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Nonlinear Lagrangian algorithm plays an important role in solving constrained optimization problems. It is known that, under
appropriate conditions, the sequence generated by the first-order multiplier iteration converges superlinearly. This paper aims
at analyzing the second-order multiplier iteration based on a class of nonlinear Lagrangians for solving nonlinear programming
problems with inequality constraints. It is suggested that the sequence generated by the second-order multiplier iteration converges
superlinearly with order at least two if in addition the Hessians of functions involved in problem are Lipschitz continuous.

1. Introduction

Lagrangians play an important role for solving constrained
optimization problems. Hestenes [1] and Powell [2] intro-
duced the proximal augmented Lagrangian for problems
with equality constraints and Rockafellar [3] developed the
proximal augmented Lagrangian for problems with both
equality and inequality constraints.

Based on the above Lagrangians, Bertsekas [4, 5] dis-
cussed the convergence of sequence generated by the second-
order multiplier iteration.The same author further improved
the convergence and convergent rate of the second-order
multiplier iteration using Newton’s method in 1982. Besides,
Brusch [6] and Fletcher [7] first independently proposed
the second-order multiplier iteration using quasi-Newton’s
method, respectively. Bertsekas [8] developed new frame-
work of quasi-Newton’s method in 1982.

Consider the following inequality constrained optimiza-
tion problem:

minimize 𝑓
0
(𝑥)

subject to 𝑓
𝑖
(𝑥) ≥ 0, 𝑖 = 1, . . . , 𝑚,

(INP)

where 𝑓
𝑖

: R2 → R, 𝑖 = 0, . . . , 𝑚 are continuous
differentiable functions.

As nonlinear Lagrangians can be used to develop dual
algorithms for nonlinear programming, requiring no restric-
tions on primal feasibility, important contributions on this
topic have been done by many authors.

Polyak and Teboulle [9] discussed a class of Lagrange
functions of the form

𝐻(𝑥, 𝑢, 𝑐) = 𝑓
0
(𝑥) − 𝑐

𝑚

∑
𝑖=1

𝑢
𝑖
𝜓 (𝑐−1𝑓

𝑖
(𝑥)) (1)

for solving (INP), where 𝑐 > 0 is penalty parameter and
𝜓 is twice continuous differentiable function. Furthermore,
Polyak and Griva [10] proposed a general primal-dual non-
linear rescaling (PDNR) method for convex optimization
with inequality constraints, and Griva and Polyak [11] devel-
oped a general primal-dual nonlinear rescaling method with
dynamic scaling parameter update. Besides the works by
Polyak and his coauthors, Auslender et al. [12] and Ben-
Tal and Zibulevsky [13] studied other nonlinear Lagrangians
and obtained interesting convergence results for convex
programming problems, too. Under appropriate conditions,
the sequence generated by the first-order multiplier iteration
converges superlinearly.
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Ren and Zhang [14] analysed the following nonlinear
Lagrangians:

𝐻(𝑥, 𝑢, 𝑐) = 𝑓
0
(𝑥) − 𝑘−1

𝑚

∑
𝑖=1

𝑢
𝑖
𝜓 (𝑘𝑓
𝑖
(𝑥)) (2)

and constructed the dual algorithm based on minimizing
𝐻(𝑥, 𝑢, 𝑘) as follows.

D-Algorithm

Step 1. Given 𝑘 > 0 large enough, 𝜀 ≥ 0 small enough,
𝑢0 ∈ R𝑚

++
, and 𝑥0 ∈ R𝑛, set 𝑠 = 0.

Step 2. Solve (approximately)

minimize 𝐻(𝑥, 𝑢𝑠, 𝑘) (3)

and obtain its (approximate) solution 𝑥𝑠.

Step 3. If 𝑢𝑠
𝑖
𝑓
𝑖
(𝑥𝑠) ≤ 𝜀, 𝑖 = 1, . . . , 𝑚, stop; otherwise go to

Step 4.

Step 4. Update Lagrange multiplier 𝑢

𝑢𝑠+1 = diag
1≤𝑖≤𝑚

(𝜓󸀠 (𝑘𝑓
𝑖
(𝑥𝑠))) 𝑢𝑠. (4)

Step 5. Set 𝑠 = 𝑠 + 1 and return to Step 2.

It was shown that, under a set of conditions, dual
algorithmbased on this class of Lagrange is locally convergent
when the penalty parameter is larger than a threshold.

In view of interpretation of the multiplier iteration as the
steepest ascent method, it is natural to consider Newton’s
method for maximizing the dual functional. Using known
results for Newton’s method, we expect that the second-order
iteration will yield a vector 𝑢𝑠+1 which is closer to 𝑢∗ than
𝑢𝑠. This paper aims at discussing the second-order multiplier
iteration based on nonlinear Lagrangians of the form (2). It
is suggested that the sequence generated by the second-order
multiplier iteration converges superlinearlywith order at least
two if ∇2𝑓

𝑖
(𝑥) (𝑖 = 0, . . . , 𝑚) are Lipschitz continuous.

We introduce the following notation to end this section:

∇𝑓 (𝑥) = (∇𝑓
1
(𝑥) , . . . , ∇𝑓

𝑚
(𝑥)) ,

𝑢∗ = (𝑢∗
1
, . . . , 𝑢∗

𝑚
) ∈ R
𝑚,

𝑢∗
(𝑚−𝑟)

= (𝑢∗
𝑟+1

, . . . , 𝑢∗
𝑚
) ∈ R
𝑚−𝑟,

𝑆 (𝑦, 𝜀) = {𝑥 ∈ R
𝑛 :

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ≤ 𝜀} .

