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The main objective of this paper is to establish some, presumably, new Saigo type fractional integral inequalities whose special
cases are shown to yield corresponding inequalities associated with Riemann-Liouville and Erdélyi-Kober type fractional integral
operators, respectively. We also investigate and present 𝑞-extensions of the above results and some other presumably new ones.
Relevant connections of the results presented here with those earlier ones are also indicated.

1. Introduction and Preliminaries

Throughout this paper, N, R, C, and Z−
0

denote the sets
of positive integers, real numbers, complex numbers, and
nonpositive integers, respectively, andN

0

:= N∪{0}. Consider
the following functional:

𝑇 (𝑓, 𝑔, 𝑝, 𝑞) = ∫

𝑏

𝑎

𝑞 (𝑥) 𝑑𝑥∫

𝑏

𝑎

𝑝 (𝑥) 𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥

+ ∫

𝑏

𝑎

𝑝 (𝑥) 𝑑𝑥∫

𝑏

𝑎

𝑞 (𝑥) 𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥

− (∫

𝑏

𝑎

𝑞 (𝑥) 𝑓 (𝑥) 𝑑𝑥)(∫

𝑏

𝑎

𝑝 (𝑥) 𝑔 (𝑥) 𝑑𝑥)

− (∫

𝑏

𝑎

𝑝 (𝑥) 𝑓 (𝑥) 𝑑𝑥)(∫

𝑏

𝑎

𝑞 (𝑥) 𝑔 (𝑥) 𝑑𝑥) ,

(1)

where𝑓, 𝑔 : [𝑎, 𝑏] → R are two integrable functions on [𝑎, 𝑏]
and 𝑝(𝑥) and 𝑞(𝑥) are positive integrable functions on [𝑎, 𝑏].
If 𝑓 and 𝑔 are synchronous on [𝑎, 𝑏], that is,

(𝑓 (𝑥) − 𝑓 (𝑦)) (𝑔 (𝑥) − 𝑔 (𝑦)) ≥ 0, (2)

for any 𝑥, 𝑦 ∈ [𝑎, 𝑏], then we have (see, e.g., [1, 2])
𝑇 (𝑓, 𝑔, 𝑝, 𝑞) ≥ 0. (3)

The inequality in (2) is reversed, if 𝑓 and 𝑔 are asynchronous
on [𝑎, 𝑏], that is,

(𝑓 (𝑥) − 𝑓 (𝑦)) (𝑔 (𝑥) − 𝑔 (𝑦)) ≤ 0, (4)
for any 𝑥, 𝑦 ∈ [𝑎, 𝑏]. If 𝑝(𝑥) = 𝑞(𝑥), for any 𝑥, 𝑦 ∈ [𝑎, 𝑏],
we get the Chebyshev inequality (see [3]). Ostrowski [4]
established the following generalization of the Chebyshev
inequality.

If 𝑓 and 𝑔 are two differentiable and synchronous func-
tions on [𝑎, 𝑏] and 𝑝 is a positive integrable function on [𝑎, 𝑏]
with |𝑓



(𝑥)| ≥ 𝑚 ≥ 0 and |𝑔


(𝑥)| ≥ 𝑟 ≥ 0, for 𝑥 ∈ [𝑎, 𝑏], then
we have
𝑇 (𝑓, 𝑔, 𝑝) = 𝑇 (𝑓, 𝑔, 𝑝, 𝑝) ≥ 𝑚𝑟𝑇 (𝑥 − 𝑎, 𝑥 − 𝑎, 𝑝) ≥ 0.

(5)

If 𝑓 and 𝑔 are asynchronous on [𝑎, 𝑏], then we have
𝑇 (𝑓, 𝑔, 𝑝) ≤ 𝑚𝑟𝑇 (𝑥 − 𝑎, 𝑥 − 𝑎, 𝑝) ≤ 0. (6)

If 𝑓 and 𝑔 are two differentiable functions on [𝑎, 𝑏] with
|𝑓


(𝑥)| ≤ 𝑀 and |𝑔(𝑥)| ≤ 𝑅, for 𝑥 ∈ [𝑎, 𝑏], and 𝑝 is a positive
integrable function on [𝑎, 𝑏], then we have

𝑇 (𝑓, 𝑔, 𝑝)
 ≤ 𝑀𝑅𝑇 (𝑥 − 𝑎, 𝑥 − 𝑎, 𝑝) ≤ 0. (7)
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2 Abstract and Applied Analysis

The functional (1) has attracted many researchers’ atten-
tion due mainly to diverse applications in numerical quadra-
ture, transform theory, and probability and statistical prob-
lems. Among those applications, the functional (1) has also
been employed to yield a number of integral inequalities (see,
e.g., [5–12]; for a very recent work, see also [13]).

