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We present a new iterative scheme with errors to solve the problems of finding common zeros of finite 𝑚-accretive mappings in
a real Banach space. Strong convergence theorems are established, which extend the corresponding works given by some authors.
Moreover, the relationship between zeros of𝑚-accretive mappings and one kind of nonlinear elliptic systems is investigated, from
which we can see that some restrictions imposed on the iterative scheme are valid and the solution of one kind of nonlinear elliptic
systems can be approximated by a suitably defined iterative sequence.

1. Introduction and Preliminaries

Let 𝐸 be a real Banach space with norm ‖ ⋅ ‖ and let 𝐸∗ denote
the dual space of 𝐸. We use “→ ” and “⇀” to denote strong
and weak convergence, respectively. We denote the value of
𝑓 ∈ 𝐸

∗ at 𝑥 ∈ 𝐸 by ⟨𝑥, 𝑓⟩.
Let 𝐶 be a nonempty, closed, and convex subset of 𝐸 and

let𝑄 be a mapping of 𝐸 onto𝐶. Then𝑄 is said to be sunny [1]
if 𝑄(𝑄(𝑥) + 𝑡(𝑥 − 𝑄(𝑥))) = 𝑄(𝑥), for all 𝑥 ∈ 𝐸 and 𝑡 ≥ 0.

A mapping 𝑄 of 𝐸 into 𝐸 is said to be a retraction [1] if
𝑄
2

= 𝑄. If a mapping 𝑄 is a retraction, then 𝑄(𝑧) = 𝑧 for
every 𝑧 ∈ 𝑅(𝑄), where 𝑅(𝑄) is the range of 𝑄.

A mapping 𝑇 : 𝐶 → 𝐶 is said to be nonexpansive if
‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝐶. We use 𝐹(𝑇) to denote
the fixed point set of 𝑇; that is, 𝐹(𝑇) := {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}. A
mapping 𝑇 : 𝐸 ⊃ 𝐷(𝑇) → 𝑅(𝑇) ⊂ 𝐸 is said to be demiclosed
at 𝑝 if whenever {𝑥

𝑛
} is a sequence in 𝐷(𝑇) such that 𝑥

𝑛
⇀

𝑥 ∈ 𝐷(𝑇) and 𝑇𝑥
𝑛
→ 𝑝, it follows that 𝑇𝑥 = 𝑝.

A subset𝐶 of 𝐸 is said to be a sunny nonexpansive retract
of 𝐸 [2] if there exists a sunny nonexpansive retraction of 𝐸
onto 𝐶 and it is called a nonexpansive retract of 𝐸 if there
exists a nonexpansive retraction of 𝐸 onto 𝐶. If 𝐸 is reduced
to a Hilbert space𝐻, then the metric projection 𝑃

𝐶
is a sunny

nonexpansive retraction from 𝐻 to any closed and convex
subset 𝐶 of𝐻. But this is not true in a general Banach space.
We note that if 𝐸 is smooth and 𝑄 is a retraction of 𝐶 onto

𝐹(𝑇), then 𝑄 is sunny and nonexpansive if and only if for all
𝑥 ∈ 𝐶, 𝑧 ∈ 𝐹(𝑇), ⟨𝑄𝑥 − 𝑥, 𝐽(𝑄𝑥 − 𝑧)⟩ ≤ 0 [3].

We use 𝐽 to denote the normalized duality mapping from
𝐸 to 2

𝐸
∗

which is defined by

𝐽𝑥 := {𝑓 ∈ 𝐸
∗

: ⟨𝑥, 𝑓⟩ = ‖𝑥‖
2

=
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

} , 𝑥 ∈ 𝐸. (1)

It is well known that 𝐽 is single-valued if 𝐸∗ is strictly convex.
Moreover, 𝐽(𝑐𝑥) = 𝑐𝐽𝑥, for all 𝑥 ∈ 𝐸 and 𝑐 ∈ 𝑅

1. We call that
𝐽 is weakly sequentially continuous if {𝑥

𝑛
} is a sequence in 𝐸

which converges weakly to 𝑥 it follows that {𝐽𝑥
𝑛
} converges

in weak∗ to 𝐽𝑥.
Amapping𝐴 : 𝐸 ⊃ 𝐷(𝐴) → 𝑅(𝐴) ⊂ 𝐸 is called accretive

if ⟨𝐴𝑥−𝐴𝑦, 𝐽(𝑥−𝑦)⟩ ≥ 0, for all𝑥, 𝑦 ∈ 𝐷(𝐴) and it is called𝑚-
accretive if𝑅(𝐼+𝜆𝐴) = 𝐸, for all𝜆 > 0. Let𝐴−10denote the set
of zeros of𝐴; that is,𝐴−10 := {𝑥 ∈ 𝐷(𝐴) : 𝐴𝑥 = 0}.We denote
by 𝐽𝐴
𝑟
(for 𝑟 > 0) the resolvent of 𝐴; that is, 𝐽𝐴

𝑟
:= (𝐼 + 𝑟𝐴)

−1.
Then 𝐽

𝐴

𝑟
is nonexpansive and 𝐹(𝐽

𝐴

𝑟
) = 𝐴
−1

0.
Interest in accretive mappings, which is an important

class of nonlinear operators, stems mainly from their firm
connection with equations of evolution. It is well known that
many physically significant problems can be modelled by
initial value problems of the form

𝑥
󸀠

(𝑡) + 𝐴𝑥 (𝑡) = 0, 𝑥 (0) = 𝑥
0
, (2)
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where 𝐴 is an accretive mapping. Typical examples where
such evolution equations occur can be found in the heat,
wave, or Schrodinger equations. If 𝑥(𝑡) is dependent on 𝑡,
then (2) is reduced to

𝐴𝑢 = 0, (3)

whose solutions correspond to the equilibrium of the system
(2). Consequently, within the past 40 years or so, considerable
research efforts have been devoted to methods for finding
approximate solutions of (3). An early fundamental result of
accretive operators, due to Browder [4]. One classical method
for studying the problem 0 ∈ 𝐴𝑥, where 𝐴 is an 𝑚-accretive
mapping, is the following so-called proximal method (c.f.
[5]):

𝑥
0
∈ 𝐻, 𝑥

𝑛+1
≈ 𝐽
𝐴

𝑟
𝑛

𝑥
𝑛
, 𝑛 ≥ 0, (4)

where 𝐽
𝐴

𝑟
𝑛

:= (𝐼 + 𝑟
𝑛
𝐴)
−1. It was shown that the sequence

generated by (4) converges weakly or strongly to a zero point
of 𝐴 under some conditions.

Recall that the following normal Mann iterative scheme
to approximate the fixed point of a nonexpansive mapping
𝑇 : 𝐶 → 𝐶 was introduced by Mann [6]:

𝑥
0
∈ 𝐶, 𝑥

𝑛+1
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 0. (5)

It was proved that, under some conditions, the sequence {𝑥
𝑛
}

produced by (5) converges weakly to a point in 𝐹(𝑇).
Later, many mathematicians try to combine the ideas of

proximal method andMann iterative method to approximate
the zeros of 𝑚-accretive mappings; see, for example, [7–14]
and the references therein.

In particular, in 2007, Qin and Su [7] presented the
following iterative scheme:

𝑥
1
∈ 𝐶,

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝐽
𝐴

𝑟
𝑛

𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑦
𝑛
.

(6)

And they showed that {𝑥
𝑛
} generated by the above scheme

converges strongly to a zero of 𝐴.
Motivated by iterative schemes (4) and (5), Zegeye and

Shahzad extended their discussion to the case of finite 𝑚-
accretive mappings. They presented in [15] the following
iterative scheme:

𝑥
0
∈ 𝐶, 𝑥

𝑛+1
= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑆
𝑟
𝑥
𝑛
, 𝑛 ≥ 0, (7)

where 𝑆
𝑟
= 𝑎
0
𝐼 + 𝑎
1
𝐽
𝐴
1

+ 𝑎
2
𝐽
𝐴
2

+ ⋅ ⋅ ⋅ + 𝑎
𝑙
𝐽
𝐴
𝑙

with 𝐽
𝐴
𝑖

= (𝐼 +

𝐴
𝑖
)
−1 and ∑

𝑙

𝑖=0
𝑎
𝑖
= 1. If ⋂𝑙

𝑖=1
𝐴
−1

𝑖
(0) ̸= 0, they proved that

{𝑥
𝑛
} generated by (7) converges strongly to the common zeros

of 𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑙) under some conditions.

