼−𝛾−1

∑
𝑚−2

𝑗=1
𝑎
𝑗
𝑘 (𝜉
𝑗
)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

× ∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠}

+
𝜆𝑡
𝛼−𝛾−1

2 (1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
)

×

𝑚−2

∑

𝑗=1

𝑎
𝑗
∫

1

0

𝑔 (𝜉
𝑗
, 𝑠) [𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

=
𝜆𝜎 (𝑡)

2 (1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
)

× ∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

+
𝜆𝜎 (𝑡)

2 (1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
)

×

𝑚−2

∑

𝑗=1

𝑎
𝑗
∫

1

0

𝑔 (𝜉
𝑗
, 𝑠) [𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

=
𝜆𝜎 (𝑡)

2 (1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
)

× (∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

+

𝑚−2

∑

𝑗=1

𝑎
𝑗
∫

1

0

𝑔 (𝜉
𝑗
, 𝑠) [𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠) .

(31)

So, by (30) and (31), we have

(𝑇𝑦) (𝑡) ≥
1

8

󵄩󵄩󵄩󵄩𝑇𝑦
󵄩󵄩󵄩󵄩 𝜎 (𝑡) , 𝑡 ∈ [0, 1] , (32)

which yields that 𝑇(𝑃) ⊂ 𝑃.
At the end, using standard arguments, according to the

Ascoli-Arzela Theorem, one can show that 𝑇 : 𝑃 → 𝑃 is
completely continuous. Thus 𝑇 : 𝑃 → 𝑃 is a completely
continuous operator.

Lemma 9 (see [25]). Let 𝐸 be a real Banach space, and let 𝑃 ⊂

𝐸 be a cone. Assume thatΩ
1
, Ω
2
are two bounded open subsets

of 𝐸 with 𝜃 ∈ Ω
1
, Ω
1
⊂ Ω
2
, and let 𝑇 : 𝑃 ∩ (Ω

2
\ Ω
1
) → 𝑃 be

a completely continuous operator such that either

(1) ‖𝑇𝑥‖ ≤ ‖𝑥‖, 𝑥 ∈ 𝑃∩𝜕Ω
1
and ‖𝑇𝑥‖ ≥ ‖𝑥‖, 𝑥 ∈ 𝑃∩𝜕Ω

2
,

or

(2) ‖𝑇𝑥‖ ≥ ‖𝑥‖, 𝑥 ∈ 𝑃∩𝜕Ω
1
and ‖𝑇𝑥‖ ≤ ‖𝑥‖, 𝑥 ∈ 𝑃∩𝜕Ω

2
.

Then 𝑇 has a fixed point in 𝑃 ∩ (Ω
2
\ Ω
1
).

3. Main Result

Define

𝑓
∞

= lim sup
|𝑥|+|𝑦|→∞

max
𝑡∈[0,1]

𝑓 (𝑡, 𝑥, 𝑦)

|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

,

𝑓
∞

= lim inf
|𝑥|+|𝑦|→∞

min
𝑡∈[1/4, 3/4]

𝑓 (𝑡, 𝑥, 𝑦)

|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

.

(33)

Theorem 10. Suppose that

𝑓
∞

= ∞. (34)

Then there exists a constantΛ > 0 such that, for any 𝜆 ∈ (0, Λ],
the BVP (1) has at least one positive solution.

Proof. Choosing 𝑦 ∈ 𝑃 with ‖𝑦‖ = 1, then

0 ≤ [𝑦 (𝑠) − 𝑤 (𝑠)]
∗

≤ 𝑦 (𝑠) ≤
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 1,

0 ≤ 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛾−1

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

Γ (𝛾)
𝑑𝑠 ≤

1

Γ (𝛾)
.

(35)

Let

𝑁 = max
(𝑡,𝑥,𝑦)∈[0,1]×[0,1/Γ(𝛾)]×[0,1]

𝑓 (𝑡, 𝑥, 𝑦) ,

Λ = min
{

{

{

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

34𝑀
,

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

4∑
𝑚−2

𝑗=1
𝑎
𝑗
(𝑀 + 𝑁)

}

}

}

.

(36)
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For any 𝑦 ∈ 𝜕𝐵
1
, 𝐵
1
= {𝑦 ∈ 𝑃 : ‖𝑦‖ ≤ 1}, and 𝜆 > 0

sufficiently small such that 𝜆 ∈ (0, Λ], we have

󵄩󵄩󵄩󵄩𝑇𝑦
󵄩󵄩󵄩󵄩 = max
0≤𝑡≤1

{𝜆∫

1

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]}

≤ 𝜆 (𝛼 − 𝛾 − 1)

× ∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

, [𝑦 (𝑠) − 𝑤 (𝑠)]
∗

)

+𝑀] +
𝜆 (𝛼 − 𝛾 − 1)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

×

𝑚−2

∑

𝑗=1

𝑎
𝑗
∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

≤
4𝜆∑
𝑚−2

𝑗=1
𝑎
𝑗
(𝑀 + 𝑁)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

≤ 1 =
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 .

