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We discuss the existence of positive solutions to a class of fractional boundary value problem with changing sign nonlinearity and
advanced arguments 𝐷𝛼𝑥(𝑡) + 𝜇ℎ(𝑡)𝑓(𝑥(𝑎(𝑡))) = 0, 𝑡 ∈ (0, 1), 2 < 𝛼 ≤ 3, 𝜇 > 0, 𝑥(0) = 𝑥



(0) = 0, 𝑥(1) = 𝛽𝑥(𝜂) + 𝜆[𝑥], 𝛽 >

0, and 𝜂 ∈ (0, 1), where 𝐷𝛼 is the standard Riemann-Liouville derivative, 𝑓 : [0,∞) → [0,∞) is continuous, 𝑓(0) > 0, ℎ :

[0, 1] → (−∞, +∞), and 𝑎(𝑡) is the advanced argument. Our analysis relies on a nonlinear alternative of Leray-Schauder type. An
example is given to illustrate our results.

1. Introduction

Fractional differential equations (FDEs) have been of great
interest for the past three decades. It is caused both by the
intensive development of the theory of fractional calculus
itself and by the applications of such constructions in the
modeling of many phenomena in various fields of science
and engineering. Indeed, we can find numerous applications
in viscoelasticity, electrochemistry, control, porous media,
and so forth (see [1, 2]). Therefore, the theory of FDEs has
been developed very quickly. There has been a significant
development in fractional differential equations in recent
years; see [1–30].

In [5], the author studied existence of positive solutions
in case of the nonlinear fractional differential equation as
follows:

𝐷
𝑠

𝑢 = 𝜆𝑎 (𝑡) 𝑓 (𝑢) , 0 < 𝑡 < 1,

𝑢 (0) = 0,

(1)

where 0 < 𝑠 < 1, 𝐷
𝑠 is the standard Riemann-Liouville

fractional derivative, 𝑓 : [0,∞) → [0,∞) is continuous,

and 𝑎 : [0, 1] → 𝑅. In [10], the author applied the Avery-
Peterson fixed point theorem to obtain sufficient conditions of
the existence of multiple solutions to the following problem:

𝑥


(𝑡) + ℎ (𝑡) 𝑓 (𝑥 (𝛼 (𝑡))) = 0, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝑥


(0) = 0,

𝑥 (1) = 𝛽𝑥 (𝜂) + 𝜆 [𝑥] , 𝛽 > 0, 𝜂 ∈ (0, 1) ,

(2)

where 𝑓 : [0,∞) → [0,∞) is continuous and ℎ(𝑡) is a
nonnegative continuous function defined on [0, 1].

Motivated by [5, 10], in this paper, we consider the
existence of positive solution of the following boundary value
problem for nonlinear fractional differential equation with
changing sign nonlinearity and advanced arguments:

𝐷
𝛼

𝑥 (𝑡) + 𝜇ℎ (𝑡) 𝑓 (𝑥 (𝑎 (𝑡))) = 0,

𝑡 ∈ (0, 1) , 2 < 𝛼 ≤ 3, 𝜇 > 0,

𝑥 (0) = 𝑥


(0) = 0,

𝑥 (1) = 𝛽𝑥 (𝜂) + 𝜆 [𝑥] , 𝛽 > 0, 𝜂 ∈ (0, 1) ,

(3)

where𝜆 denotes a linear functional on𝐶[0, 1] given by𝜆[𝑥] =
∫
1

0

𝑥(𝑡)𝑑Λ(𝑡) involving a Stieltjes integral with a suitable
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function Λ of bounded variation. It is important to indicate
that we did not assume that 𝜆[𝑥] is positive to all positive 𝑥.
The measure 𝑑Λ can be a signed measure.

Put 𝐽 = [0, 1]; let us introduce the following assumptions:

(H1) 𝑓 : [0,∞) → [0,∞) is continuous, and 𝑓(0) > 0;
(H2) 𝑎 ∈ 𝐶(𝐽, 𝐽), and 𝑡 ≤ 𝑎(𝑡) on 𝐽;
(H3) ℎ : [0, 1] → (−∞, +∞) may change sign; ℎ is not

identically zero on any subinterval on 𝐽;
(H4) 0 < 𝛽𝜂

𝛼−1

+ 𝜆[𝑝] < 1, where 𝑝(𝑡) = 𝑡𝛼−1.

