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We present a new iterative scheme with errors to solve the problems of finding common zeros of finite m-accretive mappings in
a real Banach space. Strong convergence theorems are established, which extend the corresponding works given by some authors.
Moreover, the relationship between zeros of m-accretive mappings and one kind of nonlinear elliptic systems is investigated, from
which we can see that some restrictions imposed on the iterative scheme are valid and the solution of one kind of nonlinear elliptic
systems can be approximated by a suitably defined iterative sequence.

1. Introduction and Preliminaries

Let E be a real Banach space with norm | - || and let E* denote
the dual space of E. We use “— ” and “—” to denote strong
and weak convergence, respectively. We denote the value of
f € E"atx € Eby (x, f).

Let C be a nonempty, closed, and convex subset of E and
let Q be a mapping of E onto C. Then Q is said to be sunny [1]
if Q(Q(x) + t(x — Q(x))) = Q(x), forallx € Eand t > 0.

A mapping Q of E into E is said to be a retraction [1] if
Q*=Q.Ifa mapping Q is a retraction, then Q(z) = z for
every z € R(Q), where R(Q) is the range of Q.

A mapping T : C — C is said to be nonexpansive if
ITx — Tyl < llx — yl, for all x, y € C. We use F(T) to denote
the fixed point set of T; that is, F(T) := {x € C: Tx = x}. A
mapping T : E > D(T) — R(T) ¢ E is said to be demiclosed
at p if whenever {x,} is a sequence in D(T') such that x,, —
x € D(T) and Tx,, — p, it follows that Tx = p.

A subset C of E is said to be a sunny nonexpansive retract
of E [2] if there exists a sunny nonexpansive retraction of E
onto C and it is called a nonexpansive retract of E if there
exists a nonexpansive retraction of E onto C. If E is reduced
to a Hilbert space H, then the metric projection P is a sunny
nonexpansive retraction from H to any closed and convex
subset C of H. But this is not true in a general Banach space.
We note that if E is smooth and Q is a retraction of C onto

F(T), then Q is sunny and nonexpansive if and only if for all
x€C,z e F(T), (Qx —x,J(Qx — z)) <0 [3].

We use ] to denote the normalized duality mapping from
E to 2F which is defined by

Jx={f e B () = In = |fI"}, xeE @

It is well known that J is single-valued if E* is strictly convex.
Moreover, J(cx) = cJx, forall x € E and ¢ € R'. We call that
J is weakly sequentially continuous if {x,} is a sequence in E
which converges weakly to x it follows that {Jx,} converges
in weak™ to Jx.

A mapping A : E > D(A) — R(A) c Eis called accretive
it (Ax—Ay, J(x—y)) > 0,forall x, y € D(A) and itis called m-
accretive if R(I+AA) = E, forall A > 0. Let A0 denote the set
of zeros of A; that is, A™10 := {x € D(A) : Ax = 0}. We denote
by ];4 (for r > 0) the resolvent of A; that is, ]rA =T +rA)7L
Then ]f\ is nonexpansive and F(]:‘) = A0

Interest in accretive mappings, which is an important
class of nonlinear operators, stems mainly from their firm
connection with equations of evolution. It is well known that
many physically significant problems can be modelled by
initial value problems of the form

x' () + Ax (t) = 0, x(0) = x,, )
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where A is an accretive mapping. Typical examples where
such evolution equations occur can be found in the heat,
wave, or Schrodinger equations. If x(t) is dependent on t,
then (2) is reduced to

Au=0, (3)

whose solutions correspond to the equilibrium of the system
(2). Consequently, within the past 40 years or so, considerable
research efforts have been devoted to methods for finding
approximate solutions of (3). An early fundamental result of
accretive operators, due to Browder [4]. One classical method
for studying the problem 0 € Ax, where A is an m-accretive
mapping, is the following so-called proximal method (c.f.
[5]):

x, € H, Xy = ]r’:xn, n>0, (4)
where ];: = I+ rnA)fl. It was shown that the sequence
generated by (4) converges weakly or strongly to a zero point
of A under some conditions.

Recall that the following normal Mann iterative scheme
to approximate the fixed point of a nonexpansive mapping
T :C — C was introduced by Mann [6]:

x, € C, X1 = (1-a,) x, + o, Tx,, n>0. (5)
It was proved that, under some conditions, the sequence {x,}
produced by (5) converges weakly to a point in F(T').