Here, in this paper, we aim at establishing certain, pre-
sumably, new inequalities involving Saigo fractional integral
operator (8) whose special cases are shown to yield cor-
responding inequalities associated with Riemann-Liouville
fractional integral operator (11) and Erdélyi-Kober fractional
integral operator (12). We also investigate and present 𝑞-
extensions of our results and some other presumably new
ones. Relevant connections of some of the results presented
here with those earlier ones are also pointed out.

For our purpose, we also need to recall the following
definitions and some earlier works.

Definition 1. A real-valued function 𝑓(𝑡) (𝑡 > 0) is said to be
in the space 𝐶

𝜇

(𝜇 ∈ R), if there exists a real number 𝑝 > 𝜇

such that 𝑓(𝑡) = 𝑡
𝑝

𝜙(𝑡), where 𝜙(𝑡) ∈ 𝐶(0,∞).

Definition 2. A function𝑓(𝑡) (𝑡 > 0) is said to be in the space
𝐶
𝑛

𝜇

(𝑛 ∈ R), if 𝑓(𝑛) ∈ 𝐶
𝜇

.

Definition 3. Let 𝛼 > 0 and 𝛽, 𝜂 ∈ R. Then the Saigo frac-
tional integral 𝐼𝛼,𝛽,𝜂

0,𝑡

(in terms of the Gauss hypergeometric
function) of order 𝛼 for a real-valued continuous function
𝑓(𝑡) is defined by (see [14]; see also [15])

𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑓 (𝑡)} =
𝑡
−𝛼−𝛽

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

2

𝐹
1

× (𝛼 + 𝛽, −𝜂; 𝛼; 1 −
𝜏

𝑡
)𝑓 (𝜏) 𝑑𝜏,

(8)

where the function
2

𝐹
1

(⋅) is the Gaussian hypergeometric
function defined by (see, e.g., [16, Section 1.5])

2

𝐹
1

(𝑎, 𝑏; 𝑐; 𝑡) =

∞

∑

𝑛=0

(𝑎)
𝑛

(𝑏)
𝑛

(𝑐)
𝑛

𝑡
𝑛

𝑛!
(9)

and Γ(𝛼) is the familiar Gamma function. Here, (𝑎)
𝑛

is the
Pochhammer symbol defined, for 𝑎 ∈ C, by (see, e.g., [16, p.
2 and pp. 4–6])

(𝑎)
𝑛

:= {
1 (𝑛 = 0)

𝑎 (𝑎 + 1) ⋅ ⋅ ⋅ (𝑎 + 𝑛 − 1) (𝑛 ∈ N)

=
Γ (𝑎 + 𝑛)

Γ (𝑎)
(𝑎 ∈ C \ Z

−

0

) .

(10)

It is noted that Saigo fractional integral operator 𝐼𝛼,𝛽,𝜂
0,𝑡

includes both Riemann-Liouville and Erdélyi-Kober frac-
tional integral operators, respectively, given by the following
relationships (see, e.g., [17]), for 𝑓 ∈ 𝐶

𝜇

(𝜇 ≥ −1):

𝐼
𝛼

0,𝑡

{𝑓 (𝑡)} : (= 𝐼
𝛼,−𝛼,𝜂

0,𝑡

{𝑓 (𝑡)})

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏 (𝛼 > 0) ,

(11)

𝐼
𝛼,𝜂

0,𝑡

{𝑓 (𝑡)} : (= 𝐼
𝛼,0,𝜂

0,𝑡

{𝑓 (𝑡)})

=
𝑡
−𝛼−𝜂

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝜏
𝜂

𝑓 (𝜏) 𝑑𝜏

(𝛼 > 0; 𝜂 ∈ R) .

(12)

For our purpose, we also recall the following definitions
(see, e.g., [16, Section 6]) and some earlier works.