2. Basic Definitions and Preliminaries

In this section, we present some preliminaries and lemmas
that are useful to the proof of our main results. For con-
venience, we also present the necessary definitions from
fractional calculus theory here. These definitions can be
found in the recent literature.

Definition 1. The fractional integral of order 𝛼 > 0 of a
function 𝑥 : (0, +∞) → 𝑅 is given by

𝐼
𝛼

0+
𝑥 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑥 (𝑡) 𝑑𝑠, (4)

provided that the right-hand side is pointwise defined on
(0, +∞).

Definition 2. The fractional derivative of order 𝛼 > 0 of a
continuous function 𝑥 : (0, +∞) → 𝑅 is given by

𝐷
𝛼

0+
𝑥 (𝑡) =

1

Γ (𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑥 (𝑡) 𝑑𝑠, (5)

where 𝑛 = [𝛼]+1 and [𝛼] denotes the integral part of number
𝛼, provided that the right-hand side is pointwise defined on
(0, +∞).

Lemma 3. Let 𝛼 > 0, 𝑥 ∈ 𝐶(0, 1) ∩ 𝐿(0, 1); then

𝐼
𝛼

0+
𝐷
𝛼

0+
𝑥 (𝑡) = 𝑥 (𝑡) + 𝑐

1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛
𝑡
𝛼−𝑛

, (6)

where 𝑐
𝑖
∈ 𝑅 (𝑖 = 1, 2, . . . , 𝑛), 𝑛 being the smallest integer

greater than or equal to 𝛼.

Consider the following boundary value problem:

𝐷
𝛼

𝑥 (𝑡) + 𝑦 (𝑡) = 0, 𝑡 ∈ (0, 1) , 2 < 𝛼 ≤ 3,

𝑥 (0) = 𝑥


(0) = 0,

𝑥 (1) = 𝛽𝑥 (𝜂) + 𝜆 [𝑥] , 𝛽 > 0, 𝜂 ∈ (0, 1) .

(7)

Lemma 4. Assume that 𝛽𝜂𝛼−1 ̸= 1 and 𝑦 ∈ 𝐶(𝐽, 𝑅); then
problem (7) has the unique solution given by the following
formula:

𝑥 (𝑡) =
𝑡
𝛼−1

1 − 𝛽𝜂𝛼−1
𝜆 [𝑥] +

𝛽𝑡
𝛼−1

1 − 𝛽𝜂𝛼−1
∫

1

0

𝑘 (𝜂, 𝑠) 𝑦 (𝑠) 𝑑𝑠

+ ∫

1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠,

(8)

where

𝑘 (𝑡, 𝑠) =
1

Γ (𝛼)
{
[𝑡 (1 − 𝑠)]

𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

[𝑡 (1 − 𝑠)]
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(9)

Theorem 5. Let 𝑋 be a Banach space with 𝐶 ⊂ 𝑋 closed and
convex. Assume that𝑈 is a relatively open subset of 𝐶 with 0 ∈
𝐶 and 𝐴 : 𝑈 → 𝐶 is a continuous, compact map. Then either

(i) 𝐴 has a fixed point in 𝑈 or
(ii) there exist 𝑢 ∈ 𝜕𝑈 and 𝜏 ∈ (0, 1) with 𝑢 = 𝜏𝐴𝑢.

3. Existence of Positive Solutions

Let us denote by 𝑋 = 𝐶[0, 1] the Banach space of all
continuous real functions on [0, 1] endowed with the sup
norm and let 𝐾 be the cone:

𝐾 = {𝑥 ∈ 𝑋, 𝑥 (𝑡) ≥ 0, 𝑡 ∈ 𝐽} . (10)

Lemma 6. Let assumptions (H1)–(H4) hold. Moreover, we
assume that assumptions (H

5
)-(H
6
) hold with

(H5) ∫
1

0

𝑑Λ(𝑡) ≥ 0, ∫
1

0

𝑡
𝛼−1

𝑑Λ(𝑡) ≥ 0 𝑎𝑛𝑑 𝜅(𝑠) =

∫
1

0

𝑘(𝑡, 𝑠)𝑑Λ(𝑡) ≥ 0,
(H6) ℎ : [0, 1] → (−∞, +∞) is continuous, ℎ(0) ̸= 0, and

there is 𝜎 > 1 such that

𝑡
𝛼−1

Δ − 𝜌
(
𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑑𝑠 + ∫

1

0

𝜅 (𝑠) ℎ
+

(𝑠) 𝑑𝑠)