The work in [15] was then extended to the following one
presented by Hu and Liu in [16]:

𝑥
0
∈ 𝐶, 𝑥

𝑛+1
= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑥
𝑛
+ 𝜗
𝑛
𝑆
𝑟
𝑛

𝑥
𝑛
, 𝑛 ≥ 0, (8)

where 𝑆
𝑟
𝑛

= 𝑎
0
𝐼 + 𝑎
1
𝐽
𝐴
1

𝑟
𝑛

+ 𝑎
2
𝐽
𝐴
2

𝑟
𝑛

+ ⋅ ⋅ ⋅ + 𝑎
𝑙
𝐽
𝐴
𝑙

𝑟
𝑛

with 𝐽
𝐴
𝑖

𝑟
𝑛

=

(𝐼 + 𝑟
𝑛
𝐴
𝑖
)
−1 and ∑

𝑙

𝑖=0
𝑎
𝑖
= 1. {𝛼

𝑛
}, {𝛽
𝑛
}, {𝜗
𝑛
} ⊂ (0, 1), and

𝛼
𝑛
+ 𝛽
𝑛
+ 𝜗
𝑛
= 1. If ⋂𝑙

𝑖=1
𝐴
−1

𝑖
(0) ̸= 0, they proved that {𝑥

𝑛
}

converges strongly to the common zeros of𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑙)

under some conditions.
In 2009, Yao et al. presented the following iterative

scheme in the frame of Hilbert space in [17]:

𝑥
1
∈ 𝐶,

𝑦
𝑛
= 𝑃
𝐶
[(1 − 𝛼

𝑛
) 𝑥
𝑛
] ,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑦
𝑛
, 𝑛 ≥ 1,

(9)

where 𝑇 : 𝐶 → 𝐶 is a nonexpansive mapping with
𝐹(𝑇) ̸= 0. Suppose {𝛼

𝑛
} and {𝛽

𝑛
} are two real sequences in

(0, 1) satisfying

(a) ∑∞
𝑛=1

𝛼
𝑛
= +∞ and lim

𝑛→∞
𝛼
𝑛
= 0;

(b) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Then {𝑥
𝑛
} constructed by (9) converges strongly to a fixed

point of 𝑇.
Motivated by the work in [15, 17], Shehu and Ezeora

presented the following result in [2].

Theorem 1. Let 𝐸 be a real uniformly smooth and uniformly
convex Banach space, and let 𝐶 be a nonempty, closed, and
convex sunny nonexpansive retract of 𝐸, where 𝑄

𝐶
is the

sunny nonexpansive retraction of𝐸 onto𝐶. Suppose the duality
mapping 𝐽 : 𝐸 → 𝐸

∗ is weakly sequentially continuous. For
each 𝑖 = 1, 2, . . . , 𝑁, let 𝐴

𝑖
: 𝐶 → 𝐸 be an 𝑚-accretive

mapping such that⋂𝑁
𝑖=1

𝐴
−1

𝑖
0 ̸= 0. Let {𝛼

𝑛
}, {𝛽
𝑛
} ⊂ (0, 1) satisfy

(a) and (b). Let {𝑥
𝑛
} be generated iteratively by

𝑥
1
∈ 𝐶,

𝑦
𝑛
= 𝑄
𝐶
[(1 − 𝛼

𝑛
) 𝑥
𝑛
] ,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑆
𝑁
𝑦
𝑛
, 𝑛 ≥ 1,

(10)

where 𝑆
𝑁

:= 𝑎
0
𝐼 + 𝑎
1
𝐽
𝐴
1

+ 𝑎
2
𝐽
𝐴
2

+ ⋅ ⋅ ⋅ + 𝑎
𝑁
𝐽
𝐴
𝑁

with 𝐽
𝐴
𝑖

=

(𝐼 + 𝐴
𝑖
)
−1, for 𝑖 = 1, 2, . . . , 𝑁, 0 < 𝑎

𝑘
< 1, for 𝑘 =

0, 1, 2, . . . , 𝑁, and ∑
𝑁

𝑘=0
𝑎
𝑘
= 1. Then {𝑥

𝑛
} converges strongly

to the common zero of 𝐴
𝑖
, where 𝑖 = 1, 2, . . . , 𝑁.

Inspired by the work in [2], we present the following
iterative scheme with errors:

𝑥
1
∈ 𝐶,

𝑢
𝑛
= 𝑄
𝐶
[(1 − 𝛼

𝑛
) (𝑥
𝑛
+ 𝑒
𝑛
)] ,

V
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑆
𝑛
𝑢
𝑛
,

𝑥
𝑛+1

= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
) 𝑆
𝑛
V
𝑛
, 𝑛 ≥ 1,

(A)

where {𝑒
𝑛
} ⊂ 𝐸 is the error sequence and {𝐴

𝑖
}
𝑁

𝑖=1
is a finite

family of 𝑚-accretive mappings. 𝑆
𝑛
:= 𝑎
0
𝐼 + 𝑎
1
𝐽
𝐴
1

𝑟
𝑛,1

+ 𝑎
2
𝐽
𝐴
2

𝑟
𝑛,2

+

⋅ ⋅ ⋅ +𝑎
𝑁
𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

, 𝐽𝐴𝑖
𝑟
𝑛,𝑖

= (𝐼 + 𝑟
𝑛,𝑖
𝐴
𝑖
)
−1, for 𝑖 = 1, 2, . . . , 𝑁;∑𝑁

𝑘=0
𝑎
𝑘
=
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1, 0 < 𝑎
𝑘
< 1, for 𝑘 = 0, 1, 2, . . . , 𝑁. More details of iterative

scheme (A) will be presented in Section 2. And, some strong
convergence theorems are obtained.

Note that there are some differences between our work
and Shehu and Ezeora’s in [2] in the following aspects.

(i) 𝑆
𝑛
in iterative scheme (A) is different from 𝑆

𝑁
in (10)

since the former is changing with 𝑛 and the latter is
not, which results in𝐴

𝑖
in scheme (A)having different

coefficient 𝑟
𝑛,𝑖
for each different 𝑖.

(ii) The idea of three-step iteration is employed in our
paper.

(iii) The error sequence {𝑒
𝑛
} is considered in the iterative

scheme (A).
(iv) Recall that, in [2], Lemma 8 is a key tool to prove

the convergence of {𝑥
𝑛
} generated by (10). In par-

ticular, to obtain the main result, they imposed an
additional condition on the function 𝛽 in Lemma 8
that 𝛽(𝑡) ≤ 𝑡/max{1, 2𝑟

1
}, where 𝑟

1
> 0 is a constant

satisfying some conditions. One question arises: how
to show the convergence of the iterative sequence {𝑥

𝑛
}

if 𝛽 does not satisfy this additional condition? To
answer the question, we will use Lemma 4 instead of
Lemma 8.

In Section 3, we will discuss the relationship between zero
point of finite 𝑚-accretive mappings and the solution of one
kind of nonlinear elliptic systems involving (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑁
)-

Laplacian operators. The discussion helps us not only to see
that the topic of constructing iterative schemes to approxi-
mate zeros of 𝑚-accretive mappings is meaningful but also
to see that the solution of (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑁
)-Laplacian elliptic

systems can be obtained by an iterative scheme.
Next, we list some results we need in sequel.

Lemma 2 (see [18]). Let 𝐸 be a real uniformly convex Banach
space, let 𝐶 be a nonempty, closed, and convex subset of 𝐸, and
𝑇 : 𝐶 → 𝐶 is a nonexpansive mapping such that 𝐹(𝑇) ̸= 0;
then, 𝐼 − 𝑇 is demiclosed at zero.

Lemma 3 (see [16]). Let 𝐸 be a strictly convex Banach space
which has a uniformly Gâteaux differential norm, and let 𝐶
be a nonempty, closed, and convex subset of 𝐸. Let {𝐴

𝑖
}
𝑁

𝑖=1

be a finite family of accretive mappings with ⋂
𝑁

𝑖=1
𝐴
−1

𝑖
0 ̸= 0,

satisfying the following range conditions:

𝐷(𝐴
𝑖
) ⊆ 𝐶 ⊂ ⋂

𝑟>0

𝑅 (𝐼 + 𝑟𝐴
𝑖
) , 𝑖 = 1, 2, . . . , 𝑁. (11)

Let 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁
be real numbers in (0, 1) such that

∑
𝑁

𝑖=0
𝑎
𝑖
= 1 and 𝑆

𝑟
𝑛

= 𝑎
0
𝐼 + 𝑎
1
𝐽
𝐴
1

𝑟
𝑛

+ 𝑎
2
𝐽
𝐴
2

𝑟
𝑛

+ ⋅ ⋅ ⋅ + 𝑎
𝑁
𝐽
𝐴
𝑁

𝑟
𝑛

,
where 𝐽𝐴𝑖

𝑟
𝑛

= (𝐼 + 𝑟
𝑛
𝐴
𝑖
)
−1 and 𝑟

𝑛
> 0; then, 𝑆

𝑟
𝑛

is nonexpansive
and 𝐹(𝑆

𝑟
𝑛

) = ⋂
𝑁

𝑖=1
𝐴
−1

𝑖
0.

Lemma 4 (see [13]). In a real Banach space 𝐸, the following
inequality holds:

󵄩
󵄩
󵄩
󵄩
𝑥 + 𝑦

󵄩
󵄩
󵄩
󵄩

2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝐸, (12)

where 𝑗(𝑥 + 𝑦) ∈ 𝐽(𝑥 + 𝑦).

