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Let 𝑛 be a positive integer, and an operator𝑇 ∈ 𝐵(H) is called a class𝐴(𝑛) operator if |𝑇1+𝑛|2/(1+𝑛) ≥ |𝑇|2 and 𝑛-paranormal operator
if ‖𝑇1+𝑛𝑥‖1/(1+𝑛) ≥ ||𝑇𝑥|| for every unit vector 𝑥 ∈H, which are common generalizations of classA and paranormal, respectively. In
this paper, firstly we consider the tensor products for class𝐴(𝑛) operators, giving a necessary and sufficient condition for𝑇⊗𝑆 to be
a class 𝐴(𝑛) operator when 𝑇 and 𝑆 are both non-zero operators; secondly we consider the properties for 𝑛-paranormal operators,
showing that a 𝑛-paranormal contraction is the direct sum of a unitary and a 𝐶

.0
completely non-unitary contraction.

1. Introduction

LetH be a separable complex Hilbert space and letC be the
set of complex numbers. Let 𝐵(H) denote the 𝐶∗-algebra of
all bounded linear operators acting on H. If 𝑇 ∈ 𝐵(H), we
will write ker𝑇 and ran𝑇 for the null space and range of 𝑇,
respectively. Also let 𝛼(𝑇) = dim ker𝑇, 𝛽(𝑇) = dim ker𝑇∗
and let 𝜎(𝑇), 𝜎

𝑝
(𝑇) denote the spectrum, point spectrum of

𝑇. Let 𝑝 = 𝑝(𝑇) be the ascent of 𝑇, that is, the smallest
nonnegative integer 𝑝 such that ker𝑇𝑝 = ker𝑇𝑝+1. If such
integer does not exist, we put 𝑝(𝑇) = ∞. Analogously, let
𝑞 = 𝑞(𝑇) be the descent of 𝑇, that is, the smallest nonnegative
integer 𝑞 such that ran𝑇𝑞 = ran𝑇𝑞+1, and if such integer
does not exist, we put 𝑞(𝑇) = ∞. An operator 𝑇 ∈ 𝐵(H)
is called upper (lower, resp.) semi-Fredholm if ran𝑇 is closed
and 𝛼(𝑇) < ∞ (𝛽(𝑇) < ∞, resp.). If 𝑇 ∈ 𝐵(H) is either
an upper semi-Fredholm operator or a lower semi-Fredholm
operator, then 𝑇 is called a semi-Fredholm operator, and the
index of a semi-Fredholm operator 𝑇 ∈ 𝐵(H), denoted by
ind(𝑇), is given by the integer ind(𝑇) = 𝛼(𝑇) − 𝛽(𝑇). If both
𝛼(𝑇) and𝛽(𝑇) are finite, then𝑇 is called a Fredholm operator.
An operator 𝑇 ∈ 𝐵(H) is called Weyl if it is Fredholm of
index zero and Browder if it is Fredholm of finite ascent and
descent. The essential spectrum 𝜎

𝑒
(𝑇), the Weyl spectrum

𝜎
𝑤
(𝑇), and the Browder spectrum 𝜎

𝑏
(𝑇) of 𝑇 ∈ 𝐵(H) are

defined by 𝜎
𝑒
(𝑇) = {𝜆 ∈ C : 𝑇 − 𝜆 is not Fredholm}, 𝜎

𝑤
(𝑇) =

{𝜆 ∈ C : 𝑇 − 𝜆 is not Weyl}, and 𝜎
𝑏
(𝑇) = {𝜆 ∈ C : 𝑇 − 𝜆 is

not Browder}.
Let H, K be complex Hilbert spaces and H ⊗ K the

tensor product of H, K, that is, the completion of the
algebraic tensor product of H, K with the inner product
⟨𝑥
1
⊗ 𝑦
1
, 𝑥
2
⊗ 𝑦
2
⟩ = ⟨𝑥

1
, 𝑥
2
⟩⟨𝑦
1
, 𝑦
2
⟩ for 𝑥

1
, 𝑥
2
∈H, 𝑦

1
, 𝑦
2
∈

K. Let 𝑇 ∈ 𝐵(H) and 𝑆 ∈ 𝐵(K). 𝑇 ⊗ 𝑆 ∈ 𝐵(H ⊗K) denotes
the tensor product of 𝑇 and 𝑆; that is, (𝑇⊗𝑆)(𝑥⊗𝑦) = 𝑇𝑥⊗𝑆𝑦
for 𝑥 ∈H, 𝑦 ∈K.