+ ∫

1

0

𝑘 (𝑡, 𝑠) ℎ
+

(𝑠) 𝑑𝑠 +
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑑𝑠

≥ 𝜎 [
𝑡
𝛼−1

Δ − 𝜌
(
𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑑𝑠 + ∫

1

0

𝜅 (𝑠) ℎ
−

(𝑠) 𝑑𝑠)

+∫

1

0

𝑘 (𝑡, 𝑠) ℎ
−

(𝑠) 𝑑𝑠 +
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑑𝑠] ,

(11)

where Δ = 1 − 𝛽𝜂
𝛼−1

, 𝜌 = 𝜆[𝑝], ℎ
+

(𝑡) = max{0,
ℎ(𝑡)} 𝑎𝑛𝑑 ℎ

−

(𝑡) = max{0, −ℎ(𝑡)}. Then, for every 0 <

𝛿 < 1, there exists a positive number 𝜇 such that, for 0 < 𝜇 < 𝜇,
the nonlinear fractional differential equation,

𝐷
𝛼

𝑥 (𝑡) + 𝜇ℎ
+

(𝑡) 𝑓 (𝑥 (𝑎 (𝑡))) = 0,

𝑡 ∈ (0, 1) , 2 < 𝛼 ≤ 3, 𝜇 > 0,

𝑥 (0) = 𝑥


(0) = 0,

𝑥 (1) = 𝛽𝑥 (𝜂) + 𝜆 [𝑥] , 𝛽 > 0, 𝜂 ∈ (0, 1) ,

(12)

has a positive solution 𝑥
𝜇
with ‖𝑥

𝜇
‖ → 0 as 𝜇 → 0 and

𝑥
𝜇
(𝑡) ≥ 𝜇𝛿𝑓 (0)𝑚 (𝑡) , (13)
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where

𝑚(𝑡) =
𝑡
𝛼−1

Δ − 𝜌
(
𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑑𝑠 + ∫

1

0

𝜅 (𝑠) ℎ
+

(𝑠) 𝑑𝑠)

+
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑑𝑠 + ∫

1

0

𝑘 (𝑡, 𝑠) ℎ
+

(𝑠) 𝑑𝑠.

(14)

Proof. It is easy to know from (9), (H5), and (H6) that𝑚(𝑡) >
0, 𝑡 ∈ (0, 1]. By Lemma 4, (12) has a unique solution in𝑋:

𝑥 (𝑡) =
𝑡
𝛼−1

1 − 𝛽𝜂𝛼−1
𝜆 [𝑥]

+
𝛽𝑡
𝛼−1

1 − 𝛽𝜂𝛼−1
𝜇∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑓 (𝑥 (𝑎 (𝑠))) 𝑑𝑠

+ 𝜇∫

1

0

𝑘 (𝑡, 𝑠) ℎ
+

(𝑠) 𝑓 (𝑥 (𝑎 (𝑠))) 𝑑𝑠.

(15)

For 𝑥 ∈ 𝐶(𝐽, 𝑅
+
), we define two operators 𝑇 and 𝑆 by

𝑇𝑥 (𝑡) =
𝑡
𝛼−1

Δ
𝜆 [𝑥] + 𝜇𝐹𝑥 (𝑡) ,

𝑆𝑥 (𝑡) =
𝑡
𝛼−1

Δ − 𝜌
𝜇𝜆 [𝐹𝑥] + 𝜇𝐹𝑥 (𝑡) ,

(16)

where

𝐹𝑥 (𝑡) =
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑓 (𝑥 (𝑎 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝑘 (𝑡, 𝑠) ℎ
+

(𝑠) 𝑓 (𝑥 (𝑎 (𝑠))) 𝑑𝑠,

𝜆 [𝐹𝑥] =
𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑓 (𝑥 (𝑎 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝜅 (𝑠) ℎ
+

(𝑠) 𝑓 (𝑥 (𝑎 (𝑠))) 𝑑𝑠.