Lemma 5 (see [19]). Let {𝑎
𝑛
}, {𝑏
𝑛
}, and {𝑐

𝑛
} be three sequences

of nonnegative real numbers satisfying

𝑎
𝑛+1

≤ (1 − 𝑐
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
𝑐
𝑛
, ∀𝑛 ≥ 1, (13)

where {𝑐
𝑛
} ⊂ (0, 1) such that (i) 𝑐

𝑛
→ 0 and ∑

∞

𝑛=1
𝑐
𝑛
= +∞

and (ii) either lim sup
𝑛→∞

𝑏
𝑛
≤ 0 or ∑∞

𝑛=1
|𝑏
𝑛
𝑐
𝑛
| < +∞. Then

lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 6 (see [20]). Let {𝑥
𝑛
} and {𝑦

𝑛
} be two bounded

sequences in a Banach space 𝐸 such that 𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+

(1 − 𝛽
𝑛
)𝑦
𝑛
, for 𝑛 ≥ 1. Suppose {𝛽

𝑛
} ⊂ (0, 1) satis-

fying 0 < lim inf
𝑛→+∞

𝛽
𝑛

≤ lim sup
𝑛→+∞

𝛽
𝑛

< 1.
If lim sup

𝑛→+∞
(‖𝑦
𝑛+1

− 𝑦
𝑛
‖ − ‖𝑥

𝑛+1
− 𝑥
𝑛
‖) ≤ 0, then

lim
𝑛→+∞

‖𝑦
𝑛
− 𝑥
𝑛
‖ = 0.

Lemma 7 (see [21]). Let 𝐸 be a Banach space and let 𝐴 be an
𝑚-accretive mapping. For 𝜆 > 0, 𝜇 > 0, and 𝑥 ∈ 𝐸, one has

𝐽
𝜆
𝑥 = 𝐽
𝜇
(

𝜇

𝜆

𝑥 + (1 −

𝜇

𝜆

) 𝐽
𝜆
𝑥) , (14)

where 𝐽
𝜆
= (𝐼 + 𝜆𝐴)

−1 and 𝐽
𝜇
= (𝐼 + 𝜇𝐴)

−1.

Lemma 8 (see [22]). Let 𝐸 be a real uniformly smooth Banach
space; then there exists a nondecreasing continuous function𝛽 :

[0, +∞) → [0, +∞) with lim
𝑡→0
+𝛽(𝑡) = 0 and 𝛽(𝑐𝑡) ≤ 𝑐𝛽(𝑡)

for 𝑐 ≥ 1, such that, for all 𝑥, 𝑦 ∈ 𝐸, the following inequality
holds:

󵄩
󵄩
󵄩
󵄩
𝑥 + 𝑦

󵄩
󵄩
󵄩
󵄩

2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝐽𝑥⟩ +max {‖𝑥‖ , 1} 󵄩󵄩󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
𝛽 (

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
) .

(15)

2. Strong Convergence Theorem

Lemma 9 (see [2]). Let 𝐸 be a real uniformly smooth and
uniformly convex Banach space. Let 𝐶 be a nonempty, closed,
and convex sunny nonexpansive retract of 𝐸, and let 𝑄

𝐶
be the

sunny nonexpansive retraction of 𝐸 onto 𝐶. Let 𝑇 : 𝐶 → 𝐶 be
nonexpansive with 𝐹(𝑇) ̸= 0. Suppose that the duality mapping
𝐽 : 𝐸 → 𝐸

∗ is weakly sequentially continuous. If for each
𝑡 ∈ (0, 1) we define 𝑇

𝑡
: 𝐶 → 𝐶 by

𝑇
𝑡
𝑥 := 𝑇𝑄

𝐶
[(1 − 𝑡) 𝑥] , (16)

then 𝑇
𝑡
has a fixed point 𝑧

𝑡
, which is convergent strongly to the

fixed point of 𝑇, as 𝑡 → 0. That is, lim
𝑡→0

𝑧
𝑡
= 𝑧
0
∈ 𝐹(𝑇).

Lemma 10. Let 𝐸 be a strictly convex Banach space and let 𝐶
be a nonempty, closed, and convex subset of 𝐸. Let 𝐴

𝑖
: 𝐶 →

𝐸 (𝑖 = 1, 2, . . . , 𝑁) be a finite family of 𝑚-accretive mappings
such that⋂𝑁

𝑖=1
𝐴
−1

𝑖
0 ̸= 0.

Let 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁
be real numbers in (0, 1) such that

∑
𝑁

𝑖=0
𝑎
𝑖
= 1 and 𝑆

𝑛
= 𝑎
0
𝐼 + 𝑎
1
𝐽
𝐴
1

𝑟
𝑛,1

+ 𝑎
2
𝐽
𝐴
2

𝑟
𝑛,2

+ ⋅ ⋅ ⋅ + 𝑎
𝑁
𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

, where
𝐽
𝐴
𝑖

𝑟
𝑛,𝑖

= (𝐼 + 𝑟
𝑛,𝑖
𝐴
𝑖
)
−1 and 𝑟

𝑛,𝑖
> 0, for 𝑖 = 1, 2, . . . , 𝑁, and 𝑛 ≥ 1;

then, 𝑆
𝑛
: 𝐶 → 𝐶 is nonexpansive and 𝐹(𝑆

𝑛
) = ⋂

𝑁

𝑖=1
𝐴
−1

𝑖
0, for

𝑛 ≥ 1.

Proof. The main idea of the proof is essentially from that in
[15] or Lemma 3. For the sake of completeness, we present the
proof in the following.
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It is easy to check that 𝑆
𝑛
: 𝐶 → 𝐶 is nonexpansive and

⋂
𝑁

𝑖=1
𝐴
−1

𝑖
0 ⊂ 𝐹(𝑆

𝑛
).

On the other hand, for all 𝑝 ∈ 𝐹(𝑆
𝑛
), then 𝑝 = 𝑆

𝑛
𝑝 =

𝑎
0
𝑝 + 𝑎
1
𝐽
𝐴
1

𝑟
𝑛,1

𝑝 + 𝑎
2
𝐽
𝐴
2

𝑟
𝑛,2

𝑝 + ⋅ ⋅ ⋅ + 𝑎
𝑁
𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

𝑝.
For all 𝑞 ∈ ⋂

𝑁

𝑖=1
𝐴
−1

𝑖
0 ⊂ 𝐹(𝑆

𝑛
), then

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
≤ 𝑎
0

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
+ 𝑎
1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
1

𝑟
𝑛,1

𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+ ⋅ ⋅ ⋅ + 𝑎
𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ (𝑎
0
+ 𝑎
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑁−1
)
󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
+ 𝑎
𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

= (1 − 𝑎
𝑁
)
󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
+ 𝑎
𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
.

(17)

Therefore, ‖𝑝 − 𝑞‖ = (1 − 𝑎
𝑁
)‖𝑝 − 𝑞‖ + 𝑎

𝑁
‖𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

𝑝 − 𝑞‖, which
implies that ‖𝑝−𝑞‖ = ‖𝐽

𝐴
𝑁

𝑟
𝑛,𝑁

𝑝−𝑞‖. Similarly, ‖𝑝−𝑞‖ = ‖𝐽
𝐴
1

𝑟
𝑛,1

𝑝−

𝑞‖ = ⋅ ⋅ ⋅ = ‖𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

𝑝 − 𝑞‖.
Then ‖𝑝 − 𝑞‖ = ‖(𝑎

1
/∑
𝑁

𝑖=1
𝑎
𝑖
)(𝐽
𝐴
1

𝑟
𝑛,1

𝑝 − 𝑞) +

(𝑎
2
/∑
𝑁

𝑖=1
𝑎
𝑖
)(𝐽
𝐴
2

𝑟
𝑛,2

𝑝 − 𝑞) + ⋅ ⋅ ⋅ + (𝑎
𝑁
/∑
𝑁

𝑖=1
𝑎
𝑖
)(𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

𝑝 − 𝑞)‖,
which implies from the strictly convexity of 𝐸 that
𝑝 − 𝑞 = 𝐽

𝐴
1

𝑟
𝑛,1

𝑝 − 𝑞 = 𝐽
𝐴
2

𝑟
𝑛,2

𝑝 − 𝑞 = ⋅ ⋅ ⋅ = 𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

𝑝 − 𝑞.
Therefore, 𝐽𝐴𝑖

𝑟
𝑛,𝑖

𝑝 = 𝑝, for 𝑖 = 1, 2, . . . , 𝑁. And then 𝑝 ∈

⋂
𝑁

𝑖=1
𝐴
−1

𝑖
0, which completes the proof.

Lemma 11. Let 𝐸,𝐶, and 𝑆
𝑛
be the same as those in Lemma 10.

Suppose⋂𝑁
𝑖=1

𝐴
−1

𝑖
0 ̸= 0.Then 𝑆

2

𝑛
: 𝐶 → 𝐶 is nonexpansive and

𝐹(𝑆
2

𝑛
) = ⋂

𝑁

𝑖=1
𝐴
−1

𝑖
0.

Proof. From Lemma 10, we have 𝐹(𝑆
𝑛
) = ⋂

𝑁

𝑖=1
𝐴
−1

𝑖
0. It is easy

to check that 𝑆2
𝑛
: 𝐶 → 𝐶 is nonexpansive. So, it suffices to

show that 𝐹(𝑆2
𝑛
) ⊂ 𝐹(𝑆

𝑛
) since 𝐹(𝑆

𝑛
) ⊂ 𝐹(𝑆

2

𝑛
) is trivial.