Later, many mathematicians try to combine the ideas of
proximal method and Mann iterative method to approximate
the zeros of m-accretive mappings; see, for example, [7-14]
and the references therein.

In particular, in 2007, Qin and Su [7] presented the
following iterative scheme:

x, € G,
= B + (1= By) %, (6)
Xpy1 = QU + (1 - (xn) Yn

And they showed that {x,} generated by the above scheme
converges strongly to a zero of A.

Motivated by iterative schemes (4) and (5), Zegeye and
Shahzad extended their discussion to the case of finite m-
accretive mappings. They presented in [15] the following
iterative scheme:

x, € C,

Xpp1 = XU+ (1 - ‘xn) S;%, 120, )

where S, = a)l +aJ, +aJ, +--+aj, with ], = (I +
A" and Zi:o a = 1.If ﬂﬁzl A;'(0) #0, they proved that
{x,} generated by (7) converges strongly to the common zeros
of A; (i =1,2,...,1) under some conditions.

The work in [15] was then extended to the following one
presented by Hu and Liu in [16]:

x, € C,

Xpp1 = U+ Bx, + 9,5, x,, n>0, (8)
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where Sm = ayl + alj'rAl + az]f2 + oo+ al]rA’ with ],A" =
I+ rnAi)_1 and ZLO a = 1 {a,}, {B,}, 19,} c (0,1), and
a, + B, +9, = 1.1If ﬂi;l A7'(0) #0, they proved that {x,}
converges strongly to the common zerosof A; (i = 1,2,...,1)
under some conditions.

In 2009, Yao et al. presented the following iterative
scheme in the frame of Hilbert space in [17]:

x; € C,
yn=PC[(1_(xn)xn]’ (9)
Xp+1 = (1 - ﬁn) Xp T ﬁnTyn’

where T C — C is a nonexpansive mapping with
F(T) #9. Suppose {«,} and {f3,} are two real sequences in
(0, 1) satisfying

n>1,

(a) 2221 «, = +00 and hmn%oo‘xn =0;

(b) 0 < liminf,_, B, < limsup, B, < 1.

Then {x,,} constructed by (9) converges strongly to a fixed
point of T'.

Motivated by the work in [15, 17], Shehu and Ezeora
presented the following result in [2].

Theorem 1. Let E be a real uniformly smooth and uniformly
convex Banach space, and let C be a nonempty, closed, and
convex sunny nonexpansive retract of E, where Qg is the
sunny nonexpansive retraction of E onto C. Suppose the duality
mapping ] :+ E — E" is weakly sequentially continuous. For
eachi = 1,2,...,N, let A; : C — E be an m-accretive
mapping such that ﬂf\;l A,TIO #0. Let {e,)}, {5,,} € (0, 1) satisfy
(a) and (b). Let {x,} be generated iteratively by

x; € G,
Yo =Qcl(1-a,)x,], (10)
Xnt1 = (l_ﬂn)xn+ﬁnSNyn’ nx1,

where Sy = agl + a\Js + aJa, + o+ aySa, with ], =
(I+A,~)_1, fori = 1,2,...,N,0 < g < 1, fork =
0,1,2,...,N, and Z;Ij:o a, = 1. Then {x,} converges strongly
to the common zero of A;, wherei=1,2,...,N.

Inspired by the work in [2], we present the following
iterative scheme with errors:

x, € C,
U, QC [(1 - ‘xn) (xn + en)] >
Yu (1 - ﬁn) X, + :BnSnun’

Xpe1 = VnXn (1 - yn) Snvn’

(A)

n>1,

where {e,} C E is the error sequence and {A,»}f\:]1 is a finite
. . . _ A A

family of m-accretive mappings. S,, := gyl + a, Joh+ a2+

e an RN TR = (T A fori = 1,2, N3 Yy =
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1,0 < a < 1,fork =0,1,2,...,N. More details of iterative
scheme (A) will be presented in Section 2. And, some strong
convergence theorems are obtained.

Note that there are some differences between our work
and Shehu and Ezeora’s in [2] in the following aspects.

(i) S, in iterative scheme (A) is different from Sy in (10)
since the former is changing with »n and the latter is
not, which resultsin A; in scheme (A) having different
coeflicient r,, ; for each different i.

(ii) The idea of three-step iteration is employed in our
paper.

(iii) The error sequence {e,} is considered in the iterative
scheme (A).