The 𝑞-shifted factorial (𝑎; 𝑞)
𝑛

is defined by

(𝑎; 𝑞)
𝑛

:=

{{

{{

{

1 (𝑛 = 0)

𝑛−1

∏

𝑘=0

(1 − 𝑎𝑞
𝑘

) (𝑛 ∈ N) ,
(13)

where 𝑎, 𝑞 ∈ C and it is assumed that 𝑎 ̸= 𝑞
−𝑚

(𝑚 ∈ N
0

).
The 𝑞-shifted factorial for negative subscript is defined by

(𝑎; 𝑞)
−𝑛

:=
1

(1 − 𝑎𝑞−1) (1 − 𝑎𝑞−2) ⋅ ⋅ ⋅ (1 − 𝑎𝑞−𝑛)

(𝑛 ∈ N
0

) .

(14)

We also write

(𝑎; 𝑞)
∞

:=

∞

∏

𝑘=0

(1 − 𝑎𝑞
𝑘

) (𝑎, 𝑞 ∈ C;
𝑞
 < 1) . (15)

It follows from (13), (14), and (15) that

(𝑎; 𝑞)
𝑛

=
(𝑎; 𝑞)
∞

(𝑎𝑞𝑛; 𝑞)
∞

(𝑛 ∈ Z) , (16)

which can be extended to 𝑛 = 𝛼 ∈ C as follows:

(𝑎; 𝑞)
𝛼

=
(𝑎; 𝑞)
∞

(𝑎𝑞𝛼; 𝑞)
∞

(𝛼 ∈ C;
𝑞
 < 1) , (17)

where the principal value of 𝑞𝛼 is taken.
We begin by noting that F. J. Jackson was the first to

develop 𝑞-calculus in a systematic way. The 𝑞-derivative of a
function 𝑓(𝑡) is defined by

𝐷
𝑞

{𝑓 (𝑡)} :=
𝑑
𝑞

𝑑
𝑞

𝑡
{𝑓 (𝑡)} =

𝑓 (𝑞𝑡) − 𝑓 (𝑡)

(𝑞 − 1) 𝑡
. (18)

It is noted that

lim
𝑞→1

𝐷
𝑞

{𝑓 (𝑡)} =
𝑑

𝑑𝑡
{𝑓 (𝑡)} , (19)

if 𝑓(𝑡) is differentiable.



Abstract and Applied Analysis 3

The function 𝐹(𝑡) is a 𝑞-antiderivative of 𝑓(𝑡), if
𝐷
𝑞

{𝐹(𝑡)} = 𝑓(𝑡). It is denoted by

∫𝑓 (𝑡) 𝑑
𝑞

𝑡. (20)

The Jackson integral of 𝑓(𝑡) is thus defined, formally, by

∫𝑓 (𝑡) 𝑑
𝑞

𝑡 := (1 − 𝑞) 𝑡

∞

∑

𝑗=0

𝑞
𝑗

𝑓 (𝑞
𝑗

𝑡) , (21)

which can be easily generalized as follows:

∫𝑓 (𝑡) 𝑑
𝑞

𝑔 (𝑡) =

∞

∑

𝑗=0

𝑓 (𝑞
𝑗

𝑡) (𝑔 (𝑞
𝑗

𝑡) − 𝑔 (𝑞
𝑗+1

𝑡)) . (22)

Suppose that 0 < 𝑎 < 𝑏. The definite 𝑞-integral is defined
as follows:

∫

𝑏

0

𝑓 (𝑡) 𝑑
𝑞

𝑡 := (1 − 𝑞) 𝑏

∞

∑

𝑗=0

𝑞
𝑗

𝑓 (𝑞
𝑗

𝑏) , (23)

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑
𝑞

𝑡 = ∫

𝑏

0

𝑓 (𝑡) 𝑑
𝑞

𝑡 − ∫

𝑎

0

𝑓 (𝑡) 𝑑
𝑞

𝑡. (24)

A more general version of (23) is given by

∫

𝑏

0

𝑓 (𝑡) 𝑑
𝑞

𝑔 (𝑡) =

∞

∑

𝑗=0

𝑓 (𝑞
𝑗

𝑏) (𝑔 (𝑞
𝑗

𝑏) − 𝑔 (𝑞
𝑗+1

𝑏)) . (25)

The classical Gamma function Γ(𝑧) (see, e.g., [16, Section
1.1]) was found by Euler, while he was trying to extend the
factorial 𝑛! = Γ(𝑛 + 1) ( 𝑛