(37)

Therefore,

󵄩󵄩󵄩󵄩𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 , 𝑦 ∈ 𝜕𝐵

1
. (38)

On the other hand, take

𝜖 = (1 −

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝜉
𝛼−𝛾

𝑗
)(

1

4
)

𝛼−𝛾

, (39)

and choose a large enough 𝐿 > 0 such that

𝜆𝐿𝜖

64
(
1

4
)

𝛼−𝛾

∫

3/4

1/4

𝑞 (𝑠) 𝑑𝑠 > 1. (40)

By (33), we know that 𝑓 is an unbounded continuous
function. Therefore, for any 𝑡 ∈ [1/4, 3/4], there exists a
constant𝐾 > 0 such that

𝑓 (𝑡, 𝑥, 𝑦) ≥ 𝐿 (|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) , if |𝑥| +

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 > 𝐾. (41)

Choosing

𝑅 > max
{

{

{

64𝜆𝑀

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

, 1 + 𝐾,
16𝐾

𝜖

}

}

}

, (42)

then 𝑅 > 𝐾 > 1. Let 𝐵
𝑅
= {𝑦 ∈ 𝑃 : ‖𝑦‖ ≤ 𝑅}. Then for any

𝑦 ∈ 𝜕𝐵
𝑅
and for any 𝑡 ∈ [1/4, 3/4], we have

𝑦 (𝑡) − 𝑤 (𝑡) ≥ 𝑦 (𝑡) −
4𝜆𝑀𝜎 (𝑡)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

≥ 𝑦 (𝑡) −
32𝜆𝑀𝑦 (𝑡)

(1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
) 𝑅

≥
1

2
𝑦 (𝑡) ≥

1

16
𝜎 (𝑡) 𝑅 ≥

1

16
𝜖𝑅 ≥ 𝐾 > 0.

(43)

Consequently, for 𝑠 ∈ [1/4, 3/4], it follows from (43) that
󵄨󵄨󵄨󵄨󵄨
𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
[𝑦 (𝑠) − 𝑤 (𝑠)]

∗󵄨󵄨󵄨󵄨󵄨

≥
󵄨󵄨󵄨󵄨󵄨
[𝑦 (𝑠) − 𝑤 (𝑠)]

∗󵄨󵄨󵄨󵄨󵄨
> 𝐾,

(44)

and then by (41) and (44), for 𝑠 ∈ [1/4, 3/4], we get

𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

, [𝑦 (𝑠) − 𝑤 (𝑠)]
∗

)

≥ 𝐿 (
󵄨󵄨󵄨󵄨󵄨
𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
[𝑦 (𝑠) − 𝑤 (𝑠)]

∗󵄨󵄨󵄨󵄨󵄨
)

≥ 𝐿
󵄨󵄨󵄨󵄨[𝑦 (𝑠) − 𝑤 (𝑠)]

󵄨󵄨󵄨󵄨 ≥
1

64
𝐿𝜖𝑅.

(45)

So for any 𝑦 ∈ 𝜕𝐵
𝑅
and 𝑡 ∈ [0, 1], by (45), we have

󵄩󵄩󵄩󵄩𝑇𝑦
󵄩󵄩󵄩󵄩

≥ 𝜆∫

1

0

𝐺(
1

4
, 𝑠) [𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

≥ 𝜆∫

1

0

𝐺(
1

4
, 𝑠) 𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) 𝑑𝑠

≥ 𝜆∫

1

0

𝑔(
1

4
, 𝑠) 𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) 𝑑𝑠

≥ 𝜆Γ (𝛼 − 𝛾) 𝑘 (
1

4
)

× ∫

1

0

𝑞 (𝑠) 𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) 𝑑𝑠

≥ 𝜆(
1

4
)

𝛼−𝛾

∫

3/4

1/4

𝑞 (𝑠) 𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) 𝑑𝑠

≥ 𝜆(
1

4
)

𝛼−𝛾

∫

3/4

1/4

𝑞 (𝑠)
1

64
𝐿𝜖𝑅𝑑𝑠 ≥ 𝑅 =

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 .

(46)
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Thus, we have

󵄩󵄩󵄩󵄩𝑇𝑦
󵄩󵄩󵄩󵄩 ≥

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 , 𝑦 ∈ 𝜕𝐵

𝑅
. (47)

By Lemma 9, 𝑇 has a fixed point 𝑦 such that 1 ≤ ‖𝑦‖ ≤ 𝑅.
From

𝜆 ≤ Λ ≤

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

32𝑀
, (48)

we have

32𝜆𝑀

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

≤ 1. (49)

Thus

𝑦 (𝑡) ≥
1

8
𝜎 (𝑡)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≥

1

8
𝜎 (𝑡)

≥
4𝜆𝑀𝜎 (𝑡)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

≥ 𝑤 (𝑡) .