(iv) Recall that, in [2], Lemma 8 is a key tool to prove
the convergence of {x,} generated by (10). In par-
ticular, to obtain the main result, they imposed an
additional condition on the function 8 in Lemma 8
that B(t) < t/ max{1,2r,}, where r; > 0 is a constant
satisfying some conditions. One question arises: how
to show the convergence of the iterative sequence {x,,}
if B does not satisfy this additional condition? To
answer the question, we will use Lemma 4 instead of
Lemma 8.

In Section 3, we will discuss the relationship between zero
point of finite m-accretive mappings and the solution of one
kind of nonlinear elliptic systems involving (p;, p,s...» Pn)-
Laplacian operators. The discussion helps us not only to see
that the topic of constructing iterative schemes to approxi-
mate zeros of m-accretive mappings is meaningful but also
to see that the solution of (p;, p,, ..., py)-Laplacian elliptic
systems can be obtained by an iterative scheme.

Next, we list some results we need in sequel.

Lemma 2 (see [18]). Let E be a real uniformly convex Banach
space, let C be a nonempty, closed, and convex subset of E, and
T : C — C is a nonexpansive mapping such that F(T) #0;
then, I — T is demiclosed at zero.

Lemma 3 (see [16]). Let E be a strictly convex Banach space
which has a uniformly Gdteaux differential norm, and let C
be a nonempty, closed, and convex subset of E. Let {A,»}f\:r1
be a finite family of accretive mappings with ﬂfil A7'0#0,
satisfying the following range conditions:

D(A)cCc[R(I+r4;), i=12..,N. ()

>0

Let ay,ay,...,ay be real numbers in (0,1) such that
Zfioai = landS, = ayl + allle + az];:z +ot aN];:N,
where ],1:" = (I +r,A;) " andr, > 0; then, S
and F(S, ) = N, A7'0.

is nonexpansive

Ty

Lemma 4 (see [13]). In a real Banach space E, the following
inequality holds:

[l + y||2 < x*+2 (y,j(x+y)), V¥x,yeE  (12)
where j(x + y) € J(x + y).

Lemma 5 (see [19]). Let {a,}, {b,}, and {c,} be three sequences
of nonnegative real numbers satisfying

Ay S (1 - Cn) a, + bncn’ Vn>1, (13)

where {c,} < (0,1) such that (i) ¢, — 0 and 2221 ¢, = +00
and (ii) either limsup, _, . b, < 0 or Yo |b,c,| < +00. Then
lim, , a, =0.

Lemma 6 (see [20]). Let {x,} and {y,} be two bounded
sequences in a Banach space E such that x,,, = P,x, +
(1 - By, for n = 1. Suppose {f,} < (0,1) satis-
fring 0 < liminf, _,, B, < limsup, B, < L
I 1imsup,  oo(luin — Full = [%s = %) < 0, then
limn—>+oo"yn - xn" =0.

Lemma 7 (see [21]). Let E be a Banach space and let A be an
m-accretive mapping. For A > 0, u > 0, and x € E, one has

]Ax=lﬂ<§x+<1—§>]/\x>, (14)
where J, = (I + AA) ! and Ju = I+ yA)’l.

Lemma 8 (see [22]). Let E be a real uniformly smooth Banach
space; then there exists a nondecreasing continuous function 3 :
[0, +00) — [0, +00) with lim, _, 4+ B(t) = 0 and B(ct) < cf3(t)
for ¢ > 1, such that, for all x, y € E, the following inequality
holds:

e+ A < Il + 2.y Joe) + mac (el 1] B () -
(15)

2. Strong Convergence Theorem

Lemma 9 (see [2]). Let E be a real uniformly smooth and
uniformly convex Banach space. Let C be a nonempty, closed,
and convex sunny nonexpansive retract of E, and let Q. be the
sunny nonexpansive retraction of E onto C. Let T : C — C be
nonexpansive with F(T) # 0. Suppose that the duality mapping
J : E — E" is weakly sequentially continuous. If for each
t € (0,1) wedefineT,:C — Cby

T,x = TQ.[(1-t) x], (16)

then T, has a fixed point z,, which is convergent strongly to the
fixed point of T, ast — 0. That is, lim, _, 4z, = z, € F(T).