(17)

It is easy to show that 𝑇 : 𝐾 → 𝐾 and 𝑆 : 𝐾 → 𝐾 are
completely continuous.We claim that operators 𝑇 and 𝑆 have
the same fixed points in𝐾. In fact, let 𝑥 = 𝑆𝑥; then

𝜆 [𝑥] =
𝜌

Δ − 𝜌
𝜇𝜆 [𝐹𝑥] + 𝜇𝜆 [𝐹𝑥] =

Δ

Δ − 𝜌
𝜇𝜆 [𝐹𝑥] . (18)

So

𝑥 (𝑡) = 𝑆𝑥 (𝑡) =
𝑡
𝛼−1

Δ − 𝜌
𝜇𝜆 [𝐹𝑥] + 𝜇𝐹𝑥 (𝑡)

=
𝑡
𝛼−1

Δ
𝜆 [𝑥] + 𝜇𝐹𝑥 (𝑡) = 𝑇𝑥 (𝑡) .

(19)

Let 𝑥 = 𝑇𝑥; then 𝜆[𝑥] = (𝜌/Δ)𝜆[𝑥] + 𝜇𝜆[𝐹𝑥]. So 𝜆[𝑥] =
(Δ/(Δ − 𝜌))𝜇𝜆[𝐹𝑥], and hence

𝑥 (𝑡) = 𝑇𝑥 (𝑡) =
𝑡
𝛼−1

Δ
𝜆 [𝑥] + 𝜇𝐹𝑥 (𝑡)

=
𝑡
𝛼−1

Δ − 𝜌
𝜇𝜆 [𝐹𝑥] + 𝜇𝐹𝑥 (𝑡) = 𝑆𝑥 (𝑡) .

(20)

This shows that fixed points of 𝑆 are solutions of (12). We
will apply the nonlinear alternative of Leray-Schauder type
to prove that 𝑆 has at least one fixed point for small 𝜇.

Let 𝜖 > 0 be such that

𝑓 (𝑥 (𝑎 (𝑡))) ≥ 𝛿𝑓 (0) , 0 ≤ 𝑥 (𝑎 (𝑡)) ≤ 𝜖, ∀𝑡 ∈ [0, 1] .

(21)

Suppose that 0 < 𝜇 < 𝜖/2‖𝑚‖𝑓(𝜖) := 𝜇, where 𝑓(𝑡) =

max
0≤𝑠≤𝑡

𝑓(𝑠); then

𝑓 (‖𝑥‖) = max
0≤|𝑥(𝑎(𝑡))|≤‖𝑥‖

𝑓 (𝑥 (𝑎 (𝑡))) , ∀𝑡 ∈ [0, 1] . (22)

Since lim
𝑡→0
+(𝑓(𝑡)/𝑡) = +∞,𝑓(𝜖)/𝜖 < 1/2𝜇‖𝑚‖, there exists

a unique 𝑅
𝜇
∈ (0, 𝜖) such that

𝑓 (𝑅
𝜇
)

𝑅
𝜇

=
1

2𝜇 ‖𝑚‖
. (23)

Let 𝑥 ∈ 𝐾 and 𝜏 ∈ (0, 1) be such that 𝑥 = 𝜏𝑆𝑥. We claim
that ‖𝑥‖ ̸= 𝑅

𝜇
. In fact,

𝑥 (𝑡)

=
𝜏𝑡
𝛼−1

Δ − 𝜌
𝜇(

𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑓 (𝑥 (𝑎 (𝑠))) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) ℎ
+

(𝑠) 𝑓 (𝑥 (𝑎 (𝑠))) 𝑑𝑠)

+ 𝜏𝜇(
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑓 (𝑥 (𝑎 (𝑠))) 𝑑𝑠

+∫

1

0

𝑘 (𝑡, 𝑠) ℎ
+

(𝑠) 𝑓 (𝑥 (𝑎 (𝑠))) 𝑑𝑠)

≤
𝑡
𝛼−1

Δ − 𝜌
𝜇𝑓 (‖𝑥‖)

× (∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑑𝑠 + ∫

1

0

𝜅 (𝑠) ℎ
+

(𝑠) 𝑑𝑠)

+ 𝜇𝑓 (‖𝑥‖)

× (
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑑𝑠 + ∫

1

0

𝑘 (𝑡, 𝑠) ℎ
+

(𝑠) 𝑑𝑠)

= 𝜇𝑓 (‖𝑥‖)𝑚 (𝑡) ≤ 𝜇𝑓 (‖𝑥‖) ‖𝑚‖ .