For all 𝑝 ∈ 𝐹(𝑆
2

𝑛
), then 𝑝 = 𝑆

2

𝑛
𝑝.

For all 𝑞 ∈ 𝐹(𝑆
𝑛
) ⊂ 𝐹(𝑆

2

𝑛
), then 𝑞 = 𝑆

2

𝑛
𝑞. Now,

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑝 − 𝑆
𝑛
𝑞
󵄩
󵄩
󵄩
󵄩
=
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩

≤ 𝑎
0

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
+ 𝑎
1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
1

𝑟
𝑛,1

𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+ ⋅ ⋅ ⋅ + 𝑎
𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

= (1 − 𝑎
𝑁
)
󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
+ 𝑎
𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑞

󵄩
󵄩
󵄩
󵄩
.

(18)

Therefore, ‖𝑝 − 𝑞‖ = (1 − 𝑎
𝑁
)‖𝑝 − 𝑞‖ + 𝑎

𝑁
‖𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

𝑝 − 𝑞‖, which
implies that ‖𝑝−𝑞‖ = ‖J𝐴𝑁

𝑟
𝑛,𝑁

𝑝−𝑞‖. Similarly, ‖𝑝−𝑞‖ = ‖𝐽
𝐴
1

𝑟
𝑛,1

𝑝−

𝑞‖ = ⋅ ⋅ ⋅ = ‖𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

𝑝 − 𝑞‖.
Then repeating the discussion in Lemma 10, we know that

𝐽
𝐴
𝑖

𝑟
𝑛,𝑖

𝑝 = 𝑝, for 𝑖 = 1, 2, . . . , 𝑁. And then 𝑝 ∈ 𝐹(𝑆
𝑛
), which

completes the proof.

Theorem 12. Let 𝐸 be a real uniformly smooth and uniformly
convex Banach space. Let 𝐶 be a nonempty, closed, and convex
sunny nonexpansive retract of 𝐸, where 𝑄

𝐶
is the sunny

nonexpansive retraction of 𝐸 onto 𝐶. Let 𝐴
𝑖
: 𝐶 → 𝐸 be

𝑚-accretive mappings, where 𝑖 = 1, 2, . . . , 𝑁. Suppose that the
dualitymapping 𝐽 : 𝐸 → 𝐸

∗ is weakly sequentially continuous

and 𝐷 := ⋂
𝑁

𝑖=1
𝐴
−1

𝑖
0 ̸= 0. Let {𝑥

𝑛
} be generated by the iterative

scheme (A), where 𝑆
𝑛
:= 𝑎
0
𝐼 + 𝑎
1
𝐽
𝐴
1

𝑟
𝑛,1

+ 𝑎
2
𝐽
𝐴
2

𝑟
𝑛,2

+ ⋅ ⋅ ⋅ + 𝑎
𝑁
𝐽
𝐴
𝑁

𝑟
𝑛,𝑁

,
and 𝐽
𝐴
𝑖

𝑟
𝑛,𝑖

= (𝐼 + 𝑟
𝑛,𝑖
𝐴
𝑖
)
−1, for 𝑖 = 1, 2, . . . , 𝑁, 0 < 𝑎

𝑘
< 1, for

𝑘 = 0, 1, 2, . . . , 𝑁, ∑𝑁
𝑘=0

𝑎
𝑘
= 1. Suppose that {𝑒

𝑛
} ⊂ 𝐸, {𝛼

𝑛
},

{𝛽
𝑛
}, and {𝛾

𝑛
} are three sequences in (0, 1) and {𝑟

𝑛,𝑖
} ⊂ (0, +∞)

satisfying the following conditions:

(i) 𝛼
𝑛
→ 0, 𝛽

𝑛
→ 0, as 𝑛 → ∞;

(ii) ∑∞
𝑛=1

𝛼
𝑛
𝛽
𝑛
= +∞;

(iii) 0 < lim inf
𝑛→+∞

𝛾
𝑛
≤ lim sup

𝑛→+∞
𝛾
𝑛
< 1;

(iv) ∑∞
𝑛=1

|𝑟
𝑛+1,𝑖

−𝑟
𝑛,𝑖
| < +∞ and 𝑟

𝑛,𝑖
≥ 𝜀 > 0, for 𝑛 ≥ 1 and

𝑖 = 1, 2, . . . , 𝑁;

(v) ‖𝑒
𝑛
‖/𝛼
𝑛
→ 0, as 𝑛 → +∞, and ∑

∞

𝑛=1
‖𝑒
𝑛
‖ < +∞.

Then {𝑥
𝑛
} converges strongly to a point 𝑝

0
∈ 𝐷.

Proof. We will split the proof into five steps.

Step 1. {𝑥
𝑛
}, {𝑢
𝑛
}, {𝑆
𝑛
𝑢
𝑛
}, {V
𝑛
}, and {𝑆

𝑛
𝑥
𝑛
} are all bounded.

We will first show that

∀𝑝 ∈ 𝐷,
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩
≤ 𝑀
1
+

𝑛

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑒
𝑖

󵄩
󵄩
󵄩
󵄩
, (19)

where𝑀
1
= max{‖𝑥

1
− 𝑝‖, ‖𝑝‖}.

By using the induction method, we see that, for 𝑛 = 1,
∀𝑝 ∈ 𝐷,

󵄩
󵄩
󵄩
󵄩
𝑥
2
− 𝑝

󵄩
󵄩
󵄩
󵄩
≤ 𝛾
1

󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ (1 − 𝛾

1
)
󵄩
󵄩
󵄩
󵄩
𝑆
1
V
1
− 𝑝

󵄩
󵄩
󵄩
󵄩

≤ 𝛾
1

󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ (1 − 𝛾

1
)
󵄩
󵄩
󵄩
󵄩
V
1
− 𝑝

󵄩
󵄩
󵄩
󵄩

≤ 𝛾
1

󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ (1 − 𝛾

1
) (1 − 𝛽

1
)
󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑝

󵄩
󵄩
󵄩
󵄩

+ 𝛽
1
(1 − 𝛾

1
)
󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑝

󵄩
󵄩
󵄩
󵄩

≤ 𝛾
1

󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ (1 − 𝛾

1
) (1 − 𝛽

1
)
󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑝

󵄩
󵄩
󵄩
󵄩

+ 𝛽
1
(1 − 𝛾

1
)
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

1
) (𝑥
1
+ 𝑒
1
) − 𝑝

󵄩
󵄩
󵄩
󵄩

≤ [1 − 𝛼
1
𝛽
1
(1 − 𝛾

1
)]
󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝛼
1
𝛽
1
(1 − 𝛾

1
)
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

+ (1 − 𝛼
1
) 𝛽
1
(1 − 𝛾

1
)
󵄩
󵄩
󵄩
󵄩
𝑒
1

󵄩
󵄩
󵄩
󵄩
≤ 𝑀
1
+
󵄩
󵄩
󵄩
󵄩
𝑒
1

󵄩
󵄩
󵄩
󵄩
.

(20)

Suppose that (19) is true for 𝑛 = 𝑘. Then, for 𝑛 = 𝑘 + 1,

󵄩
󵄩
󵄩
󵄩
𝑥
𝑘+2

− 𝑝
󵄩
󵄩
󵄩
󵄩
≤ 𝛾
𝑘+1

󵄩
󵄩
󵄩
󵄩
𝑥
𝑘+1

− 𝑝
󵄩
󵄩
󵄩
󵄩
+ (1 − 𝛾

𝑘+1
)
󵄩
󵄩
󵄩
󵄩
V
𝑘+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

≤ 𝛾
𝑘+1

󵄩
󵄩
󵄩
󵄩
𝑥
𝑘+1

− 𝑝
󵄩
󵄩
󵄩
󵄩
+ (1 − 𝛾

𝑘+1
)

× [(1 − 𝛽
𝑘+1

)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘+1

− 𝑝
󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑘+1

󵄩
󵄩
󵄩
󵄩
𝑢
𝑘+1

− 𝑝
󵄩
󵄩
󵄩
󵄩
]



Abstract and Applied Analysis 5

≤ 𝛾
𝑘+1

󵄩
󵄩
󵄩
󵄩
𝑥
𝑘+1

− 𝑝
󵄩
󵄩
󵄩
󵄩
+ (1 − 𝛾

𝑘+1
)

× [(1 − 𝛽
𝑘+1

)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘+1

− 𝑝
󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑘+1

×
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑘+1
) (𝑥
𝑘+1

+ 𝑒
𝑘+1

) − 𝑝
󵄩
󵄩
󵄩
󵄩
]

≤ [1 − 𝛼
𝑘+1

𝛽
𝑘+1

(1 − 𝛾
𝑘+1

)]
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

+ 𝛼
𝑘+1

𝛽
𝑘+1

(1 − 𝛾
𝑘+1

)
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

+ 𝛽
𝑘+1

(1 − 𝛼
𝑘+1

) (1 − 𝛾
𝑘+1

)
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘+1

󵄩
󵄩
󵄩
󵄩

≤ 𝑀
1
+ [1 − 𝛼

𝑘+1
𝛽
𝑘+1

(1 − 𝛾
𝑘+1

)]

×

𝑘

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑒
𝑖

󵄩
󵄩
󵄩
󵄩
+ (1 − 𝛼

𝑘+1
) 𝛽
𝑘+1

(1 − 𝛾
𝑘+1

)
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘+1

󵄩
󵄩
󵄩
󵄩

≤ 𝑀
1
+

𝑘+1

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑒
𝑖

󵄩
󵄩
󵄩
󵄩
.