Lemma 10. Let E be a strictly convex Banach space and let C
be a nonempty, closed, and convex subset of E. Let A; : C —
E (i = 1,2,...,N) be a finite family of m-accretive mappings
such that ﬂf\il A7'0#0.

Let ay,a,,...,ay be real numbers in (0,1) such that
YN a=1landS, = aOI+a1]::§ +a2]f:§ +---+aN];:Z, where
JA = (I +rn’iAi)_1 andr,; >0, fori=1,2,...,N,andn>1;
then, S, : C — C is nonexpansive and F(S,,)) = ﬂf\:]l A7'0, for
nx1l

Proof. The main idea of the proof is essentially from that in
[15] or Lemma 3. For the sake of completeness, we present the
proof in the following.



It is easy to check that S, : C — C is nonexpansive and
N1 A0 C E(S,).

On the other hand, for all p € F(S,), then p = S,p =
a0p+a1];:p+a2];iip + - +aN];iI:]p.

Forall g € (Y, A;'0  F(S,), then

lp—all <alp-al+a

Fap=a o |iie -l

<(ag+a +--+ay,)||p-q| +ay

e -

=(1-ay)|p-4q|+an

Jtp-a| <lp-al.
17)
Therefore, [|[p — gl = (1 —ay)lp —4qll + aN||]:::Zp —qll, which
implies that | p—qll = 7% p—qll. Similarly, | p—qll = 1]/} p~
ql ==, p~ql.
Then lp - ql = @/ a)Ulp - @) +
(@) T a)Up = @) + - + (an/ T @)U p = 9l

which implies from the strictly convexity of E that

p-a=Ip-qa=J:p-q="=JXp-q
Therefore, ];:';_p = p,fori = 1,2,...,N. And then p €
N~ A;'0, which completes the proof. O

Lemmall. Let E, C, and S,, be the same as those in Lemma I0.
Suppose ﬂf\zjl A;'0#0. Then S> : C — C is nonexpansive and
F(S2) =N, Aj'o.

Proof. From Lemma 10, we have F(S,,) = (Y, A;'0. It is easy
to check that S2 : C — C is nonexpansive. So, it suffices to
show that F (Sfl) C F(S,) since F(S,) c F (Sf;) is trivial.

For all p € F(S?), then p = S’ p.

Forallg € F(S,) F(Si), then g = Siq. Now,

lp-all < [S,p-S.all =S,p -4l

<ay|p-q|+a ]::jp_qn tootay ]::,:P_qn

=(1-ay)|p-4q|+an

Jtp-q| <lp-al.
(18)

Therefore, l|p - qll = (1 - ay)llp - qll + axllJ7 p - gll, which
implies that | p—qll = IJ;," pq. Similarly, | p~qll = 1]} p~
qll=--- =172 p-ql.

Then repeating the discussion in Lemma 10, we know that
]f:‘x'_p = p,fori = 1,2,...,N. And then p € F(S,), which
completes the proof. O

Theorem 12. Let E be a real uniformly smooth and uniformly
convex Banach space. Let C be a nonempty, closed, and convex
sunny nonexpansive retract of E, where Qg is the sunny
nonexpansive retraction of E onto C. Let A; : C — E be
m-accretive mappings, wherei = 1,2,..., N. Suppose that the
duality mapping ] : E — E” is weakly sequentially continuous
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and D := ﬂf\il A;'0#0. Let {x,} be generated by the iterative
scheme (A), where S, := ayI + all;: + aQJ;:; ot aN];:)Z,
and ]::’j =+ rn,,-A,-)*l,fori =12,...,N,0 < g <, for

k=012,...,N, Zszo a, = 1. Suppose that {e,} C E, {«,},
{B.}, and {y,} are three sequences in (0, 1) and {r,,;} C (0, +00)
satisfying the following conditions:

(i)a, = 0,3, > 0,asn — o0;
(ii) ZZZI &y, = +00;
(iii) 0 < liminf,_, ¥, <limsup, ...y, < L;

(V) Y21 Irppri =il < +ooandr,; >e>0, forn>1and
i=1,2,...,N;

™) lle /&, — 0,asn — +0co, and Y2, lle,|l < +co.

Then {x,} converges strongly to a point p, € D.
Proof. We will split the proof into five steps.