(24)

That is, 𝑓(‖𝑥‖)/‖𝑥‖ ≥ 1/𝜇‖𝑚‖, which implies that ‖𝑥‖ ̸= 𝑅
𝜇
.

Let 𝑈 = {𝑥 ∈ 𝐾 : ‖𝑥‖ < 𝑅
𝜇
}. By Theorem 5, 𝑆 has a fixed

point 𝑥
𝜇
∈ 𝑈. Moreover, combining (21) with the expression

of operator 𝑆, we obtain that

𝑥
𝜇
(𝑡) ≥ 𝜇𝛿𝑓 (0)𝑚 (𝑡) , ∀𝑡 ∈ (0, 1] . (25)

Hence (12) has a positive solution 𝑥
𝜇
(𝑡). Note that 𝑅

𝜇
→ 0

as 𝜇 → 0; we get that ‖𝑥
𝜇
‖ → 0 as 𝜇 → 0.



4 Abstract and Applied Analysis

Theorem 7. Suppose that (H1)–(H6) hold. Then there exists a
positive number 𝜇∗ > 0 such that (3) has at least one positive
solution for 𝜇 ∈ (0, 𝜇∗).

Proof. Let

𝜔 (𝑡) =
𝑡
𝛼−1

Δ − 𝜌
(
𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑑𝑠 + ∫

1

0

𝜅 (𝑠) ℎ
−

(𝑠) 𝑑𝑠)

+
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑑𝑠 + ∫

1

0

𝑘 (𝑡, 𝑠) ℎ
−

(𝑠) 𝑑𝑠.

(26)

Then 𝜔(𝑡) ≥ 0 for each 𝑡 ∈ (0, 1]. We have 𝑚(𝑡) ≥ 𝜎𝜔(𝑡), 𝜎 >
1. Choose 𝑐 ∈ (0, 1) such that 𝜎𝑐 > 1. There is 𝑏 > 0 such that
𝑓(𝑥(𝑎(𝑡))) ≤ 𝜎𝑐𝑓(0) for 𝑥 ∈ [0, 𝑏]; then

𝜔 (𝑡) 𝑓 (𝑥 (𝑎 (𝑡))) ≤ 𝑐𝑚 (𝑡) 𝑓 (0) for 𝑡 ∈ (0, 1] , 𝑥 ∈ [0, 𝑏] .
(27)

Fix 𝛿 ∈ (𝑐, 1), and let 𝜇∗ > 0 be such that


𝑥
𝜇


+ 𝜇𝛿𝑓 (0) ‖𝑚‖ ≤ 𝑏, 𝜇 ∈ (0, 𝜇

∗

) , (28)

where 𝑥
𝜇
is given by Lemma 6, and

𝑓 (𝑥1 (𝑎 (𝑡))) − 𝑓 (𝑥2 (𝑎 (𝑡)))
 ≤ 𝑓 (0)

𝛿 − 𝑐

2
, (29)

for 𝑥
1
, 𝑥
2
∈ [0, 𝑏] with |𝑥

1
− 𝑥
2
| ≤ 𝜇
∗

𝛿𝑓(0)‖𝑚‖.
Let 𝜇 ∈ (0, 𝜇

∗

). We look for a solution 𝑥
𝜇
of the form

𝑥
𝜇
+ V
𝜇
, where 𝑥

𝜇
is the solution of (12), given by Lemma 6.

Thus V
𝜇
solves the following equation:

𝐷
𝛼V
𝜇
= 𝜇ℎ
+

(𝑡) (𝑓


1
− 𝑓


2
) − 𝜇ℎ

−

(𝑡) 𝑓


1
,

V
𝜇
(0) = V

𝜇
(0) = 0,

V
𝜇
(1) = 𝛽V

𝜇
(𝜂) + 𝜆 [V

𝜇
] ,

(30)

where 𝑓
1
= 𝑓(𝑥

𝜇
(𝑎(𝑡)) + V

𝜇
(𝑎(𝑡))), 𝑓



2
= 𝑓(𝑥

𝜇
(𝑎(𝑡))).