(21)

Thus (19) is true for all 𝑛 ∈ 𝑁. Since ∑
∞

𝑛=1
‖𝑒
𝑛
‖ < +∞,

then (19) ensures that {𝑥
𝑛
} is bounded.

For all 𝑝 ∈ 𝐷, from ‖𝑢
𝑛
− 𝑝‖ ≤ ‖(1 − 𝛼

𝑛
)(𝑥
𝑛
+ 𝑒
𝑛
) − 𝑝‖ ≤

‖𝑥
𝑛
‖ + ‖𝑒

𝑛
‖ + ‖𝑝‖, we see that {𝑢

𝑛
} is bounded.

Since ‖𝑆
𝑛
𝑢
𝑛
‖ ≤ ‖𝑆

𝑛
𝑢
𝑛
− 𝑆
𝑛
𝑝‖ + ‖𝑝‖ ≤ ‖𝑢

𝑛
− 𝑝‖ + ‖𝑝‖, then

{𝑆
𝑛
𝑢
𝑛
} is bounded. Since both {𝑆

𝑛
𝑢
𝑛
} and {𝑥

𝑛
} are bounded,

then {V
𝑛
} is bounded. Similarly, {𝑆

𝑛
𝑥
𝑛
}, {𝐽𝐴𝑖
𝑟
𝑛,𝑖

𝑢
𝑛
}, and {𝐽

𝐴
𝑖

𝑟
𝑛,𝑖

V
𝑛
}

are all bounded, for 𝑖 = 1, 2, . . . , 𝑁.
Then we set 𝑀

2
= sup{‖𝑢

𝑛
‖, ‖𝐽
𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
‖, ‖V
𝑛
‖, ‖𝐽
𝐴
𝑖

𝑟
𝑛,𝑖

V
𝑛
‖ : 𝑛 ≥

1, 𝑖 = 1, 2, . . . , 𝑁}.

Step 2. lim
𝑛→∞

‖𝑥
𝑛
− 𝑆
𝑛
V
𝑛
‖ = 0 and lim

𝑛→∞
‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0.

In fact,

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

V
𝑛+1

− 𝑆
𝑛
V
𝑛

󵄩
󵄩
󵄩
󵄩

≤ 𝑎
0

󵄩
󵄩
󵄩
󵄩
V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
+

𝑁

∑

𝑖=1

𝑎
𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑖

𝑟
𝑛+1,𝑖

V
𝑛+1

− 𝐽
𝐴
𝑖

𝑟
𝑛,𝑖

V
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

.

(22)

Next, we discuss ‖𝐽𝐴𝑖
𝑟
𝑛+1,𝑖

V
𝑛+1

− 𝐽
𝐴
𝑖

𝑟
𝑛,𝑖

V
𝑛
‖.

If 𝑟
𝑛,𝑖

≤ 𝑟
𝑛+1,𝑖

, then, by using Lemma 7, we have

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑖

𝑟
𝑛+1,𝑖

V
𝑛+1

− 𝐽
𝐴
𝑖

𝑟
𝑛,𝑖

V
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑖

𝑟
𝑛,𝑖

(

𝑟
𝑛,𝑖

𝑟
𝑛+1,𝑖

V
𝑛+1

+ (1 −

𝑟
𝑛,𝑖

𝑟
𝑛+1,𝑖

)𝐽
𝐴
𝑖

𝑟
𝑛+1,𝑖

V
𝑛+1

) − 𝐽
𝐴
𝑖

𝑟
𝑛,𝑖

V
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑟
𝑛,𝑖

𝑟
𝑛+1,𝑖

V
𝑛+1

+ (1 −

𝑟
𝑛,𝑖

𝑟
𝑛+1,𝑖

)𝐽
𝐴
𝑖

𝑟
𝑛+1,𝑖

V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

𝑟
𝑛,𝑖

𝑟
𝑛+1,𝑖

󵄩
󵄩
󵄩
󵄩
V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
+ (1 −

𝑟
𝑛,𝑖

𝑟
𝑛+1,𝑖

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑖

𝑟
𝑛+1,𝑖

V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
+

𝑟
𝑛+1,𝑖

− 𝑟
𝑛,𝑖

𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑖

𝑟
𝑛+1,𝑖

V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

.

(23)

If 𝑟
𝑛+1,𝑖

≤ 𝑟
𝑛,𝑖
, then imitating the proof of (23), we have

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑖

𝑟
𝑛+1,𝑖

V
𝑛+1

− 𝐽
𝐴
𝑖

𝑟
𝑛,𝑖

V
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
+

𝑟
𝑛,𝑖

− 𝑟
𝑛+1,𝑖

𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑖

𝑟
𝑛+1,𝑖

V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

.

(24)

Combining (23) and (24), we have

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑖

𝑟
𝑛+1,𝑖

V
𝑛+1

− 𝐽
𝐴
𝑖

𝑟
𝑛,𝑖

V
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
+

󵄨
󵄨
󵄨
󵄨
𝑟
𝑛,𝑖

− 𝑟
𝑛+1,𝑖

󵄨
󵄨
󵄨
󵄨

𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝐴
𝑖

𝑟
𝑛+1,𝑖

V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
+

2
󵄨
󵄨
󵄨
󵄨
𝑟
𝑛,𝑖

− 𝑟
𝑛+1,𝑖

󵄨
󵄨
󵄨
󵄨

𝜀

𝑀
2
.

(25)

Putting (25) into (22), we have

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

V
𝑛+1

− 𝑆
𝑛
V
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
+

2𝑀
2

𝜀

𝑁

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑟
𝑛,𝑖

− 𝑟
𝑛+1,𝑖

󵄨
󵄨
󵄨
󵄨
.

(26)

Similarly, we have

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑢
𝑛+1

− 𝑆
𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

− 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
+

2𝑀
2

𝜀

𝑁

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑟
𝑛,𝑖

− 𝑟
𝑛+1,𝑖

󵄨
󵄨
󵄨
󵄨
.

(27)

Therefore, from (26) and (27), we have

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

V
𝑛+1

− 𝑆
𝑛
V
𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
V
𝑛+1

− V
𝑛

󵄩
󵄩
󵄩
󵄩
+

2𝑀
2

𝜀

𝑁

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑟
𝑛,𝑖

− 𝑟
𝑛+1,𝑖

󵄨
󵄨
󵄨
󵄨

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛+1

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

+
󵄨
󵄨
󵄨
󵄨
𝛽
𝑛+1

− 𝛽
𝑛

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑢
𝑛+1

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑢
𝑛+1

− 𝑆
𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

+

2𝑀
2

𝜀

𝑁

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑟
𝑛,𝑖

− 𝑟
𝑛+1,𝑖

󵄨
󵄨
󵄨
󵄨

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛+1

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

+
󵄨
󵄨
󵄨
󵄨
𝛽
𝑛+1

− 𝛽
𝑛

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑢
𝑛+1

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

− 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

+

4𝑀
2

𝜀

𝑁

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑟
𝑛,𝑖

− 𝑟
𝑛+1,𝑖

󵄨
󵄨
󵄨
󵄨

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛+1

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

+
󵄨
󵄨
󵄨
󵄨
𝛽
𝑛+1

− 𝛽
𝑛

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑢
𝑛+1

󵄩
󵄩
󵄩
󵄩

+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛+1
) (𝑥
𝑛+1

+ 𝑒
𝑛+1

) − (1 − 𝛼
𝑛
) (𝑥
𝑛
+ 𝑒
𝑛
)
󵄩
󵄩
󵄩
󵄩

+

4𝑀
2

𝜀

𝑁

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑟
𝑛,𝑖

− 𝑟
𝑛+1,𝑖

󵄨
󵄨
󵄨
󵄨
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≤ (1 + 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+ (𝛽
𝑛
+ 𝛼
𝑛
𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

+ (𝛽
𝑛+1

+ 𝛼
𝑛+1

𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩
+
󵄨
󵄨
󵄨
󵄨
𝛽
𝑛+1

− 𝛽
𝑛

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑢
𝑛+1

󵄩
󵄩
󵄩
󵄩

+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

− 𝑒
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝛼
𝑛+1

𝑒
𝑛+1

− 𝛼
𝑛
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

+

4𝑀
2

𝜀

𝑁

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑟
𝑛,𝑖

− 𝑟
𝑛+1,𝑖

󵄨
󵄨
󵄨
󵄨
.