Step 1. {x,}, {u,}, {S,u,}, {v,}, and {S,x,} are all bounded.
We will first show that

VpeD, |xu-pl<M+) el (19)

i=1

where M, = max{|x, — pl, |pl}.
By using the induction method, we see that, for n = 1,
Vp e D,
|2, = pll < v [|x: = pll + (0 =p0) [S1v1 - 2|
<y % = pl+ Q=) v - 2|
<y % = pl+ (1=y) (1=B) [l - 2
+B (1=9) u - 1|
<y % —pl+ (=) (1=B)[x - 2
+ By (1=y) "(1 —a)(x; +e) - P”
<[1=a B (1=y)]|x = pl| + B (1=1) |||
+(1=0) B (1 =) [le] < M,y + ey |-
(20)

Suppose that (19) is true for n = k. Then, forn = k + 1,

X2 = S Vi1 [ Xk+1 — = Yie+1) Vi+1 —
I Pl < v | Pl + (1 =) [vierr = 2l
< Vet % = 2l + (1= piear)
X [(1 - /3k+1) "xk+1 - P" + /3k+1 "uk+1 - P"]



Abstract and Applied Analysis

< Vit [%en = 2+ (1= i)
< [(1= Beer) [%ker = Pl + Bia
(1 = apr) (e + €er) = ]
< [1= a1 Berr (1= ve)] s = 2l
+ &1 e (1= Vet [P
+ Berr (1= i) (1= ¥era) e |

<M+ [1 =g Brs (1= Ve

k
x Z ”ez" + (1 - ‘xk+1) ﬂk+1 (1 - Yk+1) ||ek+1||
i=1

k+1

<M+ ) e
i=1

(21)

Thus (19) is true for all n € N. Since Yo, lle,ll < +oo,
then (19) ensures that {x,} is bounded.

Forall p € D, from |lu,, — pll < (1 — a,)(x, +e,) — pll <
I + lle, | + | pll, we see that {u,,} is bounded.

Since [IS,,u, || < IS,u,, = S, pll + I pll < llue,, — pll + | pll, then
{S,,u,,} is bounded. Since both {S,u,} and {x,} are bounded,
then {v,} is bounded. Similarly, {S, x,}, {];:iun}, and {];:ivn}
are all bounded, fori =1,2,...,N. ’ ’

Then we set M, = sup{llu, I, 172 syl 1Vl 120wl 2 1>
1,i=1,2,...,N}.

Step 2. lim,, _, . llx, = S,v,ll = 0and lim, _, . llx,.,, — x,Il = 0.
In fact,

||Sn+lvn+1 - Snvn “

(22)

< ay [|[vp = vl + Za

i=1

Tniri n+1 ] V

. A A
Next, we discuss || Sl Ve = I v,ll.
Ifr,; <7, then, by using Lemma 7, we have

A
]rﬁ-lx n+tl ] V
v, v,
A; i i A; A;
]rn,,- ( Vi1 (1 - )Irﬁuvnﬂ) - Irn’,-vn
rn+1,i rn+1,i

r . r .
1,1 n, A
Vo1 T 1- ]r L Vil ~ Va
7 . 7 . n+l,i
n+1,i n+1,i

<

. ro. )
< r = ||Vn+1 - Vn" + (1 - %) I’éll,ivn*'l ~Vn
n+1,i n+1,i
. =1
< an+1 - Vn” + % ];:il,ivn-"l = Vnl-

(23)

5
Ifr,,,; <r,; then imitating the proof of (23), we have
];Aﬂ Vir1 ] V
(VS (24)
< s = vl + =T Vi = -
Combining (23) and (24), we have
]A-Hx TH—] ] V
TS
o R A e
2. = .
B P T i T DV
€
Putting (25) into (22), we have
||Sn+lvn+1 - Snvn“ < ||Vn+1 v " + _Z |rnz - n+11
(26)
Similarly, we have
||Sn+lun+l - Snun“ < ||un+1 u " + _Z |rn1 - n+11
(27)

Therefore, from (26) and (27), we have
||Sn+1 Vat1 — Snvn“
< ||Vn+1 -V “ + _Z |rnz - n+11

< "xn+1 - xn“ + ﬁn ”xn” + ﬁn+1 "xn+1"

+ |ﬁn+1 - ﬁnl ||Sn+1un+1” + ﬁn ”Sn+1un+1 - Snun"
ZM
2 Z lrnz - n+lz

< "xn+1 - xn“ + ﬁn ”xn” + ﬁn+1 "xn+1"
+ |ﬁn+1 - ﬁn| ||Sn+1un+1” + ﬁn ”un+1 - un”

aM, &
" 2

mi T’n+1,i|
i=1

< "xn+1 - xn“ + ﬁn ”xn” + :Bn+1 "xn+1"
+ 'ﬁn+1 - ﬁn' ||Sn+lun+1”