∇𝑓
(𝑟) (𝑥) = (∇𝑓

1 (𝑥) , . . . , ∇𝑓𝑟 (𝑥)) ,

𝑢∗
(𝑟)

= (𝑢∗
1
, . . . , 𝑢∗

𝑟
) ∈ R
𝑟,

‖𝑥‖ = ‖𝑥‖∞ = max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 .

(5)

2. Preliminaries

Consider the inequality constrained optimization problem
(INP). Let

𝐿 (𝑥, 𝑢) = 𝑓
0
(𝑥) −

𝑚

∑
𝑖=1

𝑢
𝑖
𝑓
𝑖
(𝑥) (6)

denote the Lagrange function for problem (INP) and 𝐼(𝑥) =
{𝑖 | 𝑓
𝑖
(𝑥) = 0, 𝑖 = 1, . . . , 𝑚}.

For the convenience of description in the sequel, we
list the following assumptions, some of which will be used
somewhere.

(a) Functions 𝑓
𝑖
(𝑥) (𝑖 = 0, . . . , 𝑚) are twice continuously

differentiable.
(b) For convenience of statement, we assume 𝐼(𝑥∗) = {𝑖 |

𝑓
𝑖
(𝑥∗) = 0, 𝑖 = 1, . . . , 𝑚} = {1, . . . , 𝑟}.

(c) Let (𝑥∗, 𝑢∗) ∈ R𝑛 × R𝑚 satisfy the Kuhn-Tucker
conditions

∇
𝑥
𝐿 (𝑥∗, 𝑢∗) = 0, 𝑢∗ ≥ 0,

𝑢∗
𝑖
𝑓
𝑖
(𝑥∗) = 0, 𝑖 = 1, . . . , 𝑚.

(7)

(d) Strict complementary condition holds; that is,

𝑢∗
𝑖
> 0 for 𝑖 ∈ 𝐼 (𝑥∗) . (8)

(e) The set of vectors {∇𝑓
𝑖
(𝑥∗) | 𝑖 ∈ 𝐼(𝑥∗)} are linearly

independent.
(f) For all 𝑦 ̸= 0 satisfying ∇𝑓

𝑖
(𝑥∗)𝑇𝑦 = 0, 𝑖 ∈ 𝐼(𝑥∗), the

following inequality holds:

𝑦𝑇∇2
𝑥
𝐿 (𝑥∗, 𝑢∗) 𝑦 > 0. (9)

Let function 𝜓 in 𝐻(𝑥, 𝑢, 𝑘) defined in (2) and its
derivatives satisfy the following conditions:

(H1) 𝜓(0) = 0;
(H2) 𝜓󸀠(𝑡) > 0, for all 𝑡 ∈ (𝑏, +∞), with −∞ ≤ 𝑏 < 0, and

𝜓󸀠(0) = 1;
(H3) 𝜓󸀠󸀠(𝑡) < 0, for all 𝑡 ∈ (𝑏, +∞), with −∞ ≤ 𝑏 < 0;
(H4) 𝑘𝜓󸀠(𝑘𝑡) is bounded, where 𝑡 ∈ (𝑏, +∞), with

−∞ ≤ 𝑏 < 0, and for 𝑘 > 0 large enough.

The following proposition concerns properties of
𝐻(𝑥, 𝑢, 𝑘) at a Kuhn-Tucker point (𝑥∗, 𝑢∗).

Proposition 1 (see [14]). Assume that (a)–(f) and (H1)–(H3)
hold. For any 𝑘 > 0 and any Kuhn-Tucker point (𝑥∗, 𝑢∗) the
following properties are valid:

(i) 𝐻(𝑥∗, 𝑢∗, 𝑘) = 𝐿(𝑥∗, 𝑢∗) = 𝑓(𝑥∗);
(ii) ∇
𝑥
𝐻(𝑥∗, 𝑢∗, 𝑘) = ∇

𝑥
𝐿(𝑥∗, 𝑢∗) = ∇𝑓(𝑥∗) −

∑
𝑚

𝑖=1
𝑢∗
𝑖
∇𝑓
𝑖
(𝑥∗) = 0;

(iii) ∇2
𝑥
𝐻(𝑥∗, 𝑢∗, 𝑘) = ∇2

𝑥
𝐿(𝑥∗, 𝑢∗) −

𝑘𝜓󸀠󸀠(0)∇𝑓
(𝑟)

(𝑥∗)
𝑇
𝑈∗∇𝑓
(𝑟)

(𝑥∗), where 𝑈∗ =
diag
1≤𝑖≤𝑟

(𝑢∗
𝑖
);
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(iv) there exist 𝑐
0
> 0 and 𝜇 > 0 such that, for any 𝑐 > 𝑐

0
,

⟨∇2
𝑥
𝐻(𝑥∗, 𝑢∗, 𝑘) 𝑦, 𝑦⟩ ≥ 𝜇 ⟨𝑦, 𝑦⟩ , ∀𝑦 ∈ R

𝑛

𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 ∇𝑓
(𝑟)

(𝑥∗)
𝑇
𝑦 = 0.

