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We propose a prey predator model with stage structure for prey. A discrete delay and a distributed delay for predator described by
an integral with a strong delay kernel are also considered. Existence of two feasible boundary equilibria and a unique interior
equilibrium are analytically investigated. By analyzing associated characteristic equation, local stability analysis of boundary
equilibrium and interior equilibrium is discussed, respectively. It reveals that interior equilibrium is locally stable when discrete
delay is less than a critical value. According to Hopf bifurcation theorem for functional differential equations, it can be found that
model undergoesHopf bifurcation around the interior equilibriumwhen local stability switch occurs and corresponding stable limit
cycle is observed. Furthermore, directions of Hopf bifurcation and stability of the bifurcating periodic solutions are studied based
on normal form theory and center manifold theorem. Numerical simulations are carried out to show consistency with theoretical
analysis.

1. Introduction

In recent years, much research efforts have been exten-
sively made on interaction and coexistence mechanism
of population in prey predator ecosystem by means of
Lotka-Volterra dynamical models [1–3]. Generally, in order
to reflect the dynamical behavior of mathematical mod-
els depending on the past history, time delay is usually
incorporated into model, which can be utilized to mathemat-
ically describe hunting delay, maturation delay, and gestation
delay for population within prey predator ecosystem. With
the introduction of time delay, itmay cause the loss of stability
and other complicated dynamical behavior of model, such
as Hopf bifurcation and saddle node bifurcation. It should
be noted that there is a well-developed theory of dynamical
models which incorporates time delay into model [4]. In
particular, the properties of periodic solutions arising from
the Hopf bifurcation are of great interest [4, 5].

Recently, plenty of dynamical models with discrete and
distributed delays have been proposed to discuss the popu-
lation dynamics of prey predator ecosystem due to variation

of maturation and hunting factors [6–13]. Song and Peng [9]
proposed a logisticmodel with discrete and distributed delays

�̇� (𝑡) = 𝑟𝑥 (𝑡) [1 − 𝑎

1
𝑥 (𝑡 − 𝜏) − 𝑎

2
∫

𝑡

−∞

𝑓 (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠] ,

(1)

where 𝑟, 𝜏, 𝑎

1
, and 𝑎

2
are positive constants. Function 𝑓 is

called the delayed kernel, which is the weight given to the
population at time 𝑡. Under the assumption that 𝑓(𝑡) ≥ 0 for
all 𝑡 ≥ 0 and the normalized condition that ∫∞

0
𝑓(𝑡)d𝑡 = 1,

which ensures that the steady state of model (1) is unaffected
by the delay, the local stability of model (1) around interior
equilibrium and existence of Hopf bifurcation are studied.
Furthermore, direction of Hopf bifurcations and the stability
of bifurcated periodic solutions are investigated by using the
normal form theory and center manifold theorem.

By supposing that the predator population at every age
stage has the predation ability and the prey population
captured by the predator population in the past is all con-
tributing to the predator population at time 𝑡, the growth
dynamics of the two species can be described by the following
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delayed Lotka-Volterra two species prey predator model with
distributed delays:

�̇� (𝑡) = 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡) − 𝑎

12
∫

𝑡

−∞

𝐹 (𝑡 − 𝑠) 𝑦 (𝑠) d𝑠] ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [−𝑟

2
+ 𝑎

21
∫

𝑡

−∞

𝐺 (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠 − 𝑎

22
𝑦 (𝑠)] ,

(2)

where constants 𝑟

1
> 0 and 𝑟

2
> 0 denote intrinsic growth

rate of prey population and death rate of predator population,
respectively. 𝑟

1
/𝑎

11
, 𝑎
12
, 𝑎
21

and 𝑎

22
represent the carrying

capacity of prey population, predator coefficient of predator
population, biomass conversion rate of prey population cap-
tured by predator population, and intraspecific competition
rate of predator population, respectively. It should be noted
that 𝑎

𝑖𝑗
> 0 for 𝑖, 𝑗 = 1, 2, the delay kernel 𝐹(𝑠) and

𝐺(𝑠) are bounded nonnegative functions and the following
normalized conditions hold:

∫

∞

0

𝐹 (𝑠) d𝑠 = 1, ∫

∞

0

𝐺 (𝑠) d𝑠 = 1. (3)

Model system (2) with various delay kernels and delayed
intraspecific competitions have been extensively investigated
in [6–13]. Faria [6] investigated the stability of interior equi-
librium of model (2) and Hopf bifurcation of nonconstant
periodic solutions around the interior equilibrium. When
𝐹(𝑠) = 𝛿(𝑠 − 𝜏) and 𝐺(𝑠) = 𝛿(𝑠 − 𝜂), 𝜏, 𝜂 ≥ 0, model (2)
admits two different discrete time delays; Ruan [7] and Yan
and Zhang [11] discussed the stability of the interior equilib-
rium of model (2) and Hopf bifurcation of nonconstant
periodic solutions regarding the sum of two delays 𝜏 and 𝜂

as the bifurcation parameter. Furthermore, dynamic effect of
intraspecific competition on population dynamics of model
(2) is studied in [8, 9]. By assuming that 𝐹(𝑠) = 𝛿(𝑠 − 𝜏), 𝜏 ≥

0, the delay kernel function 𝐺(𝑠) may take the weak generic
kernel function 𝐺(𝑠) = 𝛼𝑒

−𝛼𝑠 and strong generic kernel
function 𝐺(𝑠) = 𝛼

2
𝑠𝑒

−𝛼𝑠(𝛼 > 0), where the weak generic
kernel implies that the importance of events in the past simply
decreases exponentially and the further one looks into the
past while the strong generic kernel implies that a particular
time in the past is more important than any other [1, 2, 5].
Under this assumption, model (2) can be reduced to the
following systemwith a discrete delay and a distributed delay:

�̇� (𝑡) = 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡) − 𝑎

12
𝑦 (𝑡 − 𝜏)] ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [−𝑟

2
+ 𝑎

21
∫

𝑡

−∞

𝐺 (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠 − 𝑎

22
𝑦 (𝑡)] .

(4)

When the delay kernel function 𝐺(𝑠) admits the weak
generic kernel, Song and Yuan [10] and Ma et al. [12] dis-
cussed the local asymptotical stability of interior equilibrium
and Hopf bifurcations of nonconstant periodic solutions
based on linearization method and regarding the discrete
hunting delay 𝜏 as bifurcation parameter. It is shown that
interior equilibrium is asymptotically stable when 𝜏 is less

than a certain critical value and Hopf bifurcation occurs
at a critical value of the discrete hunting delay. They also
studied the direction of theHopf bifurcations and the stability
of bifurcated periodic solutions occurring through Hopf
bifurcations. In the case of strong generic kernel, Zhang et al.
[13] studied local stability of all boundary and interior equi-
libria; conditions for existence of Hopf bifurcation are also
investigated. Furthermore, an explicit algorithm determining
the direction of Hopf bifurcations and stability of bifurcating
periodic solutions occurring through Hopf bifurcations is
also given.

In the natural world, many species have a life history that
takes them through two stages, juvenile stage and adult stage.
Individuals in each stage are identical in biological charac-
teristics, and some vital rates (rates of survival, development,
and reproduction) of individuals in a population almost
always depend on stage structure. Furthermore, many com-
plex biological phenomena arising in prey predator ecosys-
tem always depend on the past history of the system, and it
has been recognized that time delay may have complicated
impact on the dynamics of prey predator ecosystem [2]. In
the past several decades, there has been an increasing interest
in prey predator model with stage structure and time delay.
In the model proposed by Aiello and Freedman [14], stage
structure of single population growth with stage structure
and time delay representing for maturation of population is
considered. Their model predicts a positive steady state as
the global attractor, thereby suggesting that stage structure
does not generate sustained oscillations frequently observed
in single population in the real world. Subsequent work
made by other authors [15–20] suggest that time delay to
adulthood should be state dependent. Al-Omari and Gourley
[16] suggested that the time delay to adulthood should be
state dependent and careful formulation of such state depen-
dent time delays can lead to models that produce periodic
solutions. Xu et al. [21] studied the persistence and stability
of a delayed prey predator model with stage structure for
predator. Gourley and Kuang [22] and Bandyopadhyay and
Banerjee [23] formulated a class of general and robust prey
predator models with stage structure and constant matura-
tion time delay and performed a systematicmathematical and
computational study.They have shown that there is a window
inmaturation time delay parameter that generates sustainable
oscillatory dynamics. Ration dependent prey predator model
is proposed in the work done in [12, 24–28] and permanence
and stability analysis are also investigated.

In model (4) with strong generic kernel proposed in [13],
stage structure of prey population is not considered. It is
well known that the immature prey population is usually
considered as an easier target for predators compared with
mature prey population [14]. Hence, the mature prey popula-
tion predated by predator population can be ignored [1], and
it is necessary to investigate dynamic effect of stage structure
on prey predator model with discrete delay and distributed
delay. By incorporating stage structure of prey population
into model (4) with strong generic kernel, work done in [13]
is extended in this paper. The organization of rest sections
of this paper is as follows: a stage-structured prey predator
model with discrete and distributed delay is proposed in
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the second section. It should be noted that the delay kernel
function takes the strong generic kernel function and stage
structure for prey population is considered in this paper. In
the third section, qualitative analysis of the proposedmodel is
investigated. Conditions for existence of two feasible bound-
ary equilibria and a unique interior equilibrium are analyt-
ically discussed. By analyzing corresponding characteristic
equation, local stability of two feasible boundary equilibria
and an interior equilibrium are discussed, respectively. By
taking discrete time delay as a parameter, Hopf bifurcation
around the interior equilibrium is studied due to variation
of discrete delay. Furthermore, directions of Hopf bifurcation
and stability of the bifurcating periodic solutions are studied
based on normal form theory and center manifold theorem.
In the fourth section, numerical simulations are carried out
to show consistency with theoretical results obtained in this
paper. Finally, this paper ends with a conclusion.