+ ﬁn “ n+1) Xpe1 T en+1) - (1 - “n) (xn + en)"

Zernz_ n+lz



< (1 + ﬁn) ”xn+1 - xn" + (ﬁn + anﬁn) ”xn”
+ (ﬁn+l + ‘xn+1ﬁn) “xn+1” + |ﬁn+1 - /3n| ||Sn+1un+1”

+ ﬁn |len+1 - en" + ﬁn "“n+1en+1 - ‘xnen“

4M, &
+ _ZZ |rn,i - rn+l,i| .
€ 3

(28)

From Step 1, we know that limsup, _, ,  (IS,41Ve1 —
SpVull = l1%,1 — x,.1I) < 0. Using Lemma 6, we have from (28)
that lim,, _, lIx, — S,,v,Il = 0 and then lim,, _, . llx,.,; — x,,/l =
limn—»oo(l - Yn)usnvn - xn” =0.

Step 3.1im,, _, . lIx,, —S,x,/ll = 0and lim,, _, [Ix, — Sflxn|| =0.
In fact,
"xn - Snxn" < “xn - Snvn" + "Snvn - Snxn"
< [y = Syl + v = . (29)
< ”xn - Snvn" + ﬁn "xn - Snun” .

Noticing the results of Steps 1and 2and 8, — 0, we have
nfoo"xn - Snzxrl” =0. )

Since ||lx, = S, x| < lx,, =S, x, I + 1S,x, = S, %, < 2|, -
S,%,ll, then [lx,, — S>x, | — 0,asn — 0.

lim

Step 4. limsup,, _, , .{po, J(py — x,)) < 0, where p, is an
element in D.

From Lemma 11, we know that Sfl C —- Cis
nonexpansive and F (Si) = D. Then Lemma 9 implies that
there exists z, € Csuch thatz, = SleC[(l —t)z,] fort € (0,1).
Moreover, z; — p, € D,ast — 0.

Since ||z, — poll < (1 =1)z, — poll < (L=1)llz, — poll + Il poll,

then {z,} is bounded. Let M; = sup{lz, — x,| : n > 1, >
0}. Then from Step 1, we know that M, is a positive constant.
Using Lemma 4, we have
2
Iz =l
2 2 2
= "zt =S, x, +8,x, - xn"

< "zt - Sflxn"2 +2 <Sflxn - x,, ] (2, — xn)>

2 2
< "zt - Snxn" +2

Sy = | |2 = %, (30)

< ||(1 —-t)z, — x,,”2 +2 ”Sflxn - X,

Iz - x|
< |z - x,,||2 =2t (2, J [(1 - 1) 7 - x,])
+2M, "Sflxn - xn" .

So (z,, JI(1 — )z, — x,]) < (M3/t)||8ﬁxn - x, |, which
implies that lim, _, (limsup,, , (2, J[(1 =)z, — x,]) <0
in view of Step 3.

Since {x,} is bounded and ] is uniformly continuous on
each bounded subset of E, then {p,, J(p, — x,,) = J[(1 -t)z, -
x,]) — 0,ast — 0.
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Moreover, noticing the fact that
(Po- T (o = %))
= (poJ (po—x,) =T [(1 = 1) 2, = x,.])
+{po 2 [(1 =)z, — x,])
+ (2, T [(1-1) 2, = x,])

we have limsup,,_, . (P, J(po — x,)) < 0.

Since (po) ][po - X, — (1- ‘xn)en + ‘annD = <P0’][p0 -
x, = (1—a,)e, +o0,x,] = J(pg = x,)))+(po, J(py — X,,))) and |
is uniformly continuous on each bounded subset of E, then

(31)

limsup (po, J [po = x, = (1 — o) €, + ot,x, ]) < 0.
n— +00

(32)

Step 5. x,, — py>asn — +00, where p, € D is the same as
that in Step 4.