(10)

Let 𝛿 > 0 be small enough, 0 < 𝜀 < min{u∗i | i = 1, . . . , r},
and k

0
large enough satisfying (iv) of Proposition 1. For any

fixed k > k
0
, define

𝑈𝑖
𝑘
(𝜀, 𝛿) =

{{
{{
{

{𝑢
𝑖
| max {𝜀, 𝑢∗

𝑖
− 𝛿𝑘}

≤ 𝑢
𝑖
≤ 𝑢∗
𝑖
+ 𝛿𝑘} , 𝑖 = 1, . . . , 𝑟,

{𝑢
𝑖
| 0 ≤ 𝑢

𝑖
≤ 𝛿𝑘} , 𝑖 = 𝑟 + 1, . . . , 𝑚,

𝑈
𝑘 (𝜀, 𝛿) = 𝑈1

𝑘
(𝜀, 𝛿) × . . . × 𝑈𝑟

𝑘
(𝜀, 𝛿) × . . . × 𝑈𝑚

𝑘
(𝜀, 𝛿) .

(11)

For any 𝑘
1
> 𝑘
0
, we denote

𝐷 (𝜀, 𝛿) = {(𝑢, 𝑘) | 𝑢 ∈ 𝑈
𝑘
(𝜀, 𝛿) , 𝑘 ∈ [𝑘

0
, 𝑘
1
]} . (12)

Let 𝜎 = min{𝑓
𝑖
(𝑥∗) | 𝑟+1 ≤ 𝑖 ≤ 𝑚} > 0, 𝐼

𝑟
is the 𝑟×𝑟 identity

matrix, and 0
𝑟
is the 𝑟 × 𝑟 zero matrix.

Theorem 2 (see [14]). Assume that (a)–(f) and (H1)–(H4)
hold. Then there exists 𝑘

0
> 0 large enough such that, for any

𝑘
1

> 𝑘
0
, there exist 𝜀

1
> 0, 𝛿 > 0, satisfying that for any

(𝑢, 𝑘) ∈ 𝐷(𝜀, 𝛿), the following statements hold.

(i) There exists a vector

𝑥 = 𝑥 (𝑢, 𝑘) ∈ arg min {𝐻 (𝑥, 𝑢, 𝑘) 𝑥 ∈ 𝑆 (𝑥∗, 𝜀
1
)} . (13)

(ii) For 𝑥 in (i) and 𝑢̂ = 𝑢̂(𝑢, 𝑘) = diag
1≤𝑖≤𝑚

(𝜓󸀠(𝑘𝑓
𝑖
(𝑥)))𝑢,

the following estimate is valid:

max {󵄩󵄩󵄩󵄩𝑥 − 𝑥∗
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑢̂ − 𝑢∗
󵄩󵄩󵄩󵄩} ≤ 𝑐𝑘−1

󵄩󵄩󵄩󵄩𝑢 − 𝑢∗
󵄩󵄩󵄩󵄩 , (14)

where 𝑐 > 0 is a scalar independent of 𝑘
0
and 𝑘
1
.

(iii) Function 𝐻(𝑥, 𝑢, 𝑘) is strongly convex in a neighbor-
hood of 𝑥.

3. The Second-Order Multiplier Iteration

Based on the nonlinear Lagrange function 𝐻(𝑥, 𝑢, 𝑘), we
consider the dual function defined on 𝑆(𝑥∗, 𝜀

1
) × R𝑚

+
as

follows:

𝑑
𝑘
(𝑢) = inf {𝐻 (𝑥, 𝑢, 𝑘) | 𝑥 ∈ 𝑆 (𝑥∗, 𝜀

1
)} − 𝛿 (𝑢 | 𝑈

𝑘
(𝜀, 𝛿)) ,

(15)

where 𝛿(𝑢 | 𝑈
𝑘
(𝜀, 𝛿)) = { 0 if 𝑢∈𝑈𝑘(𝜀,𝛿)

+∞ if 𝑢∉𝑈𝑘(𝜀,𝛿)
is the indicator

function of 𝑈
𝑘
(𝜀, 𝛿).

Lemma 3. Assume that conditions (a)–(f) and (H1)–(H4)
hold; then for any fixed 𝑘 ≥ 𝑘

0
function 𝑑

𝑘
(𝑢) is twice

continuously differentiable and concave on 𝑈
𝑘
(𝜀, 𝛿).

Proof. Obviously, for 𝑘 > 0, function𝑑
𝑘
(𝑢) is concave. In view

of Theorem 2, for any (𝑢, 𝑘) ∈ 𝐷(𝜀, 𝛿), function 𝐻(𝑥, 𝑢, 𝑘) is
strong convex in the neighborhood of 𝑥 = 𝑥(𝑢, 𝑘). So 𝑥(𝑢, 𝑘)
is unique minimizer of function 𝐻(𝑥, 𝑢, 𝑘) with respect to 𝑥
in the neighborhood of point 𝑥, and 𝑑

𝑘
(𝑢) = 𝐻(𝑥(𝑢, 𝑘), 𝑢, 𝑘)

is smooth in𝑈
𝑘
(𝜀, 𝛿); that is, the Jacobian of 𝑑

𝑘
(𝑢) exists, and

∇
𝑢
𝑑
𝑘 (𝑢) = ∇

𝑢
𝑥 (𝑢, 𝑘) ∇𝑥𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘)

+ ∇
𝑢
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘)

= (∇
𝑢1
𝑑
𝑘
(𝑢) , . . . , ∇

𝑢𝑚
𝑑
𝑘
(𝑢))
𝑇

.