2. Model Formulation

In this paper, a stage-structured prey predator model with
discrete and distributed delay is investigated based on the
following four hypotheses, which are given as follows.

(H1) Prey population is divided into two-stage groups,
that is, immature prey population 𝑥

1
(𝑡) and mature

prey population 𝑥

2
(𝑡). The birth of immature prey

population is proportional to the existingmature prey
population with proportionality constant 𝑟

1
> 0 at

any time 𝑡 > 0, and therefore the term 𝑟

1
𝑥

2
(𝑡) is in

the first equation of model (5). 𝑎
11

> 0 and 𝑎

12
>

0 represent the intraspecific competition rate of prey
population and predation coefficient of predator pop-
ulation, respectively.

(H2) The rate of transformation of the mature prey popu-
lation is proportional to the existing immature prey
population with proportionality constant 𝛽 > 0,
which explains the term −𝛽𝑥

1
(𝑡) in the first equation

and 𝛽𝑥

1
(𝑡) in the second equation. 0 < 𝑟

3
< 𝑟

1

denotes death rate of mature prey population.

(H3) 𝑟

2
> 0 denotes death rate of predator population.

It is assumed that the immature prey population is
usually considered as an easier target for predators;
the mature prey population predated by predator
population can be ignored. The predator 𝑦(𝑡) is
considered as a whole group, and only immature
prey population is under predation from predator
population. 𝑎

21
> 0 and 𝑎

22
> 0 denote biomass con-

version rate of immature prey population captured
by predator population and intraspecific competition
rate of predator population, respectively.

(H4) The delay kernel function 𝐺(𝑠) takes strong generic
kernel function 𝐺(𝑠) = 𝛼

2
𝑠𝑒

−𝛼𝑠 (𝛼 > 0); the strong
generic kernel implies that a particular time in the
past is more important than any other [1, 2, 5].

Based on hypotheses (H1)–(H4) and model (4), a stage-
structured prey predator model with discrete hunting delay
and distributed maturation delay is established as follows:

�̇�

1
(𝑡) = 𝑟

1
𝑥

2
(𝑡) − 𝑎

11
𝑥

2

1
(𝑡) − 𝑎

12
𝑥

1
(𝑡) 𝑦 (𝑡 − 𝜏) − 𝛽𝑥

1
(𝑡) ,

�̇�

2
(𝑡) = 𝛽𝑥

1
(𝑡) − 𝑟

3
𝑥

2
(𝑡) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [−𝑟

2
+ 𝑎

21
∫

𝑡

−∞

𝐺 (𝑡 − 𝑠) 𝑥

1
(𝑠) d𝑠 − 𝑎

22
𝑦 (𝑡)] ,

(5)

where 𝑥

1
(𝑡), 𝑥
2
(𝑡), and 𝑦(𝑡) denote the density of immature

prey, mature prey, and predator population, respectively.
Other parameters share the same interpretations introduced
in hypotheses (H1)–(H4).

3. Qualitative Analysis of Model System

In this section, conditions for existence of two feasible
boundary equilibria and a unique interior equilibrium are
analytically investigated. By analyzing corresponding charac-
teristic equation, local stability of model around boundary
equilibrium and interior equilibrium is discussed, respec-
tively. By taking discrete time delay as parameter, conditions
for existence of Hopf bifurcation are discussed based onHopf
bifurcation theorem for functional differential equations.
Furthermore, directions of Hopf bifurcation and stability of
the bifurcating periodic solutions are studied by using normal
form theory and center manifold theorem.

3.1. Stability Analysis of Equilibria. For model (5), it follows
from normalized condition (3) that there are two feasible
boundary equilibria and a unique interior equilibrium,which
are given as follows:

(i) two feasible boundary equilibria:𝐸
0
(0, 0, 0),𝐸

1
(𝛽(𝑟

1
−

𝑟

3
)/𝑎

11
𝑟

3
, 𝛽

2
(𝑟

1
− 𝑟

3
)/𝑎

11
𝑟

2

3
, 0);

(ii) a unique interior equilibrium: 𝐸∗(𝑥∗
1
, 𝑥

∗

2
, 𝑦

∗
) exists

provided that

𝑎

21
𝛽 (𝑟

1
− 𝑟

3
) > 𝑎

11
𝑟

2
𝑟

3
, (6)

where 𝑥∗
1
= (𝛽𝑎

22
(𝑟

1
−𝑟

3
)+𝑎

12
𝑟

2
𝑟

3
)/𝑟

3
(𝑎

11
𝑎

22
+𝑎

12
𝑎

21
),

𝑥

∗

2
= 𝛽[𝛽𝑎

22
(𝑟

1
−𝑟

3
)+𝑎

12
𝑟

2
𝑟

3
]/𝑟

2

3
(𝑎

11
𝑎

22
+𝑎

12
𝑎

21
), and

𝑦

∗ = (𝛽𝑎

21
(𝑟

1
− 𝑟

3
) − 𝑎

11
𝑟

2
𝑟

3
)/𝑟

3
(𝑎

11
𝑎

22
+ 𝑎

12
𝑎

21
).

Theorem 1. The local stability of model (5) around two-
boundary equilibria is as follows:

(i) 𝐸

0
is a saddle node of model (5);

(ii) 𝐸

1
is a saddle node of model (5) provided that𝐸∗ exists;

(iii) 𝐸

1
is locally stable if 2𝑎

11
𝑎

12
𝑟

2
𝑟

3
> 𝛽(𝑟

1
− 𝑟

3
)(𝑎

12
𝑎

21
−

𝑎

11
𝑎

22
) and 𝑎

21
𝛽(𝑟

1
− 𝑟

3
) < 𝑎

11
𝑟

2
𝑟

3
.

Proof. By simple computation, the characteristic equation of
model (5) around 𝐸

0
takes the following form:

(𝜆 + 𝑟

2
) [𝜆

2
+ (𝛽 + 𝑟

3
) 𝜆 + 𝛽 (𝑟

3
− 𝑟

1
)] = 0. (7)
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By solving (7), three eigenvalues of model (5) around 𝐸

0

can be obtained as follows: 𝜆
1

= −𝑟

2
, 𝜆
2

= (−(𝛽 + 𝑟

3
) +

√
(𝛽 + 𝑟

3
)

2
+ 4𝛽(𝑟

1
− 𝑟

3
))/2, and 𝜆

3
= (−(𝛽 + 𝑟

3
) −

√
(𝛽 + 𝑟

3
)

2
+ 4𝛽(𝑟

1
− 𝑟

3
))/2. According to 𝑟

1
> 𝑟

3
introduced

in (H2), it derives that Re 𝜆
1
< 0, Re 𝜆

2
> 0, and Re 𝜆

3
< 0.

Hence, 𝐸
0
is a saddle node of model (5).

By simple computation, the characteristic equation of
model (5) around 𝐸

1
takes the following form:

(𝜆 + 𝑟

2
− 𝑎

21
𝑥

∗

1
) [𝜆

2
+ (𝑟

3
+ 𝛽 + 2𝑎

11
𝑥

∗

1
) 𝜆

+ 𝑟

3
(𝛽 + 2𝑎

11
𝑥

∗

1
) − 𝛽𝑟

1
] = 0.

(8)

By solving (8), three eigenvalues of model (5) around 𝐸

1

are as follows: 𝜆
1

= 𝑎

22
[𝑎

21
𝛽(𝑟

1
− 𝑟

3
) − 𝑎

11
𝑟

2
𝑟

3
]/𝑟

3
(𝑎

11
𝑎

22
+

𝑎

12
𝑎

21
), which derives that Re 𝜆

1
> 0 if 𝐸

∗ exists; that is,
𝑎

21
𝛽(𝑟

1
− 𝑟

3
) > 𝑎

11
𝑟

2
𝑟

3
holds; Re 𝜆

1
< 0 if 𝑎

21
𝛽(𝑟

1
− 𝑟

3
) <

𝑎

11
𝑟

2
𝑟

3
.

Furthermore, the other two eigenvalues of (8) can be
determined by the following equation:

𝜆

2
+ (𝑟

3
+ 𝛽 + 2𝑎

11
𝑥

∗

1
) 𝜆 + 𝑟

3
(𝛽 + 2𝑎

11
𝑥

∗

1
) − 𝛽𝑟

1
= 0. (9)

It follows fromRouth-Hurwitz criterion [29] that Re 𝜆
2
<

0, Re 𝜆
3
< 0 provided that 2𝑎

11
𝑎

12
𝑟

2
𝑟

3
> 𝛽(𝑟

1
− 𝑟

3
)(𝑎

12
𝑎

21
−

𝑎

11
𝑎

22
).

Consequently, 𝐸
1
is a saddle node of model (5) provided

that 𝐸

∗ exists; 𝐸
1
is locally stable if 2𝑎

11
𝑎

12
𝑟

2
𝑟

3
> 𝛽(𝑟

1
−

𝑟

3
)(𝑎

12
𝑎

21
− 𝑎

11
𝑎

22
) and 𝑎

21
𝛽(𝑟

1
− 𝑟

3
) < 𝑎

11
𝑟

2
𝑟

3
.

Define new variables 𝑢(𝑡) and V(𝑡) as follows:

𝑢 (𝑡) = ∫

𝑡

−∞

𝛼

2
(𝑡 − 𝑠) 𝑒

−𝛼(𝑡−𝑠)
𝑥

1
(𝑠) d𝑠,

V (𝑡) = ∫

𝑡

−∞

𝛼𝑒

−𝛼(𝑡−𝑠)
𝑥

1
(𝑠) d𝑠.