Now, we need to prove the existence of V
𝜇
. Consider the

following equation:

𝐷
𝛼V = 𝜇ℎ+ (𝑡) (𝑓

1
− 𝑓
2
) − 𝜇ℎ

−

(𝑡) 𝑓
1
,

V (0) = V (0) = 0,

V (1) = 𝛽V (𝜂) + 𝜆 [V] ,

(31)

where

𝑓
1
= 𝑓 (𝑥

𝜇
(𝑎 (𝑡)) + V (𝑎 (𝑡))) , 𝑓

2
= 𝑓 (𝑥

𝜇
(𝑎 (𝑡))) .

(32)

Obviously, (31) is equivalent to the operator equation:

𝑆V (𝑡)

=
𝑡
𝛼−1

Δ − 𝜌
𝜇(

𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) (𝑓
1
− 𝑓
2
) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) ℎ
+

(𝑠) (𝑓
1
− 𝑓
2
) 𝑑𝑠)

+ 𝜇(
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) (𝑓
1
− 𝑓
2
) 𝑑𝑠

+∫

1

0

𝑘 (𝑡, 𝑠) ℎ
+

(𝑠) (𝑓
1
− 𝑓
2
) 𝑑𝑠)

−
𝑡
𝛼−1

Δ − 𝜌
𝜇(

𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑓
1
𝑑𝑠

+∫

1

0

𝜅 (𝑠) ℎ
−

(𝑠) 𝑓
1
𝑑𝑠)

− 𝜇(
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑓
1
𝑑𝑠

+∫

1

0

𝑘 (𝑡, 𝑠) ℎ
−

(𝑠) 𝑓
1
𝑑𝑠) .

(33)

It is easy to show that operator 𝑆 : 𝑋 → 𝑋 is completely
continuous. Let V ∈ 𝑋 and 𝜏 ∈ (0, 1) such that V = 𝜏𝑆V. That
is,

V (𝑡)

=
𝜏𝑡
𝛼−1

Δ − 𝜌
𝜇(

𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) (𝑓
1
− 𝑓
2
) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) ℎ
+

(𝑠) (𝑓
1
− 𝑓
2
) 𝑑𝑠)

+ 𝜏𝜇(
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) (𝑓
1
− 𝑓
2
) 𝑑𝑠

+∫

1

0

𝑘 (𝑡, 𝑠) ℎ
+

(𝑠) (𝑓
1
− 𝑓
2
) 𝑑𝑠)

−
𝜏𝑡
𝛼−1

Δ − 𝜌
𝜇(

𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑓
1
𝑑𝑠

+∫

1

0

𝜅 (𝑠) ℎ
−

(𝑠) 𝑓
1
𝑑𝑠)

− 𝜏𝜇(
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑓
1
𝑑𝑠

+∫

1

0

𝑘 (𝑡, 𝑠) ℎ
−

(𝑠) 𝑓
1
𝑑𝑠) .

(34)
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We claim that ‖V‖ ̸= 𝜇𝛿𝑓(0)‖𝑚‖. Suppose on the contrary that
‖V‖ = 𝜇𝛿𝑓(0)‖𝑚‖. Then, by (28) and (29), we get


𝑥
𝜇
+ V


≤

𝑥
𝜇


+ ‖V‖ ≤ 𝑏,

𝑓1 − 𝑓2
 ≤ 𝑓 (0)

𝛿 − 𝑐

2
.

(35)

From (27), we get

𝜔 (𝑡) 𝑓 (𝑥 (𝑎 (𝑡))) ≤ 𝑐𝑚 (𝑡) 𝑓 (0) , 𝑡 ∈ (0, 1] . (36)

Using (34)–(36), for each 𝑡 ∈ (0, 1], we obtain that

|V (𝑡)|

≤
𝑡
𝛼−1

Δ − 𝜌
𝜇(

𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠)
𝑓1 − 𝑓2

 𝑑𝑠

+∫

1

0

𝜅 (𝑠) ℎ
+

(𝑠)
𝑓1 − 𝑓2

 𝑑𝑠)

+ 𝜇(
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠)
𝑓1 − 𝑓2

 𝑑𝑠

+ ∫

1

0

𝑘 (𝑡, 𝑠) ℎ
+

(𝑠)
𝑓1 − 𝑓2

 𝑑𝑠)