(28)

From Step 1, we know that lim sup
𝑛→+∞

(‖𝑆
𝑛+1

V
𝑛+1

−

𝑆
𝑛
V
𝑛
‖ − ‖𝑥

𝑛+1
− 𝑥
𝑛
‖) ≤ 0. Using Lemma 6, we have from (28)

that lim
𝑛→∞

‖𝑥
𝑛
− 𝑆
𝑛
V
𝑛
‖ = 0 and then lim

𝑛→∞
‖𝑥
𝑛+1

− 𝑥
𝑛
‖ =

lim
𝑛→∞

(1 − 𝛾
𝑛
)‖𝑆
𝑛
V
𝑛
− 𝑥
𝑛
‖ = 0.

Step 3. lim
𝑛→∞

‖𝑥
𝑛
−𝑆
𝑛
𝑥
𝑛
‖ = 0 and lim

𝑛→∞
‖𝑥
𝑛
−𝑆
2

𝑛
𝑥
𝑛
‖ = 0.

In fact,
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑆
𝑛
V
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
V
𝑛
− 𝑆
𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑆
𝑛
V
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
V
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑆
𝑛
V
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑆
𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
.

(29)

Noticing the results of Steps 1 and 2 and𝛽
𝑛
→ 0, we have

lim
𝑛→∞

‖𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛
‖ = 0.

Since ‖𝑥
𝑛
− 𝑆
2

𝑛
𝑥
𝑛
‖ ≤ ‖𝑥

𝑛
− 𝑆
𝑛
𝑥
𝑛
‖ + ‖𝑆
𝑛
𝑥
𝑛
− 𝑆
2

𝑛
𝑥
𝑛
‖ ≤ 2‖𝑥

𝑛
−

𝑆
𝑛
𝑥
𝑛
‖, then ‖𝑥

𝑛
− 𝑆
2

𝑛
𝑥
𝑛
‖ → 0, as 𝑛 → ∞.

Step 4. lim sup
𝑛→+∞

⟨𝑝
0
, 𝐽(𝑝
0
− 𝑥
𝑛
)⟩ ≤ 0, where 𝑝

0
is an

element in𝐷.
From Lemma 11, we know that 𝑆

2

𝑛
: 𝐶 → 𝐶 is

nonexpansive and 𝐹(𝑆
2

𝑛
) = 𝐷. Then Lemma 9 implies that

there exists 𝑧
𝑡
∈ 𝐶 such that 𝑧

𝑡
= 𝑆
2

𝑛
𝑄
𝐶
[(1−𝑡)𝑧

𝑡
] for 𝑡 ∈ (0, 1).

Moreover, 𝑧
𝑡
→ 𝑝
0
∈ 𝐷, as 𝑡 → 0.

Since ‖𝑧
𝑡
−𝑝
0
‖ ≤ ‖(1− 𝑡)𝑧

𝑡
−𝑝
0
‖ ≤ (1− 𝑡)‖𝑧

𝑡
−𝑝
0
‖+ ‖𝑝

0
‖,

then {𝑧
𝑡
} is bounded. Let 𝑀

3
= sup{‖𝑧

𝑡
− 𝑥
𝑛
‖ : 𝑛 ≥ 1, 𝑡 >

0}. Then from Step 1, we know that𝑀
3
is a positive constant.

Using Lemma 4, we have
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡
− 𝑆
2

𝑛
𝑥
𝑛
+ 𝑆
2

𝑛
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡
− 𝑆
2

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2 ⟨𝑆
2

𝑛
𝑥
𝑛
− 𝑥
𝑛
, 𝐽 (𝑧
𝑡
− 𝑥
𝑛
)⟩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡
− 𝑆
2

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
2

𝑛
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
(1 − 𝑡) 𝑧

𝑡
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
2

𝑛
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

− 2𝑡 ⟨𝑧
𝑡
, 𝐽 [(1 − 𝑡) 𝑧

𝑡
− 𝑥
𝑛
]⟩

+ 2𝑀
3

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
2

𝑛
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
.

(30)

So ⟨𝑧
𝑡
, 𝐽[(1 − 𝑡)𝑧

𝑡
− 𝑥
𝑛
]⟩ ≤ (𝑀

3
/𝑡)‖𝑆
2

𝑛
𝑥
𝑛
− 𝑥
𝑛
‖, which

implies that lim
𝑡→0

lim sup
𝑛→+∞

⟨𝑧
𝑡
, 𝐽[(1 − 𝑡)𝑧

𝑡
− 𝑥
𝑛
]⟩ ≤ 0

in view of Step 3.
Since {𝑥

𝑛
} is bounded and 𝐽 is uniformly continuous on

each bounded subset of 𝐸, then ⟨𝑝
0
, 𝐽(𝑝
0
− 𝑥
𝑛
) − 𝐽[(1 − 𝑡)𝑧

𝑡
−

𝑥
𝑛
]⟩ → 0, as 𝑡 → 0.

Moreover, noticing the fact that

⟨𝑝
0
, 𝐽 (𝑝
0
− 𝑥
𝑛
)⟩

= ⟨𝑝
0
, 𝐽 (𝑝
0
− 𝑥
𝑛
) − 𝐽 [(1 − 𝑡) 𝑧

𝑡
− 𝑥
𝑛
]⟩

+ ⟨𝑝
0
− 𝑧
𝑡
, 𝐽 [(1 − 𝑡) 𝑧

𝑡
− 𝑥
𝑛
]⟩

+ ⟨𝑧
𝑡
, 𝐽 [(1 − 𝑡) 𝑧

𝑡
− 𝑥
𝑛
]⟩ ,

(31)

we have lim sup
𝑛→+∞

⟨𝑝
0
, 𝐽(𝑝
0
− 𝑥
𝑛
)⟩ ≤ 0.

Since ⟨𝑝
0
, 𝐽[𝑝
0
− 𝑥
𝑛
− (1 − 𝛼

𝑛
)𝑒
𝑛
+ 𝛼
𝑛
𝑥
𝑛
]⟩ = ⟨𝑝

0
, 𝐽[𝑝
0
−

𝑥
𝑛
− (1 − 𝛼

𝑛
)𝑒
𝑛
+𝛼
𝑛
𝑥
𝑛
] − 𝐽(𝑝

0
−𝑥
𝑛
))⟩+⟨𝑝

0
, 𝐽(𝑝
0
−𝑥
𝑛
))⟩ and 𝐽

is uniformly continuous on each bounded subset of 𝐸, then

lim sup
𝑛→+∞

⟨𝑝
0
, 𝐽 [𝑝
0
− 𝑥
𝑛
− (1 − 𝛼

𝑛
) 𝑒
𝑛
+ 𝛼
𝑛
𝑥
𝑛
]⟩ ≤ 0.

(32)

Step 5. 𝑥
𝑛
→ 𝑝
0
, as 𝑛 → +∞, where 𝑝

0
∈ 𝐷 is the same as

that in Step 4.
Let𝑀

4
= sup{‖(1 − 𝛼

𝑛
)(𝑥
𝑛
+ 𝑒
𝑛
) − 𝑝
0
‖ : 𝑛 ≥ 1}. By using

Lemma 4 again, we have
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

≤ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
V
𝑛
− 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

≤ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛾
𝑛
) (1 − 𝛽

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛾
𝑛
) 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

= (1 − 𝛽
𝑛
+ 𝛽
𝑛
𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛾
𝑛
) 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛽
𝑛
+ 𝛽
𝑛
𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛾
𝑛
) 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛
) (𝑥
𝑛
+ 𝑒
𝑛
) − 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛽
𝑛
+ 𝛽
𝑛
𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛾
𝑛
) 𝛽
𝑛
(1 − 𝛼

𝑛
)

×
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

+ 2 (1 − 𝛾
𝑛
) 𝛽
𝑛
(1 − 𝛼

𝑛
)

× ⟨𝑒
𝑛
, 𝐽 [(1 − 𝛼

𝑛
) (𝑥
𝑛
+ 𝑒
𝑛
) − 𝑝
0
]⟩ + 2𝛼

𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
)

× ⟨𝑝
0
, 𝐽 [𝑝
0
− 𝑥
𝑛
− (1 − 𝛼

𝑛
) 𝑒
𝑛
+ 𝛼
𝑛
𝑥
𝑛
]⟩

≤ [(1 − 𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
) ]

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝
0

󵄩
󵄩
󵄩
󵄩

2

+ 2 (1 − 𝛾
𝑛
)

× (1 − 𝛼
𝑛
) 𝛽
𝑛
𝑀
4

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩
+ 2𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
)

× ⟨𝑝
0
, 𝐽 [𝑝
0
− 𝑥
𝑛
− (1 − 𝛼

𝑛
) 𝑒
𝑛
+ 𝛼
𝑛
𝑥
𝑛
]⟩ .

(33)

Let 𝑐
𝑛
= (1 − 𝛾

𝑛
)𝛼
𝑛
𝛽
𝑛
; then (33) reduces to ‖𝑥

𝑛+1
− 𝑝
0
‖
2

≤

(1 − 𝑐
𝑛
)‖𝑥
𝑛
− 𝑝
0
‖
2+2𝑐
𝑛
{⟨𝑝
0
, 𝐽[𝑝
0
− 𝑥
𝑛
− (1 − 𝛼

𝑛
)𝑒
𝑛
+ 𝛼
𝑛
𝑥
𝑛
]⟩ +

(1 − 𝛼
𝑛
)𝑀
4
(‖𝑒
𝑛
‖/𝛼
𝑛
)}.