(10)

According to the law of solving the derivative for an
integral with parameterized variables, it can be obtained that

�̇� (𝑡) = 𝛼V (𝑡) − 𝛼𝑢 (𝑡) ,

V̇ (𝑡) = 𝛼

2
𝑥

1
(𝑡) − 𝛼

2V (𝑡) .
(11)

By virtue of (11), model (5) can be transformed into the
following five-dimensional system of FDEs with a discrete
delay:

�̇�

1
(𝑡) = 𝑟

1
𝑥

2
(𝑡) − 𝑎

11
𝑥

2

1
(𝑡) − 𝑎

12
𝑥

1
(𝑡) 𝑦 (𝑡 − 𝜏) − 𝛽𝑥

1
(𝑡) ,

�̇�

2
(𝑡) = 𝛽𝑥

1
(𝑡) − 𝑟

3
𝑥

2
(𝑡) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [−𝑟

2
+ 𝑎

21
𝑢 (𝑡) − 𝑎

22
𝑦 (𝑡)] ,

�̇� (𝑡) = 𝛼V (𝑡) − 𝛼𝑢 (𝑡) ,

V̇ (𝑡) = 𝛼

2
𝑥

1
(𝑡) − 𝛼

2V (𝑡) .
(12)

It follows from model (12) that 𝑢

∗
= V∗ = 𝑥

∗

1

for the interior equilibrium 𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
, 𝑢

∗
, V∗) of model

(12), which will be denoted as 𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
, 𝑥

∗

1
, 𝑥

∗

1
) in

the following part of this paper. Furthermore, the inte-
rior equilibrium 𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
) of model (5) is transformed

into the interior equilibrium 𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
, 𝑥

∗

1
, 𝑥

∗

1
) of model

(12). Hence, the qualitative local stability analysis around
𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
, 𝑥

∗

1
, 𝑥

∗

1
) of model (12) is equivalent to the

qualitative local stability analysis around interior equilibrium
𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
) of model (5).

According to the leading matrix of model (12) around the
interior equilibrium 𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
, 𝑥

∗

1
, 𝑥

∗

1
), the characteristic

equation takes the following form:































𝜆 + 2𝑎

11
𝑥

∗

1
+ 𝑎

12
𝑦

∗
+ 𝛽 −𝑟

1
𝑎

12
𝑥

∗

1
𝑒

−𝜆𝜏
0 0

−𝛽 𝜆 + 𝑟

3
0 0 0

0 0 𝜆 + 𝑎

22
𝑦

∗
−𝑎

21
𝑦

∗
0

0 0 0 𝜆 + 𝛼 −𝛼

−𝛼

2
0 0 0 𝜆 + 𝛼

2































= 0,

(13)

which derives that

𝑀(𝜆) + 𝑁 (𝜆) 𝑒

−𝜆𝜏
= 0,

(14)

where

𝑀(𝜆) = 𝜆

5
+ 𝑚

1
𝜆

4
+ 𝑚

2
𝜆

3
+ 𝑚

3
𝜆

2
+ 𝑚

4
𝜆 + 𝑚

5
,

𝑁 (𝜆) = 𝑛

4
𝜆 + 𝑛

5
,

𝑚

1
= 2𝑎

11
𝑥

∗

1
+ (𝑎

12
+ 𝑎

22
) 𝑦

∗
+ 𝛽 + 𝛼 + 𝛼

2
+ 𝑟

3
,

𝑚

2
= 𝑟

3
(2𝑎

11
𝑥

∗

1
+ 𝑎

12
𝑦

∗
) + 𝛽 (𝑟

3
− 𝑟

1
) + 𝛼

3

+ 𝑎

22
𝑦

∗
(𝛼 + 𝛼

2
) + (𝑎

22
𝑦

∗
+ 𝛼 + 𝛼

2
)

× (2𝑎

11
𝑥

∗

1
+ 𝑎

12
𝑦

∗
+ 𝛽 + 𝑟

3
) ,

𝑚

3
= (𝑎

22
𝑦

∗
+ 𝛼 + 𝛼

2
)

× [𝑟

3
(2𝑎

11
𝑥

∗

1
+ 𝑎

12
𝑦

∗
) + 𝛽 (𝑟

3
− 𝑟

1
)]

+ (2𝑎

11
𝑥

∗

1
+ 𝑎

12
𝑦

∗
+ 𝛽 + 𝑟

3
)

× [𝛼

3
+ 𝑎

22
𝑦

∗
(𝛼 + 𝛼

2
)] + 𝑎

22
𝛼

3
𝑦

∗
,

𝑚

4
= [𝑟

3
(2𝑎

11
𝑥

∗

1
+ 𝑎

12
𝑦

∗
)

+𝛽 (𝑟

3
− 𝑟

1
)] [𝛼

3
+ 𝑎

22
𝑦

∗
(𝛼 + 𝛼

2
)]

+ 𝑎

22
𝛼

3
𝑦

∗
(2𝑎

11
𝑥

∗

1
+ 𝑎

12
𝑦

∗
+ 𝛽 + 𝑟

3
) ,

𝑚

5
= 𝑎

22
𝛼

3
𝑦

∗
[𝑟

3
(2𝑎

11
𝑥

∗

1
+ 𝑎

12
𝑦

∗
) + 𝛽 (𝑟

3
− 𝑟

1
)] ,

𝑛

4
= 𝑎

12
𝑎

21
𝛼

3
𝑥

∗

1
𝑦

∗
,

𝑛

5
= 𝑎

12
𝑎

21
𝑟

3
𝛼

3
𝑥

∗

1
𝑦

∗
.

(15)

When 𝜏 = 0, (14) takes the following form:

𝜆

5
+ 𝑚

1
𝜆

4
+ 𝑚

2
𝜆

3
+ 𝑚

3
𝜆

2
+ (𝑚

4
+ 𝑛

4
) 𝜆

+ 𝑚

5
+ 𝑛

5
= 0.

(16)
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Based on the values of 𝑚
𝑘
, 𝑛
𝑗
, 𝑘 = 1, 2, 3, 4, 5, 𝑗 = 4, 5

defined in (14), it is easy to show that𝑚
1
> 0 and𝑚

5
+𝑛

5
> 0.

Define quantities 𝛿
𝑘
, 𝑘 = 1, 2, 3, 4, 5 as follows:

𝛿

𝑘

=







































𝑚

1
1 0 0 0

𝑚

3
𝑚

2
𝑚

1
1 0

𝑚

5
+ 𝑛

5
𝑚

4
+ 𝑛

4
𝑚

3
𝑚

2
𝑚

1

0 0 𝑚

5
+ 𝑛

5
𝑚

4
+ 𝑛

4
𝑚

3

0 0 0 0 𝑚

5
+ 𝑛

5







































= 𝑎

𝑘
𝛿

𝑘−1
.

(17)

Further computations show that 𝛿
𝑘

> 0 for 𝑘 = 2, 3, 4.
According to the above analysis and Routh-Hurwitz criteria
[2], it follows from 𝑚

1
> 0, 𝑚

5
+ 𝑛

5
> 0, and 𝛿

𝑘
>

0 for 𝑘 = 2, 3, 4 that model (12) is locally stable around
𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
, 𝑥

∗

1
, 𝑥

∗

1
) in the case of 𝜏 = 0, which implies that

model (5) is locally stable around 𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
).

Subsequently, the dynamic effect of discrete delay on
model dynamics is investigated. In the case of positive
discrete delay 𝜏 > 0, let 𝑖𝜔 (𝜔 > 0) be a root of (14). Separating
the real and imaginary parts of (14) with 𝜆 = 𝑖𝜔 yields the
following equations:

𝜔

5
+ 𝑚

2
𝜔

3
+ 𝑚

4
𝜔 = 𝑛

5
sin𝜔𝜏 − 𝑛

4
𝜔 cos𝜔𝜏,

𝑚

3
𝜔

2
− 𝑚

1
𝜔

4
− 𝑚

5
= 𝑛

5
cos𝜔𝜏 + 𝑛

4
𝜔 sin𝜔𝜏.

(18)

By adding up the squares of the corresponding sides of
(18), it yields the following algebraic equation with respect to
𝜔:

𝜔

10
+ 𝐴

1
𝜔

8
+ 𝐴

2
𝜔

6
+ 𝐴

3
𝜔

4
+ 𝐴

4
𝜔

2
+ 𝐴

5
= 0, (19)

where 𝐴

1
= 2𝑚

2
+ 𝑚

2

1
, 𝐴
2
= 𝑚

2

2
+ 2𝑚

4
− 2𝑚

1
𝑚

3
, 𝐴
3
= 𝑚

2

3
+

2(𝑚

2
𝑚

4
+𝑚

1
𝑚

5
), 𝐴
4
= 𝑚

2

4
− 2𝑚

3
𝑚

5
− 𝑛

2

4
, and 𝐴

5
= 𝑚

2

5
− 𝑛

2

5
.

Let 𝜉 = 𝜔

2; (19) can be rewritten as follows:

𝑔 (𝜉) := 𝜉

5
+ 𝐴

1
𝜉

4
+ 𝐴

2
𝜉

3
+ 𝐴

3
𝜉

2
+ 𝐴

4
𝜉 + 𝐴

5
= 0. (20)

By virtue of derivative of 𝑔(𝜉) with respect to 𝜉, it gives
that

𝑔


(𝜉) = 5𝜉

4
+ 4𝐴

1
𝜉

3
+ 3𝐴

2
𝜉

2
+ 2𝐴

3
𝜉 + 𝐴

4
. (21)

By simple computation, it is easy to show that𝐴
𝑘
> 0, 𝑘 =

1, 2, 3, 4, which derives that 𝑔(𝜉) > 0 on (0, +∞) and 𝑔(𝜉) is
strictly monotonically increasing on (0, +∞). Consequently,
𝑔(𝜉) has a unique positive root if 𝐴

5
< 0 and 𝑔(𝜉) does not

have a positive root if 𝐴
5
≥ 0.