A contraction is an operator 𝑇 such that ‖𝑇‖ ≤ 1;
equivalently, ‖𝑇𝑥‖ ≤ ‖𝑥‖ for every 𝑥 ∈ H. A contraction
𝑇 is said to be a proper contraction if ‖𝑇𝑥‖ < ‖𝑥‖ for
every nonzero 𝑥 ∈ H. A strict contraction is an operator
𝑇 such that ‖𝑇‖ < 1. A strict contraction is a proper
contraction, but a proper contraction is not necessarily a
strict contraction, although the concepts of strict and proper
contraction coincide for compact operators. A contraction 𝑇
is of class 𝐶

0.
if ‖𝑇𝑛𝑥‖ → 0 when 𝑛 → ∞ for every 𝑥 ∈ H

(i.e., 𝑇 is a strongly stable contraction) and it is said to be of
class 𝐶

1.
if lim

𝑛→∞
‖𝑇
𝑛
𝑥‖ > 0 for every nonzero 𝑥 ∈ H.

Classes𝐶
.0
and𝐶

.1
are defined by considering𝑇∗ instead of𝑇

and we define the class𝐶
𝛼𝛽

for 𝛼, 𝛽 = 0, 1 by𝐶
𝛼𝛽
= 𝐶
𝛼.
⋂𝐶
.𝛽
.

An isometry is a contraction for which ‖𝑇𝑥‖ = ‖𝑥‖ for every
𝑥 ∈H.

Recall that 𝑇 ∈ 𝐵(H) is called 𝑝-hyponormal for 𝑝 > 0 if
(𝑇
∗
𝑇)
𝑝
−(𝑇𝑇

∗
)
𝑝
≥ 0 [1]; when 𝑝 = 1,𝑇 is called hyponormal.
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And 𝑇 is called paranormal if ‖𝑇𝑥‖2 ≤ ‖𝑇2𝑥‖‖𝑥‖ for all
𝑥 ∈ H [2, 3]. And 𝑇 is called normaloid if ‖𝑇𝑛‖ = ‖𝑇‖𝑛
for all 𝑛 ∈ N (equivalently, ‖𝑇‖ = 𝑟(𝑇), the spectral radius
of 𝑇). In order to discuss the relations between paranormal
operators and 𝑝-hyponormal and log-hyponormal operators
(𝑇 is invertible and log𝑇∗𝑇 ≥ log𝑇𝑇∗), Furuta et al. [4]
introduced a very interesting class of operators: class 𝐴
defined by |𝑇2| − |𝑇|2 ≥ 0, where |𝑇| = (𝑇∗𝑇)1/2 which
is called the absolute value of 𝑇, and they showed that class
𝐴 is a subclass of paranormal and contains 𝑝-hyponormal
and log-hyponormal operators. Recently Yuan and Gao [5]
introduced class𝐴(𝑛) (i.e., |𝑇1+𝑛|2/(1+𝑛) ≥ |𝑇|2) operators and
𝑛-paranormal operators (i.e., ‖𝑇1+𝑛𝑥‖1/(1+𝑛) ≥ ‖𝑇𝑥‖ for every
unit vector 𝑥 ∈H) for some positive integer 𝑛.

For more interesting properties on class 𝐴(𝑛) and 𝑛-
paranormal operators, see [5–8].

In general, the following implications hold:

𝑝-hyponormal ⊆ class𝐴 ⊆ paranormal ⊆ 𝑛-paranormal,

𝑝-hyponormal ⊆ class𝐴 ⊆ class𝐴 (𝑛) ⊆ 𝑛-paranormal.
(1)

In this paper, firstly we consider the tensor products
for class 𝐴(𝑛) operators, giving a necessary and sufficient
condition for 𝑇 ⊗ 𝑆 to be a class 𝐴(𝑛) operator when 𝑇
and 𝑆 are both nonzero operators; secondly we consider the
properties for 𝑛-paranormal operators, showing that a 𝑛-
paranormal contraction is the direct sum of a unitary and a
𝐶
.0
completely nonunitary contraction.