(16)

For (𝑢, 𝑘) ∈ 𝐷(𝜀, 𝛿), matrix ∇2
𝑥
𝐻(𝑥, 𝑢, 𝑘) is positive definite,

and system∇
𝑥
𝐻(𝑥, 𝑢, 𝑘) = 0

𝑛
generates unique vector-valued

function 𝑥(𝑢, 𝑘) satisfying 𝑥(𝑢∗, 𝑘) = 𝑥∗ and

∇
𝑢
𝑥 (𝑢, 𝑘) = −∇2

𝑥𝑢
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘) (∇

2

𝑥
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘))

−1

,

∀ (𝑢, 𝑘) ∈ 𝐷 (𝜀, 𝛿) .

(17)

In view of ∇
𝑥
𝐻(𝑥(𝑢, 𝑘), 𝑢, 𝑘) = 0

𝑛
, we have

∇
𝑢
𝑑
𝑘
(𝑢) = ∇

𝑢
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘)

= −𝑘−1(𝜓 (𝑘𝑓
1
(𝑥 (𝑢, 𝑘))) , . . . , 𝜓 (𝑘𝑓

𝑚
(𝑥 (𝑢, 𝑘))))

𝑇
.

(18)

It follows from (18) that

∇2
𝑢𝑥
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘)

= − (𝜓󸀠 (𝑘𝑓
1 (𝑥 (𝑢, 𝑘))) ∇𝑓1 (𝑥 (𝑢, 𝑘)) , . . . ,

𝜓󸀠 (𝑘𝑓
𝑚
(𝑥 (𝑢, 𝑘))) ∇𝑓

𝑚
(𝑥 (𝑢, 𝑘)))

= −∇𝑓 (𝑥 (𝑢, 𝑘)) 𝜓
󸀠 (𝑘𝑓 (𝑥 (𝑢, 𝑘))) ,

(19)

which means

∇2
𝑥𝑢
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘) = (∇2

𝑢𝑥
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘))

𝑇

= −𝜓󸀠 (𝑘𝑓 (𝑥 (𝑢, 𝑘))) ∇𝑓(𝑥 (𝑢, 𝑘))
𝑇.

(20)

Thus,

∇2
𝑢
𝑑
𝑘 (𝑢) = ∇

𝑢
𝑥 (𝑢, 𝑘) ∇

2

𝑢𝑥
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘)

= −∇2
𝑥𝑢
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘) (∇

2

𝑥
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘))

−1

× ∇2
𝑢𝑥
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘)

= −𝜓󸀠 (𝑘𝑓 (𝑥 (𝑢, 𝑘))) (∇𝑓 (𝑥 (𝑢, 𝑘)))
𝑇

× (∇2
𝑥
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘))

−1

× (∇𝑓 (𝑥 (𝑢, 𝑘))) 𝜓
󸀠 (𝑘𝑓 (𝑥 (𝑢, 𝑘))) .

(21)
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So,

∇2
𝑢
𝑑
𝑘
(𝑢∗) = −𝜓󸀠 (𝑘𝑓 (𝑥∗)) (∇𝑓 (𝑥∗))

𝑇
(∇2
𝑥
𝐻(𝑥∗, 𝑢∗, 𝑘))

−1

× (∇𝑓 (𝑥∗)) 𝜓󸀠 (𝑘𝑓 (𝑥∗)) .

(22)

Let 𝑥(𝑢, 𝑘) be the minimizer of 𝐻(𝑥, 𝑢, 𝑘) in a neighbor-
hood of 𝑥∗; then we obtain that
∇
𝑢
𝑑
𝑘 (𝑢) = ∇

𝑢
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘)

= −𝑘−1(𝜓 (𝑘𝑓
1
(𝑥 (𝑢, 𝑘))) , . . . , 𝜓 (𝑘𝑓

𝑚
(𝑥 (𝑢, 𝑘))))

𝑇
,

∇2
𝑢
𝑑
𝑘 (𝑢) = −𝜓󸀠(𝑘𝑓 (𝑥 (𝑢, 𝑘))) ∇𝑓 (𝑥 (𝑢, 𝑘))

𝑇

× (∇2
𝑥
𝐻(𝑥 (𝑢, 𝑘) , 𝑢, 𝑘))

−1

× ∇𝑓 (𝑥 (𝑢, 𝑘)) 𝜓
󸀠 (𝑘𝑓 (𝑥 (𝑢, 𝑘))) .

(23)

In view of the interpretation of the multiplier iteration as
the steepest ascent method, it is natural to consider Newton’s
method for maximizing the dual functional 𝑑

𝑘
which is given

by

𝑢𝑠+1 = 𝑢𝑠 − [∇2𝑑
𝑘
(𝑢𝑠)]
−1

∇𝑑
𝑘
(𝑢𝑠) . (24)

In view of (23), this iteration can be written as

𝑢𝑠+1 = 𝑢𝑠 − 𝐵−1
𝑘
𝑘−1𝜓 (𝑘𝑓 (𝑥 (𝑢𝑠, 𝑘))) , (25)

where

𝐵
𝑘
= 𝜓󸀠 (𝑘𝑓 (𝑥 (𝑢𝑠, 𝑘))) ∇𝑓(𝑥(𝑢𝑠, 𝑘))

𝑇

× [∇2
𝑥
𝐻(𝑥 (𝑢𝑠, 𝑘) , 𝑢𝑠, 𝑘)]

−1

× ∇𝑓 (𝑥 (𝑢𝑠, 𝑘)) 𝜓󸀠 (𝑘𝑓 (𝑥 (𝑢𝑠, 𝑘))) .

(26)

We will provide a convergence and rate of convergence result
for iteration (25) and (26).