Suppose 𝐴

5
< 0, which derives that

(𝑎

12
𝑎

21
− 𝑎

11
𝑎

22
) [𝑎

12
𝑟

2
𝑟

3
+ 𝑎

22
𝛽 (𝑟

1
− 𝑟

3
)] > 0, (22)

and then there exists a unique root of 𝑔(𝜉) = 0, which is
denoted by 𝜉

0
, and the unique positive root of (14) is 𝜔

0
=

√𝜉

0
.

Suppose 𝐴

5
≥ 0, which derives that

(𝑎

12
𝑎

21
− 𝑎

11
𝑎

22
) [𝑎

12
𝑟

2
𝑟

3
+ 𝑎

22
𝛽 (𝑟

1
− 𝑟

3
)] ≤ 0, (23)

and then (14) does not have a positive root.
By eliminating sin𝜔𝜏, it follows from (18) that

𝜏

𝑘
=

1

𝜔

0

[arccos ( (−𝑛

4
𝜔

6

0
− (𝑚

1
𝑛

5
+ 𝑚

2
𝑛

4
) 𝜔

4

0

+ (𝑚

3
𝑛

5
− 𝑚

4
𝑛

4
) 𝜔

2

0
− 𝑚

5
𝑛

5
)

× (𝑛

2

4
𝜔

2

0
+ 𝑛

2

5
)

−1

)

+ 2𝑘𝜋] ,

(24)

and then (14) has a pair of purely imaginary roots ± 𝑖𝜔

0
when

𝜏 = 𝜏

𝑘
for 𝑘 = 0, 1, . . ..

By using Butler’s lemma [29], the interior equilibrium
𝐸

∗ remains stable for 0 ≤ 𝜏 < 𝜏

0
. Based on the above

analysis, local stability analysis of model (5) around the
interior equilibrium 𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
) can be concluded in the

followingTheorem 2.

Theorem 2. If condition (6) holds, then the following results
hold.

(i) If (𝑎
12
𝑎

21
− 𝑎

11
𝑎

22
)[𝑎

12
𝑟

2
𝑟

3
+ 𝑎

22
𝛽(𝑟

1
− 𝑟

3
)] ≤ 0, then

model (5) is locally stable around 𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
) for

any values 𝜏 ≥ 0.

(ii) If (𝑎
12
𝑎

21
− 𝑎

11
𝑎

22
)[𝑎

12
𝑟

2
𝑟

3
+ 𝑎

22
𝛽(𝑟

1
− 𝑟

3
)] > 0, then

model (5) is locally stable around𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
) for 𝜏 ∈

[0, 𝜏

0
).

Subsequently, the conditions for Hopf bifurcation in [29]
are utilized to investigate whether there is a phenomenon of
Hopf bifurcation as 𝜏 increases through 𝜏

𝑘
.

Theorem 3. If (𝑎
12
𝑎

21
− 𝑎

11
𝑎

22
)[𝑎

12
𝑟

2
𝑟

3
+ 𝑎

22
𝛽(𝑟

1
− 𝑟

3
)] >

0, then model (5) undergoes Hopf bifurcation at the interior
equilibrium 𝐸

∗ when 𝜏 = 𝜏

𝑘
, 𝑘 = 0, 1, 2, . . .. Furthermore,

an attracting invariant closed curve bifurcates from interior
equilibrium 𝐸

∗ when 𝜏 > 𝜏

0
and ‖𝜏 − 𝜏

0
‖ ≪ 1.

Proof. As mentioned above, let 𝜆 = 𝑖𝜔

0
represent the purely

imaginary root of (14). It follows from (14) that |𝑀(𝑖𝜔

0
)| =

|𝑁(𝑖𝜔

0
)|, which determines a set of possible values of 𝜔

0
.

In the following part, we determine the direction of
motion of 𝜆 = 𝑖𝜔

0
as 𝜏 is varied; namely, we determine

Θ = sign [

d (Re 𝜆)
d𝜏

]

𝜆=𝑖𝜔0

= sign[Re(d𝜆
d𝜏

)

−1

]

𝜆=𝑖𝜔0

. (25)
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By differentiating (14) with respect to 𝜏, it can be obtained
that

[5𝜆

4
+ 4𝑚

1
𝜆

3
+ 3𝑚

2
𝜆

2
+ 2𝑚

3
𝜆 + 𝑚

4
+ 𝑛

4
𝑒

−𝜆𝜏

− 𝜏 (𝑛

4
𝜆 + 𝑛

5
) 𝑒

−𝜆𝜏
]

d𝜆
d𝜏

= 𝜆 (𝑛

4
𝜆 + 𝑛

5
) 𝑒

−𝜆𝜏
,

⇒ (

d𝜆
d𝜏

)

−1

=

5𝜆

4
+ 4𝑚

1
𝜆

3
+ 3𝑚

2
𝜆

2
+ 2𝑚

3
𝜆 + 𝑚

4

𝜆 (𝑛

4
𝜆 + 𝑛

5
) 𝑒

−𝜆𝜏

+

𝑛

4

𝜆 (𝑛

4
𝜆 + 𝑛

5
)

−

𝜏

𝜆

=

5𝜆

4
+ 4𝑚

1
𝜆

3
+ 3𝑚

2
𝜆

2
+ 2𝑚

3
𝜆 + 𝑚

4

−𝜆 (𝜆

5
+ 𝑚

1
𝜆

4
+ 𝑚

2
𝜆

3
+ 𝑚

3
𝜆

2
+ 𝑚

4
𝜆 + 𝑚

5
)

+

𝑛

4

𝜆 (𝑛

4
𝜆 + 𝑛

5
)

−

𝜏

𝜆

=

4𝜆

5
+ 3𝑚

1
𝜆

4
+ 2𝑚

2
𝜆

3
+ 𝑚

3
𝜆

2
− 𝑚

5

−𝜆

2
(𝜆

5
+ 𝑚

1
𝜆

4
+ 𝑚

2
𝜆

3
+ 𝑚

3
𝜆

2
+ 𝑚

4
𝜆 + 𝑚

5
)

−

𝑛

5

𝜆

2
(𝑛

4
𝜆 + 𝑛

5
)

−

𝜏

𝜆

,

Θ = sign[Re(d𝜆
d𝜏

)

−1

]

𝜆=𝑖𝜔0

=

1

𝜔

2

0

sign [Re( (3𝑚

1
𝜔

4

0
− 𝑚

3
𝜔

2

0
− 𝑚

5

+ 2𝜔

3

0
(2𝜔

2

0
− 𝑚

2
) 𝑖)

× (𝑚

1
𝜔

4

0
− 𝑚

3
𝜔

2

0
+ 𝑚

5

+ (𝜔

5

0
− 𝑚

2
𝜔

3

0
+ 𝑚

4
𝜔

0
)𝑖)

−1

+

𝑛

5

𝑛

4
𝜔

0
𝑖 + 𝑛

5

+ 𝜔

0
𝜏𝑖)]

=

1

𝜔

2

0

sign [ (3𝑚

2

1
𝜔

8

0
+ 4𝑚

1
𝑚

3
𝜔

6

0

+ (2𝑚

1
𝑚

5
+ 𝑚

2

3
) 𝜔

4

0
+ 𝑛

2

5
− 𝑚

2

5
)

× ((𝑚

1
𝜔

4

0
− 𝑚

3
𝜔

2

0
+ 𝑚

5
)

2

+ (𝜔

5

0
− 𝑚

2
𝜔

3

0
+ 𝑚

4
𝜔

0
)

2

)

−1

] .

(26)

If (𝑎
12
𝑎

21
− 𝑎

11
𝑎

22
)[𝑎

12
𝑟

2
𝑟

3
+ 𝑎

22
𝛽(𝑟

1
− 𝑟

3
)] > 0, then 𝑛

5
−

𝑚

5
> 0 which signifies that

Θ = sign[Re(d𝜆
d𝜏

)

−1

]

𝜆=𝑖𝜔0

> 0. (27)

Hence, the transversality condition [29] holds and model
(5) undergoes Hopf bifurcation at the interior equilibrium

𝐸

∗ when 𝜏 = 𝜏

𝑘
, 𝑘 = 0, 1, 2, . . .. Furthermore, an attracting

invariant closed curve bifurcates from interior equilibrium
𝐸

∗ when 𝜏 > 𝜏

0
and ‖𝜏 − 𝜏

0
‖ ≪ 1.

3.2. Direction and Stability of Hopf Bifurcation. By using
normal theory and center manifold theorem [29, 30], direc-
tions of Hopf bifurcation and stability of the bifurcating
periodic solutions are discussed in this section.As analyzed in
Section 3.1, some transformations associatedwith the interior
equilibrium 𝐸

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
, 𝑥

∗

1
, 𝑥

∗

1
) of model (12) are given as

follows:

𝑧

1
= 𝑥

1
− 𝑥

∗

1
, 𝑧

2
= 𝑥

2
− 𝑥

∗

2
, 𝑧

3
= 𝑦 − 𝑦

∗
,

𝑧

4
= 𝑢 − 𝑥

∗

1
, 𝑧

5
= V − 𝑥

∗

1
,

𝑧

𝑖
(𝑡) = 𝑧

𝑖
(𝜏𝑡) , 𝜏 = 𝜇 + 𝜏

𝑘
, 𝜇 ∈ R = (−∞, +∞) ,

(28)

and then 𝜇 = 0 is the Hopf bifurcation value of model
(12). Bars of variables are dropped for simplicity of notations;
model (12) is transformed to a functional differential equation
in 𝐶 = 𝐶([−1, 0],R3),

�̇� (𝑡) = 𝐿

𝜇
(𝑧

𝑡
) + 𝑓 (𝜇, 𝑧

𝑡
) , (29)

where 𝐶 = 𝐶([−1, 0],R5) is the Banach space of
continuous functions mapping [−𝜏, 0] into R5, 𝑧(𝑡) =

(𝑧

1
(𝑡), 𝑧

2
(𝑡), 𝑧

3
(𝑡), 𝑧

4
(𝑡), 𝑧

5
(𝑡))