2. Tensor Products for Class 𝐴(𝑛) Operators

Let 𝑇 ⊗ 𝑆 denote the tensor product on the product space
H ⊗K for nonzero 𝑇 ∈ 𝐵(H) and 𝑆 ∈ 𝐵(K). The operation
of taking tensor products 𝑇 ⊗ 𝑆 preserves many properties of
𝑇 ∈ 𝐵(H) and 𝑆 ∈ 𝐵(K), but it was not always this way. For
example, the normaloid property is invariant under tensor
products, the spectraloid property is not (see [9, pp. 623 and
631]), and 𝑇 ⊗ 𝑆 is normal if and only if 𝑇 and 𝑆 are normal
[10, 11]; however, there exist paranormal operators 𝑇 ∈ 𝐵(H)
and 𝑆 ∈ 𝐵(K) such that 𝑇 ⊗ 𝑆 is not paranormal [12]. Duggal
[13] showed that for nonzero 𝑇 ∈ 𝐵(H) and 𝑆 ∈ 𝐵(K),
𝑇 ⊗ 𝑆 is 𝑝-hyponormal if and only if 𝑇, 𝑆 are 𝑝-hyponormal.
This result was extended to 𝑝-quasihyponormal operators,
class𝐴 operators, log-hyponormal operators, and class𝐴(𝑠, 𝑡)
operators ((|𝑇∗|𝑡|𝑇|2𝑠|𝑇∗|𝑡)𝑡/(𝑠+𝑡) ≥ |𝑇∗|2𝑡, 𝑠, 𝑡 > 0) in [14–16],
respectively. The following theorem gives a necessary and
sufficient condition for 𝑇⊗𝑆 to be a class𝐴(𝑛) operator when
𝑇 and 𝑆 are both nonzero operators.

Theorem 1. Let 𝑇 ∈ 𝐵(H) and 𝑆 ∈ 𝐵(K) be nonzero
operators. Then 𝑇 ⊗ 𝑆 ∈ 𝐵(H ⊗K) is a class 𝐴(𝑛) operator
if and only if 𝑇 and 𝑆 are class 𝐴(𝑛) operators.

Proof. It is clear that 𝑇⊗ 𝑆 is a class 𝐴(𝑛) operator if and only
if






(𝑇 ⊗ 𝑆)

1+𝑛




2/(1+𝑛)

≥ |𝑇 ⊗ 𝑆|
2

⇐⇒






𝑇
1+𝑛
⊗ 𝑆
1+𝑛




2/(1+𝑛)

≥ |𝑇|
2
⊗ |𝑆|
2

⇐⇒ (






𝑇
1+𝑛




2/(1+𝑛)

− |𝑇|
2
)

⊗






𝑆
1+𝑛




2/(1+𝑛)

+ |𝑇|
2

⊗ (






𝑆
1+𝑛




2/(1+𝑛)

− |𝑆|
2
) ≥ 0.

(2)

Therefore, the sufficiency is clear.
Conversely, suppose that𝑇⊗𝑆 is a class𝐴(𝑛) operator. Let

𝑥 ∈H and 𝑦 ∈K be arbitrary. Then we have

⟨(






𝑇
1+𝑛




2/(1+𝑛)

− |𝑇|
2
)𝑥, 𝑥⟩⟨






𝑆
1+𝑛




2/(1+𝑛)

𝑦, 𝑦⟩

+ ⟨|𝑇|
2
𝑥, 𝑥⟩⟨(






𝑆
1+𝑛




2/(1+𝑛)

− |𝑆|
2
)𝑦, 𝑦⟩ ≥ 0.

(3)

On the contrary, assume that 𝑇 is not a class 𝐴(𝑛) operator;
then there exists 𝑥

0
∈H such that

⟨(






𝑇
1+𝑛




2/(1+𝑛)

− |𝑇|
2
)𝑥
0
, 𝑥
0
⟩ = 𝛼 < 0,

⟨|𝑇|
2
𝑥
0
, 𝑥
0
⟩ = 𝛽 > 0.