For 𝑘 > 0 and (𝑥, 𝑢) ∈ R𝑛+𝑚, we define

𝐴+ (𝑥, 𝑢) = {𝑖 | 𝑢
𝑖
𝜓 (𝑘𝑓
𝑖 (𝑥)) > 0, 𝑖 = 1, . . . , 𝑚}

𝐴− (𝑥, 𝑢) = {𝑖 | 𝑖 ∉ 𝐴+ (𝑥, 𝑢) , 𝑖 = 1, . . . , 𝑚} .
(27)

For a given (𝑥, 𝑢), assume (by reordering indices if necessary)
that 𝐴+(𝑥, 𝑢) contains the first 𝑟 indices where 𝑟 is an integer
with 0 ≤ 𝑟 ≤ 𝑚. Define

𝜓
+
(𝑘𝑓 (𝑥)) = (

𝜓 (𝑘𝑓
1
(𝑥))

...
𝜓 (𝑘𝑓
𝑟
(𝑥))

)

𝜓
−
(𝑘𝑓 (𝑥)) = (

𝜓 (𝑘𝑓
𝑟+1

(𝑥))
...

𝜓 (𝑘𝑓
𝑚
(𝑥))

)

𝑢
+
= (𝑢
1
, . . . , 𝑢

𝑟
)
𝑇
, 𝑢

−
= (𝑢
𝑟+1

, . . . , 𝑢
𝑚
)
𝑇
,

𝐻
+
(𝑥, 𝑢, 𝑘) = 𝑓

0
(𝑥) − 𝑘−1𝑢𝑇

+
𝜓
+
(𝑘𝑓 (𝑥)) .

(28)

We note that 𝑟, 𝜓
+
, 𝜓
−
, 𝑢
+
, 𝑢
−
and𝐻

+
depend on (𝑥, 𝑢), but to

simplify notation we do not show explicitly this dependence.
Now, we consider Newton’s method for solving the system of
necessary conditions

∇
𝑥
𝐻
+ (𝑥, 𝑢, 𝑘) = ∇𝑓

0 (𝑥) −
𝑟

∑
𝑖=1

𝑢
𝑖
𝜓󸀠 (𝑘𝑓

𝑖 (𝑥)) ∇𝑓𝑖 (𝑥) = 0,

𝑘−1𝜓 (𝑘𝑓
𝑖
(𝑥)) = 0, 𝑖 = 1, . . . , 𝑟.

(29)

Considering the extension of Newton’s method,
given (𝑥, 𝑢), we denote the next iterate by (𝑥, 𝑢̂) where
𝑢̂ = (𝑢̂

1
, . . . , 𝑢̂

𝑚
)𝑇. We also write

𝑢̂
+
= (𝑢̂
1
, . . . , 𝑢̂

𝑟
)
𝑇
, 𝑢̂

−
= (𝑢̂
𝑟+1

, . . . , 𝑢̂
𝑚
)
𝑇
. (30)

The iteration, roughly speaking, consists of setting the mul-
tipliers of the inactive constraints (𝑗 ∈ 𝐴−(𝑥, 𝑢)) to zero
and treating the remaining constraints as equalities. More
precisely, we set 𝑢̂

−
= 0
𝑚−𝑟

and obtain 𝑥, 𝑢̂
+
by solving the

system

(
∇2
𝑥
𝐻
+
(𝑥, 𝑢, 𝑘) −∇𝑓

(𝑟)
(𝑥) 𝜓󸀠
+
(𝑘𝑓 (𝑥))

𝜓󸀠
+
(𝑘𝑓 (𝑥)) ∇𝑓(𝑟)(𝑥)

𝑇 0
)(

𝑥 − 𝑥
𝑢̂
+
− 𝑢
+

)

= (
−∇
𝑥
𝐻
+ (𝑥, 𝑢, 𝑘)

−𝑘−1𝜓
+
(𝑘𝑓 (𝑥))

) ,

(31)

where 𝜓󸀠
+
(𝑘𝑓(𝑥)) = [diag𝜓󸀠(𝑘𝑓

𝑖
(𝑥))]
𝑟

𝑖=1
.

If ∇2
𝑥
𝐻
+
(𝑥, 𝑢, 𝑘) is invertible and ∇𝑓

(𝑟)
(𝑥) has rank 𝑟, we

can solve system (31) explicitly. It follows from (31) that

∇2
𝑥
𝐻
+ (𝑥, 𝑢, 𝑘) (𝑥 − 𝑥) − ∇𝑓

(𝑟) (𝑥) 𝜓
󸀠

+
(𝑘𝑓 (𝑥)) (𝑢̂+ − 𝑢

+
)

= −∇
𝑥
𝐻
+ (𝑥, 𝑢, 𝑘) ,

(32)

𝜓󸀠
+
(𝑘𝑓 (𝑥)) ∇𝑓

(𝑟)
(𝑥)
𝑇
(𝑥 − 𝑥) = −𝑘−1𝜓

+
(𝑘𝑓 (𝑥)) . (33)

Premultiplying (32) with 𝜓󸀠
+
(𝑘𝑓(𝑥))∇𝑓

(𝑟)
(𝑥)𝑇[∇2

𝑥
𝐻
+
(𝑥, 𝑢,

𝑘)]−1 and using (33), we obtain

𝑥 − 𝑥 = [∇2
𝑥
𝐻
+
(𝑥, 𝑢, 𝑘)]

−1

{∇𝑓
(𝑟)

(𝑥) 𝜓
󸀠

+
(𝑘𝑓 (𝑥)) (𝑢̂

+
− 𝑢
+
)

−∇
𝑥
𝐻
+
(𝑥, 𝑢, 𝑐) } ,

(34)

from which, we have

𝑢̂
+
= 𝑢
+
− {𝜓󸀠
+
(𝑘𝑓 (𝑥)) ∇𝑓

(𝑟)
(𝑥)
𝑇[∇2
𝑥
𝐻
+
(𝑥, 𝑢, 𝑘)]

−1

× ∇𝑓
(𝑟)

(𝑥) 𝜓
󸀠

+
(𝑘𝑓 (𝑥))}

−1

𝑘−1𝜓
+
(𝑘𝑓 (𝑥)) .