𝑇
∈ R5, 𝑧

𝑡
(𝜃) = 𝑧(𝑡 + 𝜃) for

𝜃 ∈ [−𝜏, 0], and 𝐿

𝜇
: 𝐶 → R5, 𝑓 : R × 𝐶 → R5 are defined

as follows, respectively:

𝐿

𝜇
(𝜙)

= (𝜏

𝑘
+ 𝜇)

×

(

(

−𝑎

11
𝑥

∗

1
−

𝑟

1
𝑥

∗

2

𝑥

∗

1

𝑟

1
0 0 0

𝛽 −𝑟

3
0 0 0

0 0 −𝑎

22
𝑦

∗
𝑎

21
𝑦

∗
0

0 0 0 −𝛼 𝛼

𝛼

2
0 0 0 −𝛼

2

)

)

× (

𝜙

1
(0)

𝜙

2
(0)

𝜙

3
(0)

𝜙

4
(0)

𝜙

5
(0)

)

+ (𝜏

𝑘
+ 𝜇)(

0 0 −𝑎

12
𝑥

∗

1
0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

)(

𝜙

1
(−1)

𝜙

2
(−1)

𝜙

3
(−1)

𝜙

4
(−1)

𝜙

5
(−1)

) ,

(30)

𝑓 (𝜇, 𝜙) = (𝜏

𝑘
+ 𝜇)(

−𝑎

12
𝜙

1
(0) 𝜙

3
(−1)

0

0

0

0

). (31)
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It is easy to show that 𝐿

𝜇
is a continuous linear func-

tion mapping 𝐶 into R5. According to Riesz representation
theorem [4], there exists a 5 × 5 matrix function 𝜂(𝜃, 𝜇) of
bounded variation for 𝜃 ∈ [−1, 0] such that

𝐿

𝜇
(𝜙) = ∫

0

−1

d𝜂 (𝜃, 𝜇) 𝜙 (𝜃) ,
(32)

where 𝜙 ∈ 𝐶([−1, 0],R5).
In fact, we can choose

𝜂 (𝜃, 𝜇)

= (𝜏

𝑘
+ 𝜇)

×

(

(

−𝑎

11
𝑥

∗

1
−

𝑟

1
𝑥

∗

2

𝑥

∗

1

𝑟

1
0 0 0

𝛽 −𝑟

3
0 0 0

0 0 −𝑎

22
𝑦

∗
𝑎

21
𝑦

∗
0

0 0 0 −𝛼 𝛼

𝛼

2
0 0 0 −𝛼

2

)

)

× 𝛿(𝜃) − (𝜏

𝑘
+ 𝜇)(

0 0 −𝑎

12
𝑥

∗

1
0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

)

× 𝛿 (𝜃 + 1) ,

(33)

where 𝛿 denotes the Dirac delta function.
If 𝜙 is any given function in 𝐶([−1, 0],R5) and 𝑧(𝜙) is the

unique solution of the linearized equation �̇�(𝑡) = 𝐿

𝜇
(𝑧

𝑡
) of

(29) with initial function 𝜙 at zero, then the solution operator
̃

𝑇(𝑡) : 𝐶 → 𝐶 is defined by

̃

𝑇 (𝑡) 𝜙 = 𝑧

𝑡
(𝜙) , 𝑡 ≥ 0. (34)

It follows from Lemma 7.1.1 in [29] that ̃

𝑇(𝑡), 𝑡 ≥ 0 is a
strongly continuous semigroup of linear transformation on
[0, +∞) and the infinitesimal generator𝐴

𝜇
of ̃𝑇(𝑡), 𝑡 ≥ 0 is as

follows:

𝐴

𝜇
(𝜙) =

{

{

{

{

{

{

{

{

{

d𝜙 (𝜃)

d𝜃
, 𝜃 ∈ [−1, 0)

∫

0

−1

d𝜂 (𝜇, 𝑠) 𝜙 (𝑠) , 𝜃 = 0,

(35)

for 𝜙 ∈ 𝐶

1
([−1, 0],R5), the space of functions mapping

the interval [−1, 0] into R5 which have continuous first
derivative, and also define

𝑅 (𝜇) (𝜙) = {

0, 𝜃 ∈ [−1, 0)

𝑓 (𝜇, 𝜙) , 𝜃 = 0,

(36)

and then model (29) is equivalent to

�̇�

𝑡
= 𝐴 (𝜇) 𝑧

𝑡
+ 𝑅 (𝜇) 𝑧

𝑡
. (37)

For 𝜓 ∈ 𝐶

1
([0, 1], (R5)

∗
), the space of functions mapping

interval [0, 1] into the five-dimensional row vectors which
have continuous first derivative, define

𝐴

∗
𝜙 (𝑠) =

{

{

{

{

{

−

d𝜓 (𝑠)

d𝑠
, 𝑠 ∈ (0, 1]

∫

0

−1

d𝜂𝑇 (𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(38)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−1

∫

𝜃

𝜌=0

𝜓 (𝜌 − 𝜃) d𝜂 (𝜃) 𝜙 (𝜌) d𝜌,
(39)

where 𝜂(𝜃) = 𝜂(𝜃, 0). It follows from the above analysis that
𝐴(0) and 𝐴

∗ are adjoint operators.
By virtue of discussion in Section 3.1, ± 𝑖𝜔

0
𝜏

𝑘
are eigen-

values of 𝐴(0). Hence, they are also eigenvalues of 𝐴∗. In the
following, eigenvectors of 𝐴(0) and 𝐴

∗ correspond to 𝑖𝜔

0
𝜏

𝑘

and −𝑖𝜔

0
𝜏

𝑘
, respectively.

Suppose 𝑞(𝜃) = (1, 𝑎, 𝑏, 𝑐, 𝑑)

𝑇
𝑒

𝑖𝜔0𝜏𝑘𝜃 is the eigenvectors of
𝐴(0) corresponding to 𝑖𝜔

0
𝜏

𝑘
, which derives that 𝐴(0)𝑞(𝜃) =

𝑖𝜔

0
𝜏

𝑘
𝑞(𝜃). By using the definition of 𝐴(0), (30), and (31), it

gives that

𝜏

𝑘
(

(

−𝑎

11
𝑥

∗

1
−

𝑟

1
𝑥

∗

2

𝑥

∗

1

𝑟

1
0 0 0

𝛽 −𝑟

3
0 0 0

0 0 −𝑎

22
𝑦

∗
𝑎

21
𝑦

∗
0

0 0 0 −𝛼 𝛼

𝛼

2
0 0 0 −𝛼

2

)

)

𝑞(0)

+ 𝜏

𝑘
(

0 0 −𝑎

12
𝑥

∗

1
0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

)𝑞 (−1) = 𝑖𝜔

0
𝜏

𝑘
𝑞 (0) .

(40)

For 𝑞(−1) = 𝑞(0)𝑒

−𝑖𝜔0𝜏𝑘 , then it can be obtained that

𝑎 =

𝛽

𝑟

3
+ 𝑖𝜔

0

,

𝑏 =

𝑥

∗

1
[𝛽𝑟

1
− (𝑎

11
𝑥

∗

1
+ 𝑖𝜔

0
) (𝑟

3
+ 𝑖𝜔

0
)] − 𝑟

1
𝑥

∗

2
(𝑟

3
+ 𝑖𝜔

0
)

𝑎

12
𝑥

∗2

1
𝑒

−𝑖𝜔0𝜏𝑘
(𝑟

3
+ 𝑖𝜔

0
)

,

𝑐 =

𝛼

3

(𝛼 + 𝑖𝜔

0
) (𝛼

2
+ 𝑖𝜔

0
)

,

𝑑 =

𝛼

2

𝛼

2
+ 𝑖𝜔

0

.

(41)
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Similarly, it follows from simple computation that eigen-
vector of 𝐴

∗ corresponds to −𝑖𝜔

0
𝜏

𝑘
; that is, 𝑞

∗
(𝑠) =

𝐽(1, 𝑎

∗
, 𝑏

∗
, 𝑐

∗
, 𝑑

∗
)

𝑇
𝑒

𝑖𝜔0𝜏𝑘𝑠

𝑎

∗
=

𝑟

1

𝑟

3
+ 𝑖𝜔

0

,

𝑏

∗
= −

𝑎

12
𝑥

∗

1
𝑒

−𝑖𝜔0𝜏𝑘

𝑎

22
𝑦

∗
+ 𝑖𝜔

0

,

𝑐

∗
= −

𝑎

12
𝑎

21
𝑥

∗

1
𝑒

−𝑖𝜔0𝜏𝑘

(𝛼 + 𝑖𝜔

0
) (𝑎

22
𝑦

∗
+ 𝑖𝜔

0
)

,

𝑑

∗
= −

𝛼𝑎

12
𝑎

21
𝑥

∗

1
𝑒

−𝑖𝜔0𝜏𝑘

(𝛼 + 𝑖𝜔

0
) (𝛼

2
+ 𝑖𝜔

0
) (𝑎

22
𝑦

∗
+ 𝑖𝜔

0
)

.