(4)

From (3), we have

𝛼⟨






𝑆
1+𝑛




2/(1+𝑛)

𝑦, 𝑦⟩ + 𝛽⟨(






𝑆
1+𝑛




2/(1+𝑛)

− |𝑆|
2
)𝑦, 𝑦⟩ ≥ 0

(5)

for all 𝑦 ∈K; that is,

(𝛼 + 𝛽)⟨






𝑆
1+𝑛




2/(1+𝑛)

𝑦, 𝑦⟩ ≥ 𝛽⟨|𝑆|
2
𝑦, 𝑦⟩ (6)

for all 𝑦 ∈K. Therefore, 𝑆 is a class 𝐴(𝑛) operator. We have

⟨|𝑆|
2
𝑦, 𝑦⟩ =





𝑆𝑦





2

,

⟨






𝑆
1+𝑛




2/(1+𝑛)

𝑦, 𝑦⟩ =














𝑆
1+𝑛




1/(1+𝑛)

𝑦









2

.

(7)

So we have

(𝛼 + 𝛽)














𝑆
1+𝑛




1/(1+𝑛)

𝑦









2

≥ 𝛽




𝑆𝑦





2 (8)

for all 𝑦 ∈K by (6). By (8), we have

(𝛼 + 𝛽)














𝑆
1+𝑛




1/(1+𝑛)








2

≥ 𝛽‖𝑆‖
2
. (9)

Since self-adjoint operators are normaloid, we have













𝑆
1+𝑛




1/(1+𝑛)








1+𝑛

=










(






𝑆
1+𝑛




1/(1+𝑛)

)

1+𝑛







=






𝑆
1+𝑛



≤ ‖𝑆‖
1+𝑛
.

(10)
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Hence, we have














𝑆
1+𝑛




1/(1+𝑛)








≤ ‖𝑆‖ . (11)

By (9) and (11), we have

(𝛼 + 𝛽) ‖𝑆‖
2
≥ 𝛽‖𝑆‖

2
. (12)

This implies that 𝑆 = 0. This contradicts the assumption
𝑆 ̸= 0. Hence 𝑇 must be a class 𝐴(𝑛) operator. A similar
argument shows that 𝑆 is also a class𝐴(𝑛) operator.The proof
is complete.

3. On 𝑛-Paranormal Operators

An operator 𝑇 ∈ 𝐵(H) is said to have the single valued
extension property (SVEP) at 𝜆 ∈ C if, for every open
neighborhoodG of 𝜆, the only function 𝑓 ∈ 𝐻(G) such that
(𝑇 − 𝜇)𝑓(𝜇) = 0 on 𝐺 is 0 ∈ 𝐻(G), where 𝐻(G) means the
space of all analytic functions on𝐺.When𝑇 has SVEP at each
𝜆 ∈ C, say that 𝑇 has SVEP.

In the following, we consider the properties of 𝑛-
paranormal operators. References [17, 18] showed that para-
normal contractions and∗-paranormal contractions in𝐵(H)
are the direct sum of a unitary and a 𝐶

.0
contraction. In the

following theorem, we extend this result to 𝑛-paranormal
operators.

Theorem 2 (see [19]). Let 𝑇 be a contraction of 𝑛-paranormal
operators for a positive integer 𝑛. Then 𝑇 is the direct sum of a
unitary and a 𝐶

.0
completely nonunitary contraction.

Proof. If 𝑇 is a contraction, then the sequence {𝑇𝑘𝑇∗𝑘} is
a decreasing sequence of self-adjoint operators, converging
strongly to a contraction. Let 𝐴 = (lim

𝑘→∞
𝑇
𝑘
𝑇
∗𝑘
)
1/2. 𝐴 is

self-adjoint and 0 ≤ 𝐴 ≤ 𝐼 and 𝑇𝐴2𝑇∗ = 𝐴2. By [20] we
have that there exists an isometry 𝑉: ran(𝐴) → ran(𝐴) such
that 𝑉𝐴 = 𝐴𝑇∗ on ran(𝐴) and ‖𝐴𝑉𝑛𝑥‖ → ‖𝑥‖ for every
𝑥 ∈ ran(𝐴). 𝑉 can be extended to a bounded linear operator
on H; we still denote it by 𝑉. Let 𝑥

𝑘
= 𝐴𝑉

𝑘
𝑥, 𝑘 ∈ N ∪ {0}.