(35)

Substitution in (32) yields

𝑥 = 𝑥 − ∇2
𝑥
𝐻
+
(𝑥, 𝑢, 𝑘) ∇

𝑥
𝐻
+
(𝑥, 𝑢̂, 𝑘) . (36)



Abstract and Applied Analysis 5

Return to (25) and (26), and using the fact that
∇
𝑥
𝐻
+
(𝑥(𝑢, 𝑘), 𝑢, 𝑘) = 0, we see that iteration (25) and

(26) is of the form (35).
For a triple (𝑥, 𝑢, 𝑘) for which the matrix on the left-hand

side of (31) is invertible, we denote by 𝑥(𝑥, 𝑢, 𝑘), 𝑢̂
+
(𝑥, 𝑢, 𝑘)

the unique solution of (31) and say that 𝑥(𝑥, 𝑢, 𝑘), 𝑢̂
+
(𝑥, 𝑢, 𝑐)

are well defined.
Define

𝑢𝑠+1
+

= 𝑢̂
+
(𝑥 (𝑢𝑠, 𝑘) , 𝑢𝑠, 𝑘) , 𝑢𝑠+1

−
= 0. (37)

Proposition 4. Let 𝑘 be a scalar. For every triple (𝑥, 𝑢, 𝑘),
if 𝜓󸀠 satisfies

𝜓󸀠2
+

− 2𝜓󸀠
+
+ 𝐼 = 0, (38)

then the vectors 𝑥(𝑥, 𝑢, 𝑘), 𝑢̂
+
(𝑥, 𝑢, 𝑘) are well defined if and

only if the vectors 𝑥(𝑥, 𝜓󸀠(𝑘𝑓(𝑥))𝑢, 0), 𝑢̂
+
(𝑥, 𝜓󸀠(𝑘𝑓(𝑥))𝑢, 0) are

well defined.

Furthermore,

𝑥 (𝑥, 𝑢, 𝑘) = 𝑥 (𝑥, 𝜓󸀠 (𝑘𝑓 (𝑥)) 𝑢, 0) , (39)

𝑢̂
+
(𝑥, 𝑢, 𝑘) = 𝑢̂

+
(𝑥, 𝜓󸀠 (𝑘𝑓 (𝑥)) 𝑢, 0) . (40)

Proof. By calculating, we have

∇
𝑥
𝐻
+
(𝑥, 𝑢, 𝑘) = ∇

𝑥
𝐿 (𝑥, 𝜓󸀠 (𝑘𝑓 (𝑥)) 𝑢) ,

∇2
𝑥
𝐻
+
(𝑥, 𝑢, 𝑘) = ∇2

𝑥
𝐿 (𝑥, 𝜓󸀠 (𝑘𝑓 (𝑥)) 𝑢)

− 𝑘
𝑟

∑
𝑖=1

𝑢
𝑖
𝜓󸀠󸀠 (𝑘𝑓

𝑖 (𝑥)) ∇𝑓𝑖 (𝑥) ∇𝑓𝑖(𝑥)
𝑇.

(41)

As a result, the system (31) can be written as

(
∇2
𝑥
𝐿 (𝑥, 𝜓󸀠 (𝑘𝑓 (𝑥)) 𝑢) − 𝑘

𝑟

∑
𝑖=1

𝑢
𝑖
𝜓󸀠󸀠 (𝑘𝑓

𝑖
(𝑥)) ∇𝑓

𝑖
(𝑥) ∇𝑓

𝑖
(𝑥)𝑇 −∇𝑓

(𝑟)
(𝑥) 𝜓󸀠
+
(𝑘𝑓 (𝑥))

𝜓󸀠
+
(𝑘𝑓 (𝑥)) ∇𝑓

(𝑟)
(𝑥)𝑇 0

) × (
𝑥 − 𝑥

𝑢̂
+
− 𝑢
+

)

= (
−∇
𝑥
𝐿 (𝑥, 𝜓󸀠 (𝑘𝑓 (𝑥)) 𝑢)

−𝑘−1𝜓
+
(𝑘𝑓 (𝑥))

) .

(42)

The second equation yields

𝜓󸀠
+
(𝑘𝑓 (𝑥)) ∇𝑓

(𝑟)
(𝑥)
𝑇
(𝑥 − 𝑥) = −𝑘−1𝜓

+
(𝑘𝑓 (𝑥)) . (43)

If we form the second-order Taylor series expansion of 𝜓
around 𝑡

𝑘
,

𝜓 (𝑡) = 𝜓 (𝑡
𝑘
) + 𝜓󸀠 (𝑡

𝑘
) (𝑡 − 𝑡

𝑘
) +

1

2
(𝑡 − 𝑡
𝑘
)
𝑇
𝜓󸀠󸀠 (𝑡
𝑘
) (𝑡 − 𝑡

𝑘
) ,

(44)

we obtain

𝜓󸀠 (𝑡) = 𝜓󸀠 (𝑡
𝑘
) + 𝜓󸀠󸀠 (𝑡

𝑘
) (𝑡 − 𝑡

𝑘
) . (45)