From (32), (33), and the assumptions, by using Lemma 5,
we know that 𝑥

𝑛
→ 𝑝
0
, as 𝑛 → +∞.

This completes the proof.

If, in Theorem 12, 𝐶 = 𝐸, then we have the following
theorem.
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Theorem 13. Let 𝐸 and𝐷 be the same as those inTheorem 12.
Suppose that the duality mapping 𝐽 : 𝐸 → 𝐸

∗ is weakly
sequentially continuous. Let 𝐴

𝑖
: 𝐸 → 𝐸 (𝑖 = 1, 2, . . . , 𝑁)

be a finite family of 𝑚-accretive mappings. Let {𝑒
𝑛
} ⊂ 𝐸, {𝛼

𝑛
},

{𝛽
𝑛
}, {𝛾
𝑛
} ⊂ (0, 1), and {𝑟

𝑛,𝑖
} ⊂ (0, +∞) satisfy the conditions

presented in Theorem 12.
Let {𝑥

𝑛
} be generated by the following scheme:

𝑥
1
∈ 𝐸,

𝑢
𝑛
= (1 − 𝛼

𝑛
) (𝑥
𝑛
+ 𝑒
𝑛
) ,

V
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑆
𝑛
𝑢
𝑛
,

𝑥
𝑛+1

= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
) 𝑆
𝑛
V
𝑛
, 𝑛 ≥ 1.

(B)

Then {𝑥
𝑛
} converges strongly to a point 𝑝

0
∈ 𝐷, where 𝑆

𝑛
is

the same as that in Theorem 12.

3. Nonlinear Elliptic Systems with
(𝑝
1
,𝑝
2
,. . .,𝑝

𝑁
)-Laplacian

In what follows in this paper, unless otherwise stated, we will
assume that (2𝑁/𝑁 + 1) < 𝑝

𝑖
< +∞, (1/𝑝

𝑖
) + (1/𝑝

󸀠

𝑖
) = 1.

We use ‖ ⋅ ‖
𝑝
𝑖

, ‖ ⋅ ‖
𝑝
󸀠

𝑖

, and ‖ ⋅ ‖
1,𝑝
𝑖
,Ω

to denote the norms of
spaces 𝐿𝑝𝑖(Ω), 𝐿𝑝

󸀠

𝑖
(Ω), and 𝑊

1,𝑝
𝑖

(Ω), respectively, where 𝑖 =
1, 2, . . . , 𝑁.

Now, we will examine the following nonlinear elliptic
systems:

− div [(𝐶
𝑖
(𝑥) + |∇𝑢|

2

)

(𝑝
𝑖
−2)/2

∇𝑢] = 𝑓
𝑖
(𝑥) , a.e. 𝑥 ∈ Ω,

− ⟨𝜗, (𝐶
𝑖
(𝑥) + |∇𝑢|

2

)

(𝑝
𝑖
−2)/2

∇𝑢⟩ = 0, a.e. 𝑥 ∈ Γ,

𝑖 = 1, 2, . . . , 𝑁.

(C)

In (C), Ω is a bounded conical domain of a Euclidean
space 𝑅𝑁 with its boundary Γ ∈ 𝐶

1, (c.f. [23]). 𝑓
𝑖
(𝑥) ∈ 𝐿

𝑝
󸀠

𝑖
(Ω)

is a given function and 0 ≤ 𝐶
𝑖
(𝑥) ∈ 𝐿

𝑝
𝑖

(Ω), for 𝑖 = 1, 2, . . . , 𝑁.
𝜗 denotes the exterior normal derivative of Γ.

Lemma 14 (see [24]). Define the mapping 𝐵
𝑝
𝑖

: 𝑊
1,𝑝
𝑖

(Ω) →

(𝑊
1,𝑝
𝑖

(Ω))

∗ by

(V, 𝐵
𝑝
𝑖

𝑢) = ∫

Ω

⟨(𝐶
𝑖
(𝑥) + |∇𝑢|

2

)

(𝑝
𝑖
−2)/2

∇𝑢, ∇V⟩𝑑𝑥, (34)

for any 𝑢, V ∈ 𝑊
1,𝑝
𝑖

(Ω). Then, 𝐵
𝑝
𝑖

is everywhere defined,
strictly monotone, hemicontinuous, coercive, and maximal
monotone, for 𝑖 = 1, 2, . . . , 𝑁.

Lemma 15 (see [24]). Define the mapping 𝐴
𝑖
: 𝐿
2

(Ω) →

𝐿
2

(Ω) by

𝐷(𝐴
𝑖
) = {𝑢 (𝑥) ∈ 𝐿

2

(Ω) : there exists𝑔
𝑖
(𝑥) ∈ 𝐿

2

(Ω)

such that𝑔
𝑖
(𝑥) = 𝐵

𝑝
𝑖

𝑢}

(35)

for any 𝑢 ∈ 𝐷(𝐴
𝑖
), 𝐴
𝑖
𝑢 = 𝑔

𝑖
(𝑥). Then, 𝐴

𝑖
is 𝑚-accretive, for

𝑖 = 1, 2, . . . , 𝑁.

Lemma 16 (see [24]). For 𝑖 = 1, 2, . . . , 𝑁, define the mapping
𝐴
𝑝
𝑖

: 𝐿
𝑝
𝑖

(Ω) → 𝐿
𝑝
𝑖

(Ω) in the following way:

(i) if 𝑝
𝑖

≥ 2, 𝐷(𝐴
𝑝
𝑖

) = {𝑢(𝑥) ∈ 𝐿
𝑝
𝑖

(Ω) :

there exists ℎ
𝑖
(𝑥) ∈ 𝐿

𝑝
𝑖

(Ω) such that ℎ
𝑖
(𝑥) = 𝐵

𝑝
𝑖

𝑢},
then for any 𝑢 ∈ 𝐷(𝐴

𝑝
𝑖

), 𝐴
𝑝
𝑖

𝑢 = ℎ
𝑖
(𝑥),

(ii) if 2𝑁/(𝑁 + 1) < 𝑝
𝑖
< 2, we define 𝐴

𝑝
𝑖

: 𝐿
𝑝
𝑖

(Ω) →

𝐿
𝑝
𝑖

(Ω) as the 𝐿
𝑝
𝑖-closure of 𝐴

𝑖
: 𝐿
2

(Ω) → 𝐿
2

(Ω)

defined in (i) above.

Then, 𝐴
𝑝
𝑖

is𝑚-accretive, for 𝑖 = 1, 2, . . . , 𝑁.

Lemma 17 (see [25]). Let Ω be a bounded conical domain in
𝑅
𝑁. If 𝑚𝑝 > 𝑁, then 𝑊

𝑚,𝑝

(Ω) 󳨅→󳨅→ 𝐶
𝐵
(Ω); if 0 < 𝑚𝑝 ≤ 𝑁

and 𝑞
0
= 𝑁𝑝/(𝑁 − 𝑚𝑝), then 𝑊

𝑚,𝑝

(Ω) 󳨅→󳨅→ 𝐿
𝑞

(Ω), where
1 ≤ 𝑞 < 𝑞

0
.

Lemma 18 (see [26]). Let 𝑋
0
denote the closed subspace of

all constant functions in 𝑊
1,𝑝

(Ω). Let 𝑋 be the quotient space
𝑊
1,𝑝

(Ω)/𝑋
0
. For 𝑢 ∈ 𝑊

1,𝑝

(Ω), define the mapping 𝑃 :

𝑊
1,𝑝

(Ω) → 𝑋
0
by 𝑃𝑢 = (1/𝑚𝑒𝑎𝑠(Ω)) ∫

Ω

𝑢𝑑𝑥. Then, there
is a constant 𝐶 > 0, such that ∀𝑢 ∈ 𝑊

1,𝑝

(Ω),

‖𝑢 − 𝑃𝑢‖
𝑝
≤ 𝐶‖∇𝑢‖

(𝐿
𝑝
(Ω))
𝑁 . (36)

Theorem 19. For 𝑖 = 1, 2, . . . , 𝑁, one has 𝐴
−1

𝑝
𝑖

0 = {𝑢 ∈

𝐿
𝑝
𝑖

(Ω) : 𝑢(𝑥) ≡ Constant onΩ}.

Proof. (i) 𝑝
𝑖
≥ 2.

Let 𝑢(𝑥) ∈ 𝐴
−1

𝑝
𝑖

0; then 0 =

(𝑢, 𝐵
𝑝
𝑖

𝑢) = ∫
Ω

(𝐶
𝑖
(𝑥) + |∇𝑢|

2

)

(𝑝
𝑖
−2)/2

|∇𝑢|
2

𝑑𝑥 ≥ ∫
Ω

|∇𝑢|
𝑝
𝑖

𝑑𝑥 ≥

0, which implies that 𝑢(𝑥) ≡ Constant. That is,
𝐴
−1

𝑝
𝑖

0 ⊂ {𝑢 ∈ 𝐿
𝑝
𝑖

(Ω) : 𝑢(𝑥) ≡ Constant}.
On the other hand, suppose 𝑢(𝑥) ≡ Constant. Then 0 =

(V, 𝐵
𝑝
𝑖

𝑢), for all V ∈ 𝑊
1,𝑝
𝑖

(Ω). Then 𝑢 ∈ 𝐴
−1

𝑝
𝑖

0. Therefore, the
result holds.

(ii) 2𝑁/(𝑁 + 1) < 𝑝
𝑖
< 2.