Then for all nonnegative integers𝑚,

𝑇
𝑚
𝑥
𝑚+𝑘
= 𝑇
𝑚
𝐴𝑉
𝑘+𝑚
𝑥 = 𝐴𝑉

∗𝑚
𝑉
𝑘+𝑚
𝑥 = 𝐴𝑉

𝑘
𝑥 = 𝑥

𝑘
. (13)

So we have, for all𝑚 ≤ 𝑘, 𝑇𝑚𝑥
𝑘
= 𝑥
𝑘−𝑚

. The sequence {‖𝑥
𝑛
‖}

is a bounded above increasing sequence. In the following, we
will prove that if 𝑇 is 𝑛-paranormal for a positive integer 𝑛,
then 𝐴 is a projection. Firstly we prove that {𝑥

𝑘
} is a constant

sequence. Suppose that 𝑇 is a 𝑛-paranormal operator for a
positive integer 𝑛.Then, for all 𝑘 ≥ 1 andnonzero𝑥 ∈ ran(𝐴),





𝑥
𝑘






2

=




𝑇𝑥
𝑘+1






2

≤






𝑇
1+𝑛
𝑥
𝑘+1







2/(1+𝑛)



𝑥
𝑘+1






2𝑛/(1+𝑛)

=




𝑥
𝑘+1−(1+𝑛)






2/(1+𝑛)



𝑥
𝑘+1






2𝑛/(1+𝑛)

=




𝑥
𝑘−𝑛






2/(1+𝑛)



𝑥
𝑘+1






2𝑛/(1+𝑛)

,

(14)

so we have




𝑥
𝑘





≤




𝑥
𝑘−𝑛






1/(𝑛+1)



𝑥
𝑘+1






𝑛/(𝑛+1)

≤

1

𝑛 + 1

(




𝑥
𝑘−𝑛





+ 𝑛




𝑥
𝑘+1





) .

(15)

Hence,

𝑛 (




𝑥
𝑘+1





−




𝑥
𝑘





) ≥




𝑥
𝑘





−




𝑥
𝑘−𝑛






= (




𝑥
𝑘





−




𝑥
𝑘−1





) + (




𝑥
𝑘−1





‖ −




𝑥
𝑘−2





)

+ ⋅ ⋅ ⋅ + (




𝑥
𝑘−𝑛+1





−




𝑥
𝑘−𝑛





) .

(16)

Putting 𝑏
𝑘
= ‖𝑥
𝑘
‖ − ‖𝑥

𝑘−1
‖, we have that

𝑛𝑏
𝑘+1
≥ 𝑏
𝑘
+ 𝑏
𝑘+1
+ ⋅ ⋅ ⋅ + 𝑏

𝑘−𝑛+1
, (17)

where 𝑏
𝑘
≥ 0 and 𝑏

𝑘
→ 0 as 𝑘 → ∞. Suppose that there

exists an integer 𝑖 ≥ 1 such that 𝑏
𝑖
> 0; then 𝑏

𝑖+1
≥ (𝑏
𝑖
/𝑛) > 0,

and we have that 𝑏
𝑘
≥ (𝑏
𝑖
/𝑛) > 0, for all 𝑘 > 𝑖 by an induction

argument. This is contradictory with the fact that 𝑏
𝑘
→ 0 as

𝑘 → ∞. Consequently, we have that 𝑏
𝑘
= 0 for all 𝑘, which

implies that ‖𝑥
𝑘−1
‖ = ‖𝑥

𝑘
‖ for all 𝑘 ≥ 1. This means that

for all 𝑥 ∈ ran(𝐴)‖𝐴𝑉𝑘𝑥‖ = ‖𝐴𝑥‖ = ‖𝑥‖. So we have that
𝐴
2
= 𝐼 on ran(𝐴), and so 𝐴 = 𝐼 on ran(𝐴). Therefore, we

have that 𝐴 = ( 𝐼 0
0 0
) on H = ran(𝐴) ⊕ ker(𝐴). Hence 𝐴 is a

projection. By [21], we have that if 𝐴 is a projection, then 𝑇
has a decomposition:

𝑇 = 𝑇
𝑢
⊕ 𝑇
𝑐
, 𝑇

𝑐
= 𝑆
∗
⊕ 𝑇
0
, (18)

where 𝑇
𝑢
is unitary and the completely nonunitary part 𝑇

𝑐

of 𝑇 is the direct sum of backward unilateral shift 𝑆∗ and a
𝐶
.0
-contraction 𝑇

0
. We will prove that 𝑆∗ is missing from the

direct sum. It is well known that an operator 𝐵 = 𝐵
1
⊕ 𝐵
2

has SVEP at a point 𝜆 if and only if 𝐵
1
and 𝐵

2
have SVEP

at the point 𝜆. Since 𝑛-paranormal operators have SVEP by
[6, Corollary 3.4], it follows that if 𝑆∗ is present in the direct
sum of 𝑇, then it has SVEP. This contradicts the fact that the
backward unilateral shift does not have SVEP anywhere on
its spectrum except for the boundary point of its spectrum.
Therefore, 𝑇 = 𝑇

𝑢
⊕ 𝑇
0
. The proof is complete.

In the following, we give a sufficient condition for a 𝑛-
paranormal contraction to be proper.

Theorem 3. Let 𝑇 be a contraction of 𝑛-paranormal operators
for a positive integer 𝑛. If 𝑇 has no nontrivial invariant
subspace, then 𝑇 is a proper contraction.

Proof. Suppose that 𝑇 is a 𝑛-paranormal operator, then
‖𝑇
1+𝑛
𝑥‖‖𝑥‖

𝑛
≥ ‖𝑇𝑥‖

𝑛+1 for all 𝑥 ∈ H. By [22, Theorem 3.6],
we have that

𝑇
∗
𝑇𝑥 = ‖𝑇‖

2
𝑥 if and only if ‖𝑇𝑥‖ = ‖𝑇‖ ‖𝑥‖ . (19)

Put U = {𝑥 ∈ H : ‖𝑇𝑥‖ = ‖𝑇‖‖𝑥‖} = ker(|𝑇|2 − ‖𝑇‖2),
which is a subspace ofH. In the following, we will show that
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U is an invariant subspace of 𝑇. For every 𝑥 ∈ U, if 𝑇 is a
𝑛-paranormal operator, we have

‖𝑇‖
𝑛+1
‖𝑥‖
𝑛+1
= ‖𝑇𝑥‖

1+𝑛
≤






𝑇
1+𝑛
𝑥






‖𝑥‖
𝑛

≤ ‖𝑇‖
𝑛−1 



𝑇
2
𝑥






‖𝑥‖
𝑛
.

(20)

By (20) we have ‖𝑇2𝑥‖ ≥ ‖𝑇‖2‖𝑥‖. So we have that

‖𝑇 (𝑇𝑥)‖ = ‖𝑇‖ ‖𝑇𝑥‖ . (21)

That is, U is an invariant subspace of 𝑇. Now suppose that
𝑇 is a contraction of 𝑛-paranormal operators. If 𝑇 is a strict
contract, then it is trivially a proper contraction. If 𝑇 is not
a strict contraction (i.e., ‖𝑇‖ = 1) and 𝑇 has no nontrivial
invariant subspace, then U = {𝑥 ∈ H : ‖𝑇𝑥‖ = ‖𝑥‖} = {0}

(actually, if U = H, then 𝑇 is an isometry, and isometries
have nontrivial invariant subspaces). Thus for every nonzero
𝑥 ∈H, ‖𝑇𝑥‖ < ‖𝑥‖, so 𝑇 is a proper contraction.The proof is
complete.

Uchiyama [23] showed that if𝑇 is paranormal and𝑤(𝑇) =
0, then 𝑇 is compact and normal. Now we extend this result
to 𝑛-paranormal operators.

Theorem 4. Let 𝑇 be a 𝑛-paranormal operator for a positive
integer 𝑛 and 𝜎

𝑤
(𝑇) = {0}. Then 𝑇 is compact and normal.