(50)

By Lemma 7 and (50), the boundary value problem (1) has
at least one positive solution. The proof of Theorem 10 is
completed.

Theorem 11. Suppose that

𝑓
∞

= 0, (51)

and there exist constants 𝜅 ≥ 0 and 𝜃 > 0 such that

𝑓 (𝑡, 𝑥, 𝑦) ≥ 𝜅 (|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) ,

(𝑡, 𝑥, 𝑦) ∈ [
1

4
,
3

4
] × [

𝜃

4𝛾Γ (𝛾 + 1)
,∞) × [𝜃,∞) .

(52)

Then there exists a constant Λ > 0 such that, for any 𝜆 ∈

[Λ, +∞), the BVP (1) has at least one positive solution.

Proof. Choosing

Λ
1
= [

𝜅𝜖

4𝛼−𝛾+2
(1 +

1

4𝛾Γ (𝛾 + 1)
)∫

3/4

1/4

𝑞 (𝑠) 𝑑𝑠]

−1

,

𝑅
1
= max

{

{

{

64𝜆𝑀

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

,
16𝜃

𝜖

}

}

}

,

(53)

and let 𝐵
𝑅
1

= {𝑦 ∈ 𝑃 : ‖𝑦‖ ≤ 𝑅
1
}. Then for any ∈ [Λ

1
,∞),𝑦 ∈

𝜕𝐵
𝑅
1

, and 𝑡 ∈ [1/4, 3/4], we have

𝑦 (𝑡) − 𝑤 (𝑡)

≥ 𝑦 (𝑡) −
4𝜆𝑀𝜎 (𝑡)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

≥ 𝑦 (𝑡) −
32𝜆𝑀𝑦 (𝑡)

(1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
) 𝑅
1

≥
1

2
𝑦 (𝑡) ≥

1

16
𝜎 (𝑡) 𝑅

1
≥

1

16
𝜖𝑅
1
≥ 𝜃 > 0,

(54)

𝐼
𝛾

[𝑦 (𝑡) − 𝑤 (𝑡)]

≥ 𝐼
𝛾

(
1

16
𝜖𝑅
1
) ≥

𝜖

16Γ (𝛾)
∫

𝑡

0

(𝑡 − 𝑠)
𝛾−1

𝑑𝑠𝑅
1

≥
𝜖𝑅
1

16 × 4𝛾Γ (𝛾 + 1)
≥

𝜃

4𝛾Γ (𝛾 + 1)
> 0,

(55)

so for any 𝑦 ∈ 𝜕𝐵
𝑅
1

and 𝑡 ∈ [0, 1], by (52)–(55), we have

󵄩󵄩󵄩󵄩𝑇𝑦
󵄩󵄩󵄩󵄩

≥ 𝜆∫

1

0

𝐺(
1

4
, 𝑠) [𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

≥ 𝜆∫

1

0

𝐺(
1

4
, 𝑠) 𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) 𝑑𝑠

≥ 𝜆∫

1

0

𝑔(
1

4
, 𝑠) 𝑓 (𝑠, 𝐼

𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) 𝑑𝑠

≥ 𝜆Γ (𝛼 − 𝛾) 𝑘 (
1

4
)∫

1

0

𝑞 (𝑠) 𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) 𝑑𝑠

≥ 𝜆(
1

4
)

𝛼−𝛾

∫

3/4

1/4

𝑞 (𝑠) 𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) 𝑑𝑠

≥
𝜆𝜅𝜖

4𝛼−𝛾+2
(1 +

1

4𝛾Γ (𝛾 + 1)
)∫

3/4

1/4

𝑞 (𝑠) 𝑑𝑠𝑅
1
≥ 𝑅
1

=
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 .

(56)

Thus, we have

󵄩󵄩󵄩󵄩𝑇𝑦
󵄩󵄩󵄩󵄩 ≥

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 , 𝑦 ∈ 𝜕𝐵

𝑅
1

. (57)
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According to (51), it is clear that

𝑓
∞

= lim sup
|𝑥|+|𝑦|→∞

max
𝑡∈[0,1]

𝑓 (𝑡, 𝑥, 𝑦)

|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

= lim sup
|𝑥|+|𝑦|→∞

max
𝑡∈[0,1]

𝑓 (𝑡, 𝑥, 𝑦) +𝑀

|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

= 0.

(58)

Let us choose 𝜀 > 0 such that

4𝜆 (Γ (𝛾 + 1) + 1) 𝜀

Γ (𝛾 + 1)
< 1. (59)

Then there exists a large enough𝐾 > 𝑅
1
such that

𝑓 (𝑡, 𝑥, 𝑦) +𝑀 ≤ 𝜀 (|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) ,

for any 𝑡 ∈ [0, 1] , |𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 > 𝐾.