Take 𝑡 = 𝑘𝑓
𝑖
(𝑥), 𝑡
𝑘
= 𝑘𝑓
𝑖
(𝑥), 𝑖 = 1, . . . , 𝑟, and it follows that

𝜓󸀠 (𝑘𝑓
𝑖 (𝑥)) = 1 − 𝑘(𝑥 − 𝑥)

𝑇∇𝑓
𝑖 (𝑥) 𝜓

󸀠󸀠 (𝑘𝑓
𝑖 (𝑥)) ,

𝑖 = 1, . . . , 𝑟.
(46)

Substituting (46) into (43), we have

diag
1≤𝑖≤𝑟

(1 − 𝑘(𝑥 − 𝑥)
𝑇∇𝑓
𝑖
(𝑥) 𝜓
󸀠󸀠 (𝑘𝑓
𝑖
(𝑥)))

× ∇𝑓
(𝑟)

(𝑥)
𝑇
(𝑥 − 𝑥)

= −𝑘−1𝜓
+
(𝑘𝑓 (𝑥))

(47)

which, when substituted into the first equation in (42), yields

∇2
𝑥
𝐿 (𝑥, 𝜓󸀠 (𝑘𝑓 (𝑥)) 𝑢) (𝑥 − 𝑥) − ∇𝑓

(𝑟)
(𝑥) 𝜓
󸀠

+
(𝑘𝑓 (𝑥)) 𝑢̂

+

+ 2∇𝑓
(𝑟)

(𝑥) 𝜓
󸀠

+
(𝑘𝑓 (𝑥)) 𝑢

+
− ∇𝑓
(𝑟)

(𝑥) 𝑢
+

= −𝐿 (𝑥, 𝜓󸀠 (𝑘𝑓 (𝑥)) 𝑢) .

(48)

Thus, in view of condition 𝜓󸀠2
+

− 2𝜓󸀠
+
+ 𝐼 = 0, system (42) is

equivalent to

(
∇2
𝑥
𝐿 (𝑥, 𝜓󸀠 (𝑘𝑓 (𝑥)) 𝑢) −∇𝑓

(𝑟)
(𝑥) 𝜓󸀠
+
(𝑘𝑓 (𝑥))

𝜓󸀠
+
(𝑘𝑓 (𝑥)) ∇𝑓

(𝑟)
(𝑥)𝑇 0

)

× (
𝑥 − 𝑥

𝑢̂
+
− 𝜓󸀠
+
(𝑘𝑓 (𝑥)) 𝑢

+

)

= (
−∇
𝑥
𝐿 (𝑥, 𝜓󸀠 (𝑘𝑓 (𝑥)) 𝑢)

−𝑘−1𝜓
+
(𝑘𝑓 (𝑥))

) .

(49)

This shows (39) and (40).

In view of (40), we can write (37) as

𝑢𝑠+1
+

= 𝑢̂
+
(𝑥 (𝑢𝑠, 𝑘) , 𝑢̃ (𝑢𝑠, 𝑘) , 0) ,

𝑢𝑠+1
−

= 0
𝑚−𝑟

,
(50)

where

𝑢̃ (𝑢𝑠, 𝑘) = 𝜓󸀠 (𝑘𝑓 (𝑥 (𝑢𝑠, 𝑘))) 𝑢𝑠. (51)
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Thismeans that one can carry out the second-ordermultiplier
iteration (25), (26) in two stages. First execute the first-order
iteration (51) and then the second-order iteration (50), which
is part of Newton’s iteration at (𝑥(𝑢𝑠, 𝑘)), 𝑢̃(𝑢𝑠, 𝑘) for solving
the system of necessary conditions (29).

Now, we know that 𝑥(𝑢𝑠, 𝑘), 𝑢̃(𝑢𝑠, 𝑘) is close to (𝑥∗, 𝑢∗)
for (𝑢𝑠, 𝑘) in an appropriate region of R𝑚+1. Therefore, using
known results for Newton’s method, we expect that (50) will
yield a vector𝑢𝑠+1 which is closer to𝑢∗ than𝑢𝑠.This argument
is the basis for the proof of the following proposition.

Proposition 5. Assume (a)–(f) hold, and let 𝑘
0

> 0, 𝛿 >
0 be as in Theorem 2. Then, given any scalar 𝛾 > 0, there
exists a scalar 𝛿

1
with 0 < 𝛿

1
≤ 𝛿 such that for all

(𝑢, 𝑘) ∈ 𝐷
1
= {(𝑢, 𝑘) : 𝑢 ∈ 𝑈

𝑘
(𝜀, 𝛿
1
), 𝑘 ≥ 𝑘

0
} there holds

󵄩󵄩󵄩󵄩(𝑥 (𝑢, 𝑘) , 𝑢̂ (𝑢, 𝑘)) − (𝑥∗, 𝑢∗)
󵄩󵄩󵄩󵄩 ≤ 𝛾𝑘−1

󵄩󵄩󵄩󵄩𝑢 − 𝑢∗
󵄩󵄩󵄩󵄩 , (52)

where

𝑢𝑠+1 = 𝑢𝑠 − 𝐵−1
𝑘
𝑘−1𝜓 (𝑘𝑓 (𝑥 (𝑢𝑠, 𝑘))) , (53)

where

𝐵
𝑘
= 𝜓󸀠 (𝑘𝑓 (𝑥 (𝑢𝑠, 𝑘))) ∇𝑓(𝑥 (𝑢𝑠, 𝑘))

𝑇

× [∇2
𝑥
𝐻(𝑥 (𝑢𝑠, 𝑘) , 𝑢𝑠, 𝑘)]

−1

∇𝑓 (𝑥 (𝑢𝑠, 𝑘)) 𝜓󸀠

× (𝑘𝑓 (𝑥 (𝑢𝑠, 𝑘))) .