Suppose 𝑢 ∈ 𝐿
𝑝
𝑖

(Ω) and 𝑢(𝑥) ≡ Constant. Then let 𝑢
𝑛
≡

𝑢, andwe can easily see that 𝑢 ∈ 𝐴
−1

𝑝
𝑖

0 in view of the definition
of 𝐴
𝑝
𝑖

.
On the other hand, let 𝑢 ∈ 𝐴

−1

𝑝
𝑖

0. Then there exist {𝑢
𝑛
}

and {𝑓
𝑛
} in 𝐿
2

(Ω) such that 𝑢
𝑛
→ 𝑢, 𝑓

𝑛
→ 0 in 𝐿

𝑝
𝑖

(Ω) and
𝐴
𝑖
𝑢
𝑛
= 𝑓
𝑛
. Now, define the following functions:

𝜒 (𝑡) = {

|𝑡|
𝑝
𝑖
−1sgnt, if |𝑡| ≥ 1

𝑡, if |𝑡| < 1,

𝜉 (𝑡) = {

|𝑡|
2−(2/𝑝

𝑖
)sgnt, if |𝑡| ≥ 1

𝑡, if |𝑡| < 1.

(37)

Then for 𝑢 ∈ 𝐿
2

(Ω), the function 𝑡 ∈ 𝑅 → ∫
Ω

𝜉(𝑢 +

𝑡)𝑑𝑥 ∈ 𝑅 is continuous and lim
𝑡→±∞

∫
Ω

𝜉(𝑢 + 𝑡)𝑑𝑥 = ±∞.
Therefore, there exists 𝑡

𝑢
∈ 𝑅 such that ∫

Ω

𝜉(𝑢 + 𝑡
𝑢
)𝑑𝑥 = 0.
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So, for 𝑢
𝑛
∈ 𝐿
2

(Ω), we may assume that there exist 𝑡
𝑛
∈ 𝑅

such that ∫
Ω

𝜉(𝑢
𝑛
+ 𝑡
𝑛
)𝑑𝑥 = 0 and 𝐴

𝑖
𝑢
𝑛
= 𝑓
𝑛
, for 𝑛 ≥ 1. Let

V
𝑛
= 𝑢
𝑛
+ 𝑡
𝑛
; then 𝐴

𝑖
V
𝑛
= 𝐴
𝑖
𝑢
𝑛
= 𝑓
𝑛
, for 𝑛 ≥ 1.

Now, compute the following:

󵄩
󵄩
󵄩
󵄩
𝑓
𝑛

󵄩
󵄩
󵄩
󵄩𝑝
𝑖

(∫

|V𝑛|≤1

󵄨
󵄨
󵄨
󵄨
V
𝑛

󵄨
󵄨
󵄨
󵄨

𝑝
󸀠

𝑖

𝑑𝑥 + ∫

|V𝑛|≥1

󵄨
󵄨
󵄨
󵄨
V
𝑛

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥)

(𝑝
𝑖
−1)/𝑝

𝑖

≥
󵄩
󵄩
󵄩
󵄩
𝑓
𝑛

󵄩
󵄩
󵄩
󵄩𝑝
𝑖

(∫

|V𝑛|≤1

󵄨
󵄨
󵄨
󵄨
V
𝑛

󵄨
󵄨
󵄨
󵄨

𝑝
󸀠

𝑖

𝑑𝑥 + ∫

|V𝑛|≥1

󵄨
󵄨
󵄨
󵄨
V
𝑛

󵄨
󵄨
󵄨
󵄨

𝑝
𝑖

𝑑𝑥)

(𝑝
𝑖
−1)/𝑝

𝑖

≤
󵄩
󵄩
󵄩
󵄩
𝑓
𝑛

󵄩
󵄩
󵄩
󵄩𝑝
𝑖

󵄩
󵄩
󵄩
󵄩
𝜒 (V
𝑛
)
󵄩
󵄩
󵄩
󵄩𝑝
𝑖
󸀠

≥ (𝜒 (V
𝑛
) , 𝑓
𝑛
)

≥ (𝜒 (V
𝑛
) , 𝐴
𝑖
V
𝑛
) ≥ ∫

Ω

󵄨
󵄨
󵄨
󵄨
∇V
𝑛

󵄨
󵄨
󵄨
󵄨

𝑝
𝑖

𝜒
󸀠

(V
𝑛
) 𝑑𝑥

≥ Const. ∫
Ω

󵄨
󵄨
󵄨
󵄨
∇ (𝜉 (V

𝑛
))
󵄨
󵄨
󵄨
󵄨

𝑝
𝑖

𝑑𝑥.

(38)
Using Lemma 18,

∫

Ω

󵄨
󵄨
󵄨
󵄨
∇ (𝜉 (V

𝑛
))
󵄨
󵄨
󵄨
󵄨

𝑝
𝑖

𝑑𝑥 ≥ Const. 󵄩󵄩󵄩
󵄩
𝜉 (V
𝑛
)
󵄩
󵄩
󵄩
󵄩

𝑝
𝑖

1,𝑝
𝑖
,Ω
. (39)

Then Lemma 17 implies that
󵄩
󵄩
󵄩
󵄩
𝜉 (V
𝑛
)
󵄩
󵄩
󵄩
󵄩

𝑝
𝑖

1,𝑝
𝑖
,Ω

≥ Const. 󵄩󵄩󵄩
󵄩
𝜉 (V
𝑛
)
󵄩
󵄩
󵄩
󵄩

𝑝
𝑖

𝑝
󸀠

𝑖

= Const. (∫
|V
𝑛
|≤1

󵄨
󵄨
󵄨
󵄨
V
𝑛

󵄨
󵄨
󵄨
󵄨

𝑝
󸀠

𝑖

𝑑𝑥 + ∫

|V
𝑛
|≥1

󵄨
󵄨
󵄨
󵄨
V
𝑛

󵄨
󵄨
󵄨
󵄨

(2−(2/𝑝
𝑖
))𝑝
󸀠

𝑖

𝑑𝑥)

𝑝
𝑖
/𝑝
󸀠

𝑖

= Const. (∫
|V
𝑛
|≤1

󵄨
󵄨
󵄨
󵄨
V
𝑛

󵄨
󵄨
󵄨
󵄨

𝑝
󸀠

𝑖

𝑑𝑥 + ∫

|V
𝑛
|≥1

󵄨
󵄨
󵄨
󵄨
V
𝑛

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥)

𝑝
𝑖
/𝑝
󸀠

𝑖

.

(40)

From (38), (39), and (40), we know that ‖𝜉(V
𝑛
)‖
𝑝
𝑖

1,𝑝
𝑖
,Ω

≤

Const.‖𝑓
𝑛
‖
𝑝
𝑖

→ 0, as 𝑛 → ∞. Then 𝜉(V
𝑛
) → 0 in 𝐿

𝑝
󸀠

𝑖
(Ω).

Since Nemytskyi mapping 𝑢 ∈ 𝐿
𝑝
󸀠

𝑖
(Ω) → 𝜉

−1

(𝑢) ∈ 𝐿
𝑝
𝑖

(Ω)

is continuous, then V
𝑛

→ 0 in 𝐿
𝑝
𝑖

(Ω). And then 𝑢(𝑥) ≡

Constant.
This completes the proof.

Remark 20. Theorem 19 helps us to see the assumption that
⋂
𝑁

𝑖=1
𝐴
−1

𝑝
𝑖

0 ̸= 0 in Theorems 12 and 13 are valid.

Remark 21. If we set 𝐶
𝑝
𝑖

= 𝐴
𝑝
𝑖

− 𝑓
𝑖
(𝑥), then 𝐶

𝑝
𝑖

is also
𝑚-accretive. And then iterative scheme (A) can be used
to approximate the element in ⋂

𝑁

𝑖=1
𝐶
−1

𝑝
𝑖

0, which is just the
solution of nonlinear elliptic system (C).

Remark 22. If 𝐶
𝑖
(𝑥) ≡ 0, then (C) is reduced to the following

nonlinear elliptic systems with (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑁
)-Laplacian:

− Δ
𝑝
𝑖

𝑢 = 𝑓
𝑖
(𝑥) , a.e. 𝑥 ∈ Ω,

− ⟨𝜗, |∇𝑢|
𝑝
𝑖
−2

∇𝑢⟩ = 0, a.e. 𝑥 ∈ Γ,

𝑖 = 1, 2, . . . , 𝑁.

(D)

Moreover, the solution of (D) is the zero of finitely
many suitably defined 𝑚-accretive mappings, which can be
approximated by iterative scheme (A).
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