+
𝑡
𝛼−1

Δ − 𝜌
𝜇(

𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑓
1
𝑑𝑠

+∫

1

0

𝜅 (𝑠) ℎ
−

(𝑠) 𝑓
1
𝑑𝑠)

+ 𝜇(
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑓
1
𝑑𝑠

+∫

1

0

𝑘 (𝑡, 𝑠) ℎ
−

(𝑠) 𝑓
1
𝑑𝑠)

≤
𝑡
𝛼−1

Δ − 𝜌
𝜇𝑓 (0)

𝛿 − 𝑐

2

× (
𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑑𝑠 + ∫

1

0

𝜅 (𝑠) ℎ
+

(𝑠) 𝑑𝑠)

+ 𝜇𝑓 (0)
𝛿 − 𝑐

2
(
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑑𝑠

+∫

1

0

𝑘 (𝑡, 𝑠) ℎ
+

(𝑠) 𝑑𝑠)

+
𝑡
𝛼−1

Δ − 𝜌
𝜇𝑓 (𝑏) (

𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) ℎ
−

(𝑠) 𝑑𝑠)

+ 𝜇𝑓 (𝑏) (
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑑𝑠

+∫

1

0

𝑘 (𝑡, 𝑠) ℎ
−

(𝑠) 𝑑𝑠)

= 𝜇𝑓 (0)
𝛿 − 𝑐

2
𝑚 (𝑡) + 𝜇𝑓 (𝑏) 𝜔 (𝑡)

≤ 𝜇𝑓 (0)
𝛿 − 𝑐

2
𝑚 (𝑡) + 𝜇𝑐𝑓 (0)𝑚 (𝑡)

= 𝜇𝑓 (0)
𝛿 + 𝑐

2
𝑚 (𝑡) .

(37)

In particular,

‖V‖ ≤ 𝜇𝑓 (0)
𝛿 + 𝑐

2
‖𝑚‖ < 𝜇𝑓 (0) 𝛿 ‖𝑚‖ , (38)

which is a contradiction. And so the claim is proved. Let𝑈 =

{𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝜇𝛿𝑓(0)‖𝑚‖}. ByTheorem 5, 𝑆 has a fixed point
V
𝜇
∈ 𝑈. Consequently, ‖V

𝜇
‖ ≤ 𝜇𝛿𝑓(0)‖𝑚‖. This proves that

there exists V
𝜇
this is the solution of (30). Hence V

𝜇
satisfies

(37) and Lemma 6; then we get

𝑥
𝜇
(𝑡) ≥ 𝑥

𝜇
(𝑡) −


V
𝜇
(𝑡)

≥ 𝜇𝛿𝑓 (0)𝑚 (𝑡) − 𝜇𝑓 (0)

𝛿 + 𝑐

2
𝑚 (𝑡)

= 𝜇𝑓 (0)
𝛿 − 𝑐

2
𝑚 (𝑡) > 0;

(39)

that is, 𝑥
𝜇
is a positive solution of (3). So the proof of

Theorem 7 is complete.

4. An Example

In this section, we give an example to illustrate the result
of this paper. Consider the following nonlinear fractional
differential equation:

𝐷
5/2

𝑥 (𝑡) − 𝜇 (
4

5
− 𝑡) (𝑥

(4)

(√𝑡) + sin2𝑥 (√𝑡) + 1

10
) = 0,

𝑥 (0) = 𝑥


(0) = 0,

𝑥 (1) =
1

2
𝑥 (

1

2
) + ∫

1

0

𝑥 (𝑡) (3𝑡 − 1) 𝑑𝑡.

(40)

Let 𝑓(𝑥(𝑎(𝑡))) = 𝑥
(4)

(√𝑡) + sin2𝑥(√𝑡) + 1/10, 𝑎(𝑡) = √𝑡

and ℎ(𝑡) = 4/5−𝑡. Obviously, all assumptions (H1)–(H3) hold.
In the following, we will verify that assumptions (H4)–(H6)
hold also.