(54)

If, in addition, ∇2𝑓
𝑖
(𝑥), 𝑖 = 0, . . . , 𝑚 are Lipschitz continuous

in a neighborhood of 𝑥∗, there exists a scalar 𝛾
1
> 0 such that,

for all (𝑢, 𝑘) ∈ 𝐷
1
, there holds

󵄩󵄩󵄩󵄩(𝑥 (𝑢, 𝑘) , 𝑢̂ (𝑢, 𝑘)) − (𝑥∗, 𝑢∗)
󵄩󵄩󵄩󵄩 ≤ 𝛾
1
𝑘−2

󵄩󵄩󵄩󵄩𝑢 − 𝑢∗
󵄩󵄩󵄩󵄩
2
. (55)

Proof. In view of Theorem 2, given any 𝛾 > 0, there exist
𝜀
1

> 0, 𝜀
2

> 0 and 𝑀 > 0 such that if 𝑥(𝑢, 𝑘) ∈ 𝑆(𝑥∗, 𝜀
1
)

and 𝑢̃(𝑢, 𝑘) ∈ 𝑆(𝑢∗, 𝜀
2
), there holds

󵄩󵄩󵄩󵄩(𝑥 (𝑥 (𝑢, 𝑘) , 𝑢̃ (𝑢, 𝑘) , 0) , 𝑢̂ (𝑥 (𝑢, 𝑘) , 𝑢̃ (𝑢, 𝑘) , 0)) − (𝑥∗, 𝑢∗)
󵄩󵄩󵄩󵄩

≤
𝛾

𝑀

󵄩󵄩󵄩󵄩(𝑥 (𝑢, 𝑘) , 𝑢̃ (𝑢, 𝑘)) − (𝑥∗, 𝑢∗)
󵄩󵄩󵄩󵄩

(56)

(compare with Proposition 1.17, Bertsekas [8]). Take 𝛿
1

sufficiently small so that, for all (𝑢, 𝑘) ∈ 𝐷
1
, we have 𝑥(𝑢, 𝑘) ∈

𝑆(𝑥∗, 𝜀
1
), 𝑢̃(𝑢, 𝑘) ∈ 𝑆(𝑢∗, 𝜀

2
), and

󵄩󵄩󵄩󵄩(𝑥 (𝑢, 𝑘) , 𝑢̃ (𝑢, 𝑘)) − (𝑥∗, 𝑢∗)
󵄩󵄩󵄩󵄩 ≤ 𝑀𝑘−1

󵄩󵄩󵄩󵄩𝑢 − 𝑢∗
󵄩󵄩󵄩󵄩 . (57)

From (50), we have

󵄩󵄩󵄩󵄩(𝑥 (𝑥 (𝑢, 𝑘) , 𝑢̃ (𝑢, 𝑘) , 0) , 𝑢̂ (𝑥 (𝑢, 𝑘) , 𝑢̃ (𝑢, 𝑘) , 0)) − (𝑥∗, 𝑢∗)
󵄩󵄩󵄩󵄩

≤
𝛾

𝑀
⋅ 𝑀𝑘−1

󵄩󵄩󵄩󵄩𝑢 − 𝑢∗
󵄩󵄩󵄩󵄩 = 𝛾𝑘−1

󵄩󵄩󵄩󵄩𝑢 − 𝑢∗
󵄩󵄩󵄩󵄩 .

(58)

If ∇2𝑓
𝑖
(𝑥) (𝑖 = 0, . . . , 𝑚) are Lipschitz continuous, then

there exists a 𝛾
1

> 0 such that for 𝑥(𝑢, 𝑘) ∈ 𝑆(𝑥∗, 𝜀) and
𝑢̃(𝑢, 𝑘) ∈ 𝑆(𝑢∗, 𝜀), we have
󵄩󵄩󵄩󵄩(𝑥 (𝑥 (𝑢, 𝑘) , 𝑢̃ (𝑢, 𝑘) , 0) , 𝑢̂ (𝑥 (𝑢, 𝑘) , 𝑢̃ (𝑢, 𝑘) , 0)) − (𝑥∗, 𝑢∗)

󵄩󵄩󵄩󵄩

≤
𝛾
1

2𝑀2
󵄩󵄩󵄩󵄩(𝑥 (𝑢, 𝑘) , 𝑢̃ (𝑢, 𝑘)) − (𝑥∗, 𝑢∗)

󵄩󵄩󵄩󵄩
2

≤
𝛾
1

2𝑀2
((𝑀𝑘−1)

2󵄩󵄩󵄩󵄩𝑢 − 𝑢∗
󵄩󵄩󵄩󵄩
2
+ (𝑀𝑘−1)

2󵄩󵄩󵄩󵄩𝑢 − 𝑢∗
󵄩󵄩󵄩󵄩
2
)

= 𝛾
1
𝑘−2

󵄩󵄩󵄩󵄩𝑢 − 𝑢∗
󵄩󵄩󵄩󵄩
2
.

(59)

From the above analysis, we know that the sequence
generated by the second-order multiplier iteration converges
superlinearly with order at least two if the Hessians of
functions involved in problem are Lipschitz continuous.
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