(42)

In order to assume ⟨𝑞

∗
(𝑠), 𝑞(𝜃)⟩ = 1, we need to

determine the value of 𝐽 in the following part.
By virtue of (A.9), it derives that

⟨𝑞

∗
(𝑠) , 𝑞 (𝜃)⟩

= 𝐽 (1, 𝑎

∗
, 𝑏

∗

, 𝑐

∗
, 𝑑

∗

) (1, 𝑎, 𝑏, 𝑐, 𝑑)

𝑇

− ∫

0

−1

∫

𝜃

𝜌=0

𝐽 (1, 𝑎

∗
, 𝑏

∗
, 𝑐

∗
, 𝑑

∗
) 𝑒

−𝑖𝜔0𝜏𝑘(𝜌−𝜃)d𝜂 (𝜃)

× (1, 𝑎, 𝑏, 𝑐, 𝑑)

𝑇
𝑒

𝑖𝜔0𝜏𝑘𝜌d𝜌

= 𝐽 (1 + 𝑎𝑎

∗
+ 𝑏𝑏

∗

+ 𝑐𝑐

∗
+ 𝑑𝑑

∗

)

− 𝐽∫

0

−1

(1, 𝑎

∗
, 𝑏

∗

, 𝑐

∗
, 𝑑

∗

) 𝜃𝑒

𝑖𝜔0𝜏𝑘𝜃d𝜂 (𝜃) (1, 𝑎, 𝑏, 𝑐, 𝑑)

𝑇

= 𝐽 (1 + 𝑎𝑎

∗
+ 𝑏𝑏

∗

+ 𝑐𝑐

∗
+ 𝑑𝑑

∗

+ 𝐵) ,

(43)

where

𝐵 = [𝛼

2
𝑑

∗

+ 𝛽𝑎

∗
+ 𝑎 (𝑟

1
− 𝑎

∗
(𝑟

3
+ 𝑖𝜔

0
))

− 𝑎

11
𝑥

∗

1
− 𝑖𝜔

0
−

𝑟

1
𝑥

∗

2

𝑥

∗

1

]

− 𝑏 [𝑎

12
𝑥

∗

1
𝑒

−𝑖𝜔0𝜏𝑘
+ 𝑏

∗

(𝑎

22
𝑦

∗
+ 𝑖𝜔

0
)]

+ 𝑐 [𝑎

21
𝑏

∗

𝑦

∗
− 𝑐

∗
(𝛼 + 𝑖𝜔

0
)] + 𝑑 [𝛼𝑐

∗
− (𝛼

2
+ 𝑖𝜔

0
) 𝑑

∗

] .

(44)

Hence, we can choose 𝐽 as follows:

𝐽 =

1

1 + 𝑎𝑎

∗
+ 𝑏𝑏

∗

+ 𝑐𝑐

∗
+ 𝑑𝑑

∗

+ 𝐵

. (45)

Nextly, we will compute the coordinate to describe the
centre manifold 𝐶

0
at 𝜇 = 0. Let 𝑧

𝑡
be the solution of (37)

when 𝜇 = 0.

Define

𝜒 (𝑡) = ⟨𝑞

∗
, 𝑧

𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑧

𝑡
(𝜃) − 2Re {𝜒 (𝑡) 𝑞 (𝜃)} .

(46)

On the center manifold 𝐶

0
, it derives that

𝑊(𝑡, 𝜃) = 𝑊(𝜒 (𝑡) , 𝜒 (𝑡) , 𝜃) , (47)

where

𝑊(𝜒 (𝑡) , 𝜒 (𝑡) , 𝜃) = 𝑊

20
(𝜃)

𝜒

2

2

+ 𝑊

11
(𝜃) 𝜒𝜒

+ 𝑊

02

𝜒

2

2

+ ⋅ ⋅ ⋅ ,

(48)

𝜒 and 𝜒 are local coordinates for center manifold 𝐶

0
in the

direction of 𝑞∗ and 𝑞

∗.
It is noted that𝑊 is real if 𝑧

𝑡
is real, and we only consider

real solutions. For solution 𝑧

𝑡
∈ 𝐶

0
of (37), since 𝜇 = 0, it

derives that

̇𝜒 (𝑡) = 𝑖𝜔

0
𝜏

𝑘
𝜒 + 𝑞

∗
(0) 𝑓 (0,𝑊 (𝜒, 𝜒, 0) + 2Re {𝜒𝑞 (𝜃)})

≜ 𝑖𝜔

0
𝜏

𝑘
𝜒 + 𝑞

∗
(0) 𝑓

0
(𝜒, 𝜒) .

(49)

The above equation can be rewritten as follows:

̇𝜒 (𝑡) = 𝑖𝜔

0
𝜏

𝑘
𝜒 (𝑡) + 𝑔 (𝜒, 𝜒) , (50)

where

𝑔 (𝜒, 𝜒) = 𝑞

∗
(0) 𝑓

0
(𝜒, 𝜒) = 𝑔

20

𝜒

2

2

+ 𝑔

11
𝜒𝜒

+ 𝑔

02

𝜒

2

2

+ 𝑔

21

𝜒

2
𝜒

2

+ ⋅ ⋅ ⋅ .

(51)

It follows from (46) and (48) that

𝑧

𝑡
(𝜃) = 𝑊 (𝑡, 𝜃) + 2Re {𝜒 (𝑡) 𝑞 (𝜃)}

= 𝑊

20
(𝜃)

𝜒

2

2

+ 𝑊

11
(𝜃) 𝜒𝜒 + 𝑊

02
(𝜃)

𝜒

2

2

+ (1, 𝑎, 𝑏, 𝑐, 𝑑)

𝑇
𝑒

𝑖𝜔0𝜏𝑘𝜃
𝜒

+ (1, 𝑎, 𝑏, 𝑐, 𝑑)

𝑇

𝑒

−𝑖𝜔0𝜏𝑘𝜃
𝜒 + ⋅ ⋅ ⋅ .

(52)
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By virtue of (31), (32), and (33), it derives that

𝑔 (𝜒, 𝜒) = 𝑞

∗
(0) 𝑓

0
(𝜒, 𝜒)

= 𝑞

∗
(0) 𝑓 (0, 𝑧

𝑡
)

= 𝜏

𝑘
𝐽 (1, 𝑎

∗
, 𝑏

∗

, 𝑐

∗
, 𝑑

∗

)(

−𝑎

12
𝑧

1𝑡
(0) 𝑧

3𝑡
(−1)

0

0

0

0

)

= −𝜏

𝑘
𝐽𝑎

12
𝑧

1𝑡
(0) 𝑧

3𝑡
(−1)

= −𝜏

𝑘
𝐽𝑎

12
[𝜒 + 𝜒 + 𝑊

(1)

20
(0)

𝜒

2

2

+ 𝑊

(1)

11
(0) 𝜒𝜒

+ 𝑊

(1)

02
(0)

𝜒

2

2

+ 𝑜 (









(𝜒, 𝜒)









3

)]

× [𝜒 + 𝜒 + 𝑊

(3)

20
(−1)

𝜒

2

2

+ 𝑊

(3)

11
(−1) 𝜒𝜒

+𝑊

(3)

02
(−1)

𝜒

2

2

+ 𝑜 (









(𝜒, 𝜒)









3

)]

= −𝜏

𝑘
𝐽𝑎

12
[𝜒

2
+ 2𝜒𝜒 + 𝜒

2

+ (𝑊

(3)

11
(−1) + 𝑊

(1)

11
(0)

+

𝑊

(1)

20
(0) + 𝑊

(3)

20
(−1)

2

)𝜒

2
𝜒 + ⋅ ⋅ ⋅ ] .

(53)

By comparing the coefficients with (51), it gives that

𝑔

20
= −2𝑎

12
𝜏

𝑘
𝐽,

𝑔

11
= − 2𝑎

12
𝜏

𝑘
𝐽,

𝑔

02
= − 2𝑎

12
𝜏

𝑘
𝐽,

𝑔

21
= − 2𝑎

12
𝜏

𝑘
𝐽

× (𝑊

(3)

11
(−1) + 𝑊

(1)

11
(0) +

𝑊

(1)

20
(0) + 𝑊

(3)

20
(−1)

2

) .

(54)

Since 𝑔

21
is associated with 𝑊

20
(𝜃) and 𝑊

11
(𝜃), further

attempts should be carried out to compute 𝑊

20
(𝜃) and

𝑊

11
(𝜃), which can be found in the appendix.

Furthermore, we can compute 𝑔

21
based on (54). Hence,

the following values can be computed as follows:

𝑑

1
(0) =

𝑖

2𝜔

0
𝜏

𝑘

(𝑔

20
𝑔

11
− 2









𝑔

11









2

−









𝑔

02









2

3

) +

𝑔

21

2

,

𝛿

2
= −

Re {𝑑
1
(0)}

Re {𝜆 (𝜏
𝑘
)}

,

𝛾

2
= 2Re (𝑑

1
(0)) ,

𝑇

2
=

Im {𝑑

1
(0)} + 𝛿

2
Im {𝜆


(𝜏

𝑘
)}

𝜔

0
𝜏

𝑘

.

(55)

Some properties of bifurcating periodic solution in the
center manifold at the critical values 𝜏

𝑘
follow from [29].

Based on the analysis in Section 3.1 of this paper, the following
theorem can be concluded.

Theorem4. The properties of Hopf bifurcation are determined
by values computed in (55).

(i) 𝜇

2
determines directions of Hopf bifurcation: if 𝜇

2
>

0 (𝜇

2
< 0), then Hopf bifurcation is supercritical

(subcritical) and the bifurcating periodic solutions exist
for 𝜏 > 𝜏

𝑘
(𝜏 < 𝜏

𝑘
).

(ii) 𝛾

2
determines the stability of bifurcating periodic solu-

tions: bifurcating periodic solutions are stable (unsta-
ble) if 𝛾

2
< 0 (𝛾

2
> 0).

(iii) 𝑇

2
determines the period of bifurcating periodic solu-

tions: period increases (decreases) if 𝑇
2
> 0 (𝑇

2
< 0).