Let M, = sup{||(1 — «,)(x, +e,) — pll : n > 1}. By using
Lemma 4 again, we have

%01 = ol

< Yallxa = 2ol + (L= 1) v = ol

< Yullxw = 2ol + (1= 7) (1= B,) 1%, = ol
+(1=9) Bulln = o’

= (1= B+ Bava) % = poll” + (1= 1) Bl = poll”

< (1= B+ Bava) I = o’
+(1=7) Ball (1 = @) (3, + €)= o

< (L= Byt Buy) I = poll” + (1= 9,) B (1~ @)
<[y = poll” +2(1 = 1,) B, (1 - @)
x (e J [(1— o) (x, +€,) = pol) + 20,8, (1= 7,,)
X (Por T [Po = % = (1 = at,) €, + %, ])

<[(1-a,B, (1= 1)z = Pl +2(1-7,)
x (1= at,) BuMy [leg]| + 20,8, (1= )

x (posJ [Po —

Xn = (1 - ‘Xn) €, t (ann]> .
(33)

Letc, = (1 -y,)a,f3,; then (33) reduces to ||x,,,; — p0||2 <
(1= 6 )Ix, = poll*+26,{(po> T 1o = %, — (1 = @, )e,, + t,x,]) +
(1 - o) M, (le, /e,

From (32), (33), and the assumptions, by using Lemma 5,
we know that x, — p,,asn — +00.

This completes the proof. O

If, in Theorem 12, C = E, then we have the following
theorem.
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Theorem 13. Let E and D be the same as those in Theorem 12.
Suppose that the duality mapping ] : E — E" is weakly
sequentially continuous. Let A; : E — E (i = 1,2,...,N)
be a finite family of m-accretive mappings. Let {e,} C E, {a,},
{B.} {y,} € (0,1), and {r,,;} < (0,+00) satisfy the conditions
presented in Theorem 12.

Let {x,} be generated by the following scheme:

x, € E,
U, = (l_an) (xn+en)’
Vn = (1 - ﬁn) X, + ﬂnsnuw

Xpe1 = VnXn t+ (1 - Yn) Snvn’

(B)

n>1.

Then {x,,} converges strongly to a point p, € D, where S,, is
the same as that in Theorem 12.

3. Nonlinear Elliptic Systems with
(p1>Pa> - »Pn)-Laplacian

In what follows in this paper, unless otherwise stated, we will
assume that 2N/N + 1) < p; < +oo, (1/p;) + (1/p:) = 1.
We use || - "P,-’ |- ||P(, and || - "LP,-,Q to denote the norms of

spaces LP(Q), LP/(Q), and WP (Q), respectively, where i =
1,2,...,N.

Now, we will examine the following nonlinear elliptic
systems:

—div [(Ci (x) + |Vu|2)(Pi_2)/2Vu] = fi(x), ae xeQ,

- <9, (Ci (x) + |Vu|2)(pi72)/2Vu> =0, ae x€l,
i=12,...,N.
©

In (C), Q is a bounded conical domain of a Euclidean
space RN with its boundary T € C', (cf. [23]). fi(x) € Lp'{(Q)
isa given functionand 0 < C;(x) € L¥(Q),fori =1,2,...,N.
9 denotes the exterior normal derivative of T.

Lemma 14 (see [24]). Define the mapping B, : whPi(Q) —
WhP(Q))" by

(V,Bpiu) = JQ <(C,- (x) + |Vul?

for any u,v € W"Pi(Q). Then, B, is everywhere defined,
strictly monotone, hemicontinuous, coercive, and maximal
monotone, fori=1,2,...,N.

)(piiz)/ZVu, Vv> dx, (34)

Lemma 15 (see [24]). Define the mapping A, : L*(Q) —

L*(Q) by
D(A;) = {u (x) € L*(Q) : there exists g; (x) € L* (Q)

such that g; (x) = Bpiu}
(35)

foranyu € D(A;), A;ju = g;(x). Then, A; is m-accretive, for
i=12,...,N.

Lemma 16 (see [24]). Fori =1,2,..., N, define the mapping
A, LP(Q) — LP(Q) in the following way:

Mif p; =2 2 DA, = {ux) € LFQ)
there exists h;(x) € LP(Q) such thath;(x) = Bpiu},
then for anyu € D(A,), A, u = hy(x),

(ii) if 2N/(N + 1) < p; < 2, we define A, : LF'(Q) —
LP(Q) as the LPi-closure of A; : L*(Q) — L*Q)
defined in (i) above.

Then, A, is m-accretive, fori =1,2,...,N.