(i) It is obvious that

𝛽𝜂
𝛼−1

+ 𝜆 [𝑝] = 𝛽𝜂
𝛼−1

+ ∫

1

0

𝑡
𝛼−1

(3𝑡 − 1) 𝑑𝑡 = 𝛽𝜂
𝛼−1

+
2𝛼 − 1

𝛼 (𝛼 + 1)
=

1

4√2

+
16

35

(41)

implies (H4).
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(ii) By direct calculation, we have

∫

1

0

(3𝑡 − 1) 𝑑𝑡 =
1

2
, ∫

1

0

𝑡
𝛼−1

(3𝑡 − 1) 𝑑𝑡 =
16

35
,

𝜅 (𝑠) = ∫

1

0

𝑘 (𝑡, 𝑠) (3𝑡 − 1) 𝑑𝑡

=
1

𝛼 (𝛼 + 1)
(1 − 𝑠)

𝛼−1

𝑠 (3𝑠 + 2𝛼 − 4)

=
4

35
(1 − 𝑠)

3/2

𝑠 (3𝑠 + 1) ≥ 0,

(42)

so assumption (H5) holds.
(iii) Finally, we check assumption (H6). It means that

there exists 𝜖 > 0 such that 𝑚(𝑡) ≥ (1 + 𝜖)𝜔(𝑡), 𝑡 ∈ (0, 1].
Note that

ℎ
+

(𝑡) = max {0, ℎ (𝑡)} =
{{

{{

{

4

5
− 𝑡, 0 ≤ 𝑡 ≤

4

5
,

0,
4

5
< 𝑡 ≤ 1,

ℎ
−

(𝑡) = max {0, −ℎ (𝑡)} =
{{

{{

{

0, 0 ≤ 𝑡 ≤
4

5
,

𝑡 −
4

5
,

4

5
< 𝑡 ≤ 1.

(43)

We now verify that there exists 𝜖
1
> 0 such that

𝑡
𝛼−1

Δ − 𝜌

𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑑𝑠

≥ (1 + 𝜖
1
)
𝑡
𝛼−1

Δ − 𝜌

𝛽𝜌

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑑𝑠, 𝑡 ∈ (0, 1] ;

(44)

that is,

∫

1

0

𝑘 (
1

2
, 𝑠) (

4

5
− 𝑠) 𝑑𝑠 ≥ 𝜖

1
∫

1

4/5

𝑘 (
1

2
, 𝑠) (𝑠 −

4

5
) 𝑑𝑠,

𝑡 ∈ (0, 1] .

(45)

By simple calculation, we get

∫

1

0

𝑘 (
1

2
, 𝑠) (

4

5
− 𝑠) 𝑑𝑠 =

13√2

700
,

∫

1

4/5

𝑘 (
1

2
, 𝑠) (𝑠 −

4

5
) 𝑑𝑠 =

2

7 × 54 × √10

.

(46)

Setting 𝜖
1
∈ (0, (13 × 5

2

×√5)/4), then inequality (44) holds.
Similarly, there exists 𝜖

2
, 𝜖
3
, 𝜖
4
> 0 such that

𝑡
𝛼−1

Δ − 𝜌
∫

1

0

𝜅 (𝑠) ℎ
+

(𝑠) 𝑑𝑠

≥ (1 + 𝜖
2
)
𝑡
𝛼−1

Δ − 𝜌
∫

1

0

𝜅 (𝑠) ℎ
−

(𝑠) 𝑑𝑠, 𝑡 ∈ (0, 1] ,

𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
+

(𝑠) 𝑑𝑠

≥ (1 + 𝜖
3
)
𝛽𝑡
𝛼−1

Δ
∫

1

0

𝑘 (𝜂, 𝑠) ℎ
−

(𝑠) 𝑑𝑠, 𝑡 ∈ (0, 1] ,

∫

1

0

𝑘 (𝑡, 𝑠) ℎ
+

(𝑠) 𝑑𝑠

≥ (1 + 𝜖
4
) ∫

1

0

𝑘 (𝑡, 𝑠) ℎ
−

(𝑠) 𝑑𝑠, 𝑡 ∈ (0, 1] .

(47)

Let 𝜖 = min{𝜖
1
, 𝜖
2
, 𝜖
3
, 𝜖
4
}. By (44)–(47), we obtain that there

exists 𝜖 > 0 such that

𝑚(𝑡) ≥ (1 + 𝜖) 𝜔 (𝑡) , 𝑡 ∈ (0, 1] . (48)

Thus assumption (H6) holds. By applying Theorem 7, we
know that there exists a number 𝜇∗ > 0 such that (40) has
at least one positive solution for 𝜇 ∈ (0, 𝜇∗).
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