(60)

Thus, by (60), if

󵄨󵄨󵄨󵄨󵄨
𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
[𝑦 (𝑠) − 𝑤 (𝑠)]

∗󵄨󵄨󵄨󵄨󵄨
> 𝐾, (61)

then

𝑓 (𝑡, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

, [𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀

≤ 𝜀 (
󵄨󵄨󵄨󵄨󵄨
𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
[𝑦 (𝑠) − 𝑤 (𝑠)]

∗󵄨󵄨󵄨󵄨󵄨
)

≤ 𝜀(
1

Γ (𝛾)
∫

𝑡

0

(𝑡 − 𝑠)
𝛾−1

𝑑𝑠 + 1)
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

≤
Γ (𝛾 + 1) + 1

Γ (𝛾 + 1)
𝜀
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ,

for any 𝑡 ∈ [0, 1] , |𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 > 𝐾.

(62)

Now denote that

𝐷 = max
𝑡∈[0,1],|𝑥|+|𝑦|≤𝐾

𝑓 (𝑡, 𝑥, 𝑦) , (63)

and choose

𝑅
2
=

4𝜆 (𝐷 +𝑀)

1 − 4𝜆 (Γ (𝛾 + 1) + 1) 𝜀/Γ (𝛾 + 1)
+ 𝐾. (64)

Then 𝑅
2
> 𝐾 > 𝑅

1
.

Next let 𝐵
𝑅
2

= {𝑦 ∈ 𝑃 : ||𝑦|| ≤ 𝑅
2
}. Then for any 𝑦 ∈ 𝜕𝐵

𝑅
1

and for any 𝑡 ∈ [0, 1], we have
󵄩󵄩󵄩󵄩𝑇𝑦

󵄩󵄩󵄩󵄩 = max
𝑡∈[0,1]

(𝑇𝑦) (𝑡)

= 𝜆max
𝑡∈[0,1]

∫

1

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

≤ 𝜆 (𝛼 − 𝛾 − 1)∫

1

0

𝑞 (𝑠) [𝑓 (𝑠, 𝐼
𝛾

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

,

[𝑦 (𝑠) − 𝑤 (𝑠)]
∗

) +𝑀]𝑑𝑠

≤ 𝜆 (𝛼 − 𝛾 − 1)

× ( max
𝑡∈[0,1],|𝑥|+|𝑦|≤𝐾

𝑓 (𝑡, 𝑥, 𝑦) +𝑀)∫

1

0

𝑞 (𝑠) 𝑑𝑠

+ 𝜆 (𝛼 − 𝛾 − 1)∫

1

0

𝑞 (𝑠)
Γ (𝛾 + 1) + 1

Γ (𝛾 + 1)
𝜀
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 4𝜆 (𝐷 +𝑀)∫

1

0

𝑞 (𝑠) 𝑑𝑠

+ 4𝜆
Γ (𝛾 + 1) + 1

Γ (𝛾 + 1)
𝜀 ∫

1

0

𝑞 (𝑠) 𝑑𝑠𝑅
2

≤
4𝜆 (𝐷 +𝑀)

Γ (𝛼 − 𝛾)
+
4𝜆 (Γ (𝛾 + 1) + 1) 𝜀

Γ (𝛼 − 𝛾) Γ (𝛾 + 1)
𝑅
2

≤ 4𝜆 (𝐷 +𝑀) +
4𝜆 (Γ (𝛾 + 1) + 1) 𝜀

Γ (𝛾 + 1)
𝑅
2

≤ 𝑅
2
= ‖𝑢‖ ,

(65)

which implies that
󵄩󵄩󵄩󵄩𝑇𝑦

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 , 𝑦 ∈ 𝜕𝐵

𝑅
2

. (66)

By Lemma 9, 𝑇 has at least a fixed points 𝑦 ∈ (𝑃 ∩ 𝐵
𝑅
2

) \ 𝐵
𝑅
1

such that 𝑅
1
≤ ||𝑦|| ≤ 𝑅

2
.

It follows from 𝑅
1
≥ 64𝜆𝑀/(1 − ∑

𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
) that

𝑦 (𝑡) − 𝑤 (𝑡)

≥ 𝑦 (𝑡) −
4𝜆𝑀𝜎 (𝑡)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

≥ 𝑦 (𝑡) −
32𝜆𝑀𝑦 (𝑡)

(1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
) 𝑅
1

≥
1

2
𝑦 (𝑡) ≥

1

16
𝜎 (𝑡) 𝑅

1
≥ 0.

(67)

By Lemma 7 and (67), the boundary value problem (1) has
at least one positive solution. The proof of Theorem 11 is
completed.
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