Lemma 17 (see [25]). Let Q) be a bounded conical domain in
RN. Ifmp > N, then W™P(Q) << Cy(Q); if0 < mp < N
and q, = Np/(N — mp), then W™F(Q) —<— LYQ), where
1<g<q

Lemma 18 (see [26]). Let X, denote the closed subspace of
all constant functions in WP(Q). Let X be the quotient space
WP (Q)/X,. For u € W"P(Q), define the mapping P :
whrQ) — Xo by Pu = (1/meas(Q))) JQ udx. Then, there
is a constant C > 0, such that Yu € W"P(Q),

flee - Pu"p < C"vu"(LP(Q))N' (36)

Theorem 19. For i = 1,2,...,N, one has A;O = {u €
LPi(Q) : u(x) = Constant on Q}.

Proof. (i) p; = 2.

Let  u(x) € A;‘lO; then 0 =

(u, B, u) = [ (C,(0) + [Vul)* P |VuPdx = [ [VulPidx >
0, which implies that u(x) =  Constant. That is,
A;O c {u € LP(Q) : u(x) = Constant}.

On the other hand, suppose u(x) = Constant. Then 0 =
(v, Bp,-”)’ forallv € WhPi(Q). Then u € A;O. Therefore, the
result holds.

(i) 2N/(N +1) < p; < 2.

Suppose u € L (Q) and u(x) = Constant. Then let u,, =
u, and we can easily see that u € A; 0 in view of the definition
of A o

On the other hand, let u € A;O. Then there exist {u,}
and {f,} in L*(Q) such that u,, — u, f, — 0in LP(Q) and
Au, = f,. Now, define the following functions:

o = [t|Psgnt, if |t] > 1
A=, if [t] < 1,
(37)
|t|>" @ Psgnt, if |t] > 1

§® = {t, if |t < 1.

Then for u € L*(Q), the functiont € R — IQ Eu +
t)dx € R is continuous and lim, _, ,, JQ Eu + t)dx = *o0.
Therefore, there exists ¢, € R such that fQ Eu+t,)dx = 0.



So, for u, € L*(Q), we may assume that there exist t, € R
such that _[Q &, +t,)dx = 0and Aju, = f,, forn > 1. Let
v, =U, +1,; thenAv =Au, —fn,forn>l

Now, compute the followmg

, (pi=1)/pi
Ul ([ balfass [ fa)
"\, |1 [v,|21

, . (pi=1)/p;
(] |Vn|p"dx+J )
v,, <1 |vn|21
< Wl @l = (e (), £,)

> (1(r). Am) 2 jﬂ V% () s

> Const. J [V (& (v,))[F" dx.
Q
(38)
Using Lemma 18,

J [V (&(v,) lp’dx > Const. € (v, |1p o (39)
Then Lemma 17 implies that
"E (V )| Lp;,Q

> Const. ||€ (vn)||§:}

' _ . \PiIP
= Const. (J Ivn|P"dx + J an|(2 (2/p,-))p,~dx>
[v,l<1 |v,1>1

; L \PilP
= Const. (J lvn|P"dx + J [v,| dx> .
|v,|<1 |v,|>1

MES V=

(40)
From (38), (39), and (40), we know that [|&(v )||1p q S
Const.[| f,ll, — 0,asn — co. Then &(v,) — 0in L7 Q).

Since Nemytskyi mapping u € LP{(Q) — &) € LF(Q)
is continuous, then v, — 0 in L¥(Q). And then u(x) =
Constant.

This completes the proof. O

Remark 20. Theorem 19 helps us to see the assumption that
ﬂfil A;_IO # 0 in Theorems 12 and 13 are valid.

Remark 21. If we set C, = 4, - fi(x), then C,, is also
m-accretive. And then 1terat1ve scheme (A) can be used
to approximate the element in ﬂi:l CP_ 0, which is just the

solution of nonlinear elliptic system (C).

Remark 22. 1f C;(x) = 0, then (C) is reduced to the following
nonlinear elliptic systems with (p;, p,, ..., py)-Laplacian:

—Apiu:_fi(x), ae. x €,
- <9, |Vu|pf72Vu> =0, a.e x€I, (D)
i=1,2,...,N.

Abstract and Applied Analysis

Moreover, the solution of (D) is the zero of finitely
many suitably defined m-accretive mappings, which can be
approximated by iterative scheme (A).
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