4. Numerical Simulation

In this section, values of parameters are partially taken from
numerical simulation of [13] and set in appropriate units,
which can be found as follows: 𝑟

1
= 7.889, 𝑎

11
= 0.7, 𝑎

12
= 0.7,

𝛽 = 2.657, 𝑟
3

= 0.9, 𝑎
21

= 2, 𝑟
2

= 1, 𝑎
22

= 0.8, and 𝛼 =

2. Numerical simulations are provided to support the theo-
retical findings obtained in Section 3 of this paper.

By virtue of given values of parameters, it can be com-
puted that

𝑎

21
𝛽 (𝑟

1
− 𝑟

3
) − 𝑎

11
𝑟

2
𝑟

3
= 36.5095 > 0, (56)

which implies that (6) holds and there exists a unique interior
equilibrium of model (5), that is, 𝐸∗(5.058, 14.932, 11.395).
Furthermore, it follows from given values of parameters that

(𝑎

12
𝑎

21
− 𝑎

11
𝑎

22
) [𝑎

12
𝑟

2
𝑟

3
+ 𝑎

22
𝛽 (𝑟

1
− 𝑟

3
)] = 13.0081 > 0,

(57)

which shows that (22) holds and (19) has a unique positive
root. Based on (24), the corresponding 𝜏

0
= 2.4576 can be

computed. According to Theorem 2, model is locally stable
around the interior equilibrium 𝐸

∗
(5.058, 14.932, 11.395)

when 𝜏 ∈ [0, 2.4576). Dynamical responses of model (5)
with 𝜏 = 1.26 are plotted in Figure 1 and phase portrait of
model (5) with 𝜏 = 1.26 is plotted in Figure 2. It should
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Figure 1: Dynamical responses of model (5) with 𝜏 = 1.26, which
shows that model (5) is stable around the interior equilibrium
(5.058, 14.932, 11.395).
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Figure 2: Phase portrait of model (5) with 𝜏 = 1.26 correspond-
ing to stable dynamical responses in Figure 1, which shows that
model (5) is asymptotically stable around the interior equilibrium
(5.058, 14.932, 11.395).

be noted that 𝜏 = 1.26 in Figures 1 and 2 is randomly
selected in the interval [0, 2.4576), which is enough to merit
the above mathematical study. It follows from (A.18) that
𝜇

2
= 3.9152 > 0, 𝛾

2
= −0.7831 < 0, and 𝑇

2
=

1.9724 > 0. As 𝜏 increases through 𝜏

0
, a periodic solution

caused by the phenomenon of Hopf bifurcation occurs, that
is, a family of periodic solutions bifurcate from the interior
equilibrium 𝐸

∗ based on Theorem 3. Since 𝜇

2
> 0 and

𝛾

2
< 0, the Hopf bifurcation is supercritical, the directions

of the Hopf bifurcation are 𝜏 > 𝜏

0
, and these bifurcating

periodic solutions from the interior equilibrium 𝐸

∗ at 𝜏
0
are

stable based on Theorem 4. Dynamical responses of model
(5) with 𝜏 = 2.5 are plotted in Figure 3, since 𝜏 = 2.5 > 𝜏

0
,

which shows that model (5) is unstable around the interior
equilibrium and stable periodic solutions bifurcate from the
interior equilibrium 𝐸

∗
(5.058, 14.932, 11.395). Furthermore,

Figure 4 indicates a limit cycle corresponding to the stable
periodic solutions plotted in Figure 3.
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Figure 3: Dynamical responses of model (5) with 𝜏 = 2.5, which
shows that model (5) is unstable around the interior equilibrium
and stable periodic solutions bifurcate from the interior equilibrium
(5.058, 14.932, 11.395).
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Figure 4: A limit cycle corresponding to the stable periodic
solutions plotted in Figure 3.

5. Conclusion

In this paper, a dynamical prey predator model with discrete
hunting delay and distributed maturation delay is proposed
to investigate the dynamic effect of time delay and stage
structure on population dynamics. Many species in the
natural world have a life history that takes them through
two stages, juvenile stage and adult stage. Individuals in each
stage are identical in biological characteristics, and some
vital rates (rates of survival, development, and reproduction)
of individuals in a population almost always depend on
stage structure. In model (4) with strong generic kernel [13],
stage structure of prey population is not considered. It is
well known that the immature prey population is usually
considered as an easier target for predators compared with
mature prey population. Hence, the mature prey population
predated by predator population can be ignored [1], and it is
necessary to investigate the dynamic effect of stage structure
on population dynamics of model (4).
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By incorporating stage structure for prey population
into the model, the work done in [13] is extended in this
paper, where discrete delay and distributed delay for predator
population described by an integral with a strong delay
kernel are also studied in the proposed model. In Section 3
of this paper, conditions for existence of two boundary
equilibria and a unique interior equilibrium are discussed.
Local stability around two feasible boundary equilibria is
analyzed in Theorem 1. By taking the discrete delay as a
parameter, local stability analysis around the unique interior
equilibrium is investigated due to variation of discrete delay
inTheorem 2. It reveals that discrete delay has dynamic effect
on population dynamics, which shows that model (5) is
locally stable around interior equilibrium for any nonnega-
tive discrete delay provided that (𝑎

12
𝑎

21
− 𝑎

11
𝑎

22
)[𝑎

12
𝑟

2
𝑟

3
+

𝑎

22
𝛽(𝑟

1
− 𝑟

3
)] ≤ 0 and model (5) remains locally stable

around interior equilibrium within 𝜏 ∈ [0, 𝜏

0
) under the

assumption (𝑎

12
𝑎

21
− 𝑎

11
𝑎

22
)[𝑎

12
𝑟

2
𝑟

3
+ 𝑎

22
𝛽(𝑟

1
− 𝑟

3
)] >

0. According to Hopf bifurcation theorem for functional
differential equations, it can be found that Hopf bifurcation
occurs when the discrete delay crosses through a sequence
of critical values and corresponding stable limit cycle is also
observed, which can be found inTheorem 3. Further attempts
are made to study the directions of Hopf bifurcation and
stability of the bifurcating periodic solutions inTheorem 4.

Comparedwith the previous relatedwork [13], theoretical
results obtained in this paper concentrate on stage-structured
prey predator model with discrete hunting delay and dis-
tributed maturation delay, which are potentially beneficial
for administrative agency to have a deep insight on the
coexistence and interaction mechanism of prey predator
ecosystem in the real world. It makes work done in this paper
has some positive and new feature.

Appendix

The detailed mathematical arguments about computation
of 𝑊

20
(𝜃) and 𝑊

11
(𝜃) in Theorem 4 can be found in the

following part.
By virtue of (37) and (46), we have

̇

𝑊 = �̇�

𝑡
− ̇𝜒𝑞 −

̇

𝜒 𝑞

= {

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (𝜃)} , 𝜃 ∈ [−1, 0)

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (0) + 𝑓

0
} , 𝜃 = 0

≜ 𝐴𝑊 + 𝐻(𝜒, 𝜒, 𝜃) ,

(A.1)

where

𝐻(𝜒, 𝜒, 𝜃) = 𝐻

20
(𝜃)

𝜒

2

2

+ 𝐻

11
(𝜃) 𝜒𝜒 + 𝐻

02
(𝜃)

𝜒

2

2

+ ⋅ ⋅ ⋅ .

(A.2)

By substituting the corresponding series into (A.1) and
comparing the coefficients, we have

(𝐴 − 2𝑖𝜔

0
𝜏

𝑘
)𝑊

20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴𝑊

11
(𝜃) = −𝐻

11
(𝜃) , . . .

(A.3)

It follows from (A.1) that for 𝜃 ∈ [−1, 0),

𝐻(𝜒, 𝜒, 𝜃) = −𝑞

∗
(0) 𝑓

0
𝑞 (𝜃) − 𝑞

∗
(0) 𝑓

0
𝑞 (𝜃)

= −𝑔 (𝜒, 𝜒) 𝑞 (𝜃) − 𝑔 (𝜒, 𝜒) 𝑞 (𝜃) .

(A.4)

By comparing coefficients in (A.2) with those in (54), it
derives that

𝐻

20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) , (A.5)

𝐻

11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) . (A.6)

Based on the definition of𝐴 and (A.3) and (A.5), it can be
obtained that

̇

𝑊

20
(𝜃) = 2𝑖𝜔

0
𝜏

𝑘
𝑊

20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) . (A.7)

For 𝑞(𝜃) = (1, 𝑎, 𝑏, 𝑐, 𝑑)

𝑇
𝑒

𝑖𝜔0𝜏𝑘𝜃,

𝑊

20
(𝜃) =

𝑖𝑔

20

𝜔

0
𝜏

𝑘

𝑞 (0) 𝑒

𝑖𝜔0𝜏𝑘𝜃
+

𝑖𝑔

02

3𝜔

0
𝜏

𝑘

𝑞 (0) 𝑒

−𝑖𝜔0𝜏𝑘𝜃

+ 𝐺

1
𝑒

2𝑖𝜔0𝜏𝑘𝜃
,

(A.8)

where 𝐺

1
= (𝐺

(1)

1
, 𝐺

(2)

1
, 𝐺

(3)

1
, 𝐺

(4)

1
, 𝐺

(5)

1
) is a constant vector.

Similarly, it follows from (A.3) and (A.6) that

𝑊

11
(𝜃) = −

𝑖𝑔

11

𝜔

0
𝜏

𝑘

𝑞 (0) 𝑒

𝑖𝜔0𝜏𝑘𝜃
+

𝑖𝑔

11

𝜔

0
𝜏

𝑘

𝑞 (0) 𝑒

−𝑖𝜔0𝜏𝑘𝜃
+ 𝐺

2
,

(A.9)

where 𝐺

2
= (𝐺

(1)

2
, 𝐺

(2)

2
, 𝐺

(3)

2
, 𝐺

(4)

2
, 𝐺

(5)

2
) is a constant vector.

Subsequently, values of 𝐺
1
and 𝐺

2
should be computed.