Proof. By [5, Theorem 2.1], we have that

𝜎 (𝑇)

𝑤 (𝑇)

=

𝜎 (𝑇)

{0}

⊆ 𝜋
00
(𝑇) , (22)

where 𝜋
00
(𝑇) is the set of all isolated points which are

eigenvalues of 𝑇 with finite multiplicities. This implies that
𝜎(𝑇)\𝑤(𝑇) is a finite set or a countable infinite set with 0 as its
only accumulation point. Let 𝜎(𝑇)\{0} = {𝜆

𝑛
}, where 𝜆

𝑛
̸= 𝜆
𝑚

whenever 𝑛 ̸=𝑚 and {|𝜆
𝑛
|} is a nonincreasing sequence. By

[8, Proposition 1], we have that 𝑇 is normaloid. So we have
|𝜆
1
| = ‖𝑇‖. By the general theory, (𝑇 − 𝜆

1
)𝑥 = 0 implies

(𝑇 − 𝜆
1
)
∗
𝑥 = 0. In fact,









(‖𝑇‖
2
− 𝑇
∗
𝑇)

1/2

𝑥









2

= ‖𝑇‖
2
‖𝑥‖
2
− ‖𝑇𝑥‖

2

= ‖𝑇‖
2
‖𝑥‖
2
−




𝜆
1
𝑥





2

= 0.

(23)

Thus 𝜆
1
𝑇
∗
𝑥 = 𝑇

∗
𝑇𝑥 = ‖𝑇‖

2
𝑥 = |𝜆

1
|
2
𝑥 and 𝑇∗𝑥 = 𝜆

1
𝑥.

Therefore, ker(𝑇 − 𝜆
1
) is a reducing subspace of 𝑇. Let 𝐸

1
be

the orthogonal projection onto ker(𝑇−𝜆
1
). Then 𝑇 = 𝜆

1
⊕𝑇
1

on H = 𝐸
1
H ⊕ (𝐼 − 𝐸

1
)H. Since 𝑇

1
is 𝑛-paranormal and

𝜎
𝑝
(𝑇) = 𝜎

𝑝
(𝑇
1
) ∪ {𝜆
1
}, we have that 𝜆

2
∈ 𝜎
𝑝
(𝑇
1
). By the same

argument as above, ker(𝑇 − 𝜆
2
) = ker(𝑇

1
− 𝜆
2
) is a finite

dimensional reducing subspace of𝑇which is included in (𝐼−
𝐸
1
)H. Let 𝐸

2
be the orthogonal projection onto ker(𝑇 − 𝜆

2
).

Then 𝑇 = 𝜆
1
𝐸
1
⊕ 𝜆
2
𝐸
2
⊕ 𝑇
2
onH = 𝐸

1
H ⊕ 𝐸

2
H ⊕ (𝐼 − 𝐸

1
−

𝐸
2
)H. By the same argument, each ker(𝑇 − 𝜆

𝑛
) is a reducing

subspace of 𝑇 and ‖𝑇 −⨁𝑛
𝑘=1
𝜆
𝑘
𝐸
𝑘
‖ = ‖𝑇

𝑛
‖ = |𝜆

𝑛+1
| → 0 as

𝑛 → ∞. Here 𝐸
𝑘
is the orthogonal projection onto ker(𝑇 −

𝜆
𝑘
) and 𝑇 = (⨁𝑛

𝑘=1
𝜆
𝑘
𝐸
𝑘
) ⊕ 𝑇
𝑛
on H = (𝜆

1
𝐸
1
⨁
𝑛

𝑘=1
𝐸
𝑘
H) ⊕

(𝐼−Σ
𝑛

𝑘=1
𝐸
𝑘
)H. Hence𝑇 = ⨁∞

𝑘=1
𝜆
𝑘
𝐸
𝑘
is compact and normal

because each 𝐸
𝑘
is a finite rank orthogonal projection which

satisfies𝐸
𝑘
𝐸
𝑙
= 0whenever 𝑘 ̸= 𝑙 by [5, Lemma 2.5] and 𝜆

𝑛
→

0 as 𝑛 → ∞. The proof is complete.
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