By using the definition of 𝐴 and (A.1), we have

∫

0

−1

d𝜂𝑊
20

(𝜃) = 2𝑖𝜔

0
𝜏

𝑘
𝑊

20
(0) − 𝐻

20
(0) ,

(A.10)

∫

0

−1

d𝜂 (𝜃)𝑊

11
(𝜃) = −𝐻

11
(0) ,

(A.11)

where 𝜂(𝜃) = 𝜂(0, 𝜃). Based on (A.1), it derives that in the case
of 𝜃 = 0,

𝐻(𝜒, 𝜒, 0) = −2Re {𝑞∗ (0) 𝑓
0
𝑞 (0)} + 𝑓 (0)

= −𝑞

∗
(0) 𝑓

0
𝑞 (0) − 𝑞

∗
(0) 𝑓

0
𝑞 (0) + 𝑓

0

= −𝑔 (𝜒, 𝜒) 𝑞 (0) − 𝑔 (𝜒, 𝜒) 𝑞 (0) + 𝑓

0
,

(A.12)

which follows that

𝐻

20
(𝜃)

𝜒

2

2

+ 𝐻

11
(𝜃) 𝜒𝜒 + 𝐻

02
(𝜃)

𝜒

2

2

+ ⋅ ⋅ ⋅

= −𝑞 (0) (𝑔

20

𝜒

2

2

+ 𝑔

11
𝜒𝜒 + 𝑔

02

𝜒

2

2

+ ⋅ ⋅ ⋅ )

− 𝑞 (0) (𝑔

20

𝜒

2

2

+ 𝑔

11
𝜒𝜒 + 𝑔

02

𝜒

2

2

+ ⋅ ⋅ ⋅ ) + 𝑓

0
.

(A.13)
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By virtue of (31), it gives that

𝑓

0
= 𝜏

𝑘
(

−𝑎

12
𝑧

1𝑡
(0) 𝑧

3𝑡
(−1)

0

0

0

0

). (A.14)

By virtue of (46), it can be obtained that

𝑧

𝑡
(𝜃) = 𝑊 (𝑡, 𝜃) + 2Re {𝜒 (𝑡) 𝑞 (𝜃)}

= 𝑊 (𝑡, 𝜃) + 𝜒 (𝑡) 𝑞 (𝜃) + 𝜒 (𝑡) 𝑞 (𝜃)

= 𝑊

20
(𝜃)

𝜒

2

2

+ 𝑊

21
(𝜃) 𝜒𝜒 + 𝜒 (𝑡) 𝑞 (𝜃)

+ 𝜒 (𝑡) 𝑞 (𝜃) + ⋅ ⋅ ⋅ ,

(A.15)

and then we have

𝑓

0
= −𝑎

12
𝜏

𝑘
(

𝑒

−𝑖𝜔0𝜏𝑘

0

0

0

0

)𝜒

2

− 2𝑎

12
𝜏

𝑘
(

cos𝜔
0
𝜏

𝑘

0

0

0

0

)𝜒𝜒 + ⋅ ⋅ ⋅ .

(A.16)

According to (A.13) and (A.16), we have

𝐻

20
(0) = −𝑔

20
𝑞 (0) − 𝑔

02
𝑞 (0) − 2𝑎

12
𝜏

𝑘
(

𝑒

−𝑖𝜔0𝜏𝑘

0

0

0

0

),

(A.17)

𝐻

11
(0) = −𝑔

11
𝑞 (0) − 𝑔

11
𝑞 (0) − 2𝑎

12
𝜏

𝑘
(

cos𝜔
0
𝜏

𝑘

0

0

0

0

).

(A.18)

Since 𝑖𝜔

0
𝜏

𝑘
is the eigenvalue of 𝐴(0) and 𝑞(0) is the

corresponding eigenvector, we obtain that

(𝑖𝜔

0
𝜏

𝑘
𝐼 − ∫

0

−1

𝑒

𝑖𝜔0𝜏𝑘𝜃d𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝜔

0
𝜏

𝑘
𝐼 − ∫

0

−1

𝑒

−𝑖𝜔0𝜏𝑘𝜃d𝜂 (𝜃)) 𝑞 (0) = 0,

(A.19)

where 𝐼 is the identity matrix.
By substituting (A.8) and (A.17) into (A.10), it can be

obtained that

(2𝑖𝜔

0
𝜏

𝑘
𝐼 − ∫

0

−1

𝑒

2𝑖𝜔0𝜏𝑘𝜃d𝜂 (𝜃))𝐺

1
= −2𝑎

12
𝜏

𝑘
(

𝑒

−𝑖𝜔0𝜏𝑘

0

0

0

0

),

(A.20)

which can be rewritten as follows:

(

(

2𝑖𝜔

0
+ 𝑎

11
𝑥

∗

1
+

𝑟

1
𝑥

∗

2

𝑥

∗

1

−𝑟

1
𝑎

12
𝑥

∗

1
𝑒

−2𝑖𝜔0𝜏𝑘
0 0

−𝛽 2𝑖𝜔

0
+ 𝑟

3
0 0 0

0 0 2𝑖𝜔

0
+ 𝑎

22
𝑦

∗
−𝑎

21
𝑦

∗
0

0 0 0 2𝑖𝜔

0
+ 𝛼 −𝛼

−𝛼

2
0 0 0 2𝑖𝜔

0
+ 𝛼

2

)

)

𝐺

1
= −2𝑎

12
(

𝑒

−𝑖𝜔0𝜏𝑘

0

0

0

0

). (A.21)

Based onGrammar Law [2],𝐺(1)
1
,𝐺(2)
1
,𝐺(3)
1
,𝐺(4)
1
, and𝐺

(5)

1
can

be obtained as follows:

𝐺

(1)

1
= −

2𝑎

12

𝑈

1









































𝑒

−𝑖𝜔0𝜏𝑘
−𝑟

1
𝑎

12
𝑥

∗

1
𝑒

−2𝑖𝜔0𝜏𝑘
0 0

0 2𝑖𝜔

0
+ 𝑟

3
0 0 0

0 0 2𝑖𝜔

0
+ 𝑎

22
𝑦

∗
−𝑎

21
𝑦

∗
0

0 0 0 2𝑖𝜔

0
+ 𝛼 −𝛼

0 0 0 0 2𝑖𝜔

0
+ 𝛼

2









































,
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𝐺

(2)

1
= −

2𝑎

12

𝑈

1



















































2𝑖𝜔

0
+ 𝑎

11
𝑥

∗

1
+

𝑟

1
𝑥

∗

2

𝑥

∗

1

𝑒

−𝑖𝜔0𝜏𝑘
𝑎

12
𝑥

∗

1
𝑒

−2𝑖𝜔0𝜏𝑘
0 0

−𝛽 0 0 0 0

0 0 2𝑖𝜔

0
+ 𝑎

22
𝑦

∗
−𝑎

21
𝑦

∗
0

0 0 0 2𝑖𝜔

0
+ 𝛼 −𝛼

−𝛼

2
0 0 0 2𝑖𝜔

0
+ 𝛼

2



















































,

𝐺

(3)

1
= −

2𝑎

12

𝑈

1



















































2𝑖𝜔

0
+ 𝑎

11
𝑥

∗

1
+

𝑟

1
𝑥

∗

2

𝑥

∗

1

−𝑟

1
𝑒

−𝑖𝜔0𝜏𝑘
0 0

−𝛽 2𝑖𝜔

0
+ 𝑟

3
0 0 0

0 0 0 −𝑎

21
𝑦

∗
0

0 0 0 2𝑖𝜔

0
+ 𝛼 −𝛼

−𝛼

2
0 0 0 2𝑖𝜔

0
+ 𝛼

2



















































,

𝐺

(4)

1
= −

2𝑎

12

𝑈

1



















































2𝑖𝜔

0
+ 𝑎

11
𝑥

∗

1
+

𝑟

1
𝑥

∗

2

𝑥

∗

1

−𝑟

1
𝑎

12
𝑥

∗

1
𝑒

−2𝑖𝜔0𝜏𝑘
𝑒

−𝑖𝜔0𝜏𝑘
0

−𝛽 2𝑖𝜔

0
+ 𝑟

3
0 0 0

0 0 2𝑖𝜔

0
+ 𝑎

22
𝑦

∗
0 0

0 0 0 0 −𝛼

−𝛼

2
0 0 0 2𝑖𝜔

0
+ 𝛼

2



















































,

𝐺

(5)

1
= −

2𝑎

12

𝑈

1



















































2𝑖𝜔

0
+ 𝑎

11
𝑥

∗

1
+

𝑟

1
𝑥

∗

2

𝑥

∗

1

−𝑟

1
𝑎

12
𝑥

∗

1
𝑒

−2𝑖𝜔0𝜏𝑘
0 𝑒

−𝑖𝜔0𝜏𝑘

−𝛽 2𝑖𝜔

0
+ 𝑟

3
0 0 0

0 0 2𝑖𝜔

0
+ 𝑎

22
𝑦

∗
−𝑎

21
𝑦

∗
0

0 0 0 2𝑖𝜔

0
+ 𝛼 0

−𝛼

2
0 0 0 0



















































,

(A.22)

where

𝑈

1

=





































2𝑖𝜔0 + 𝑎11𝑥
∗

1
+
𝑟1𝑥
∗

2

𝑥
∗

1

−𝑟1 𝑎12𝑥
∗

1
𝑒
−2𝑖𝜔0𝜏𝑘 0 0

−𝛽 2𝑖𝜔0 + 𝑟3 0 0 0

0 0 2𝑖𝜔0 + 𝑎22𝑦
∗
−𝑎21𝑦

∗
0

0 0 0 2𝑖𝜔0 + 𝛼 −𝛼

−𝛼
2

0 0 0 2𝑖𝜔0 + 𝛼
2





































.

(A.23)

Similarly, substituting (A.9) and (A.18) into (A.11), it can
be obtained that

(

(

𝑎

11
𝑥

∗

1
+

𝑟

1
𝑥

∗

2

𝑥

∗

1

−𝑟

1
𝑎

12
𝑥

∗

1
0 0

−𝛽 𝑟

3
0 0 0
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Based on Grammar Law [2], 𝐺(1)
2
, 𝐺(2)
2
, and 𝐺
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can be

obtained as follows:
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where
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. (A.26)

It follows from the above computation and analysis that
𝑊

20
(𝜃) and 𝑊

11
(𝜃) can be determined based on (A.8) and

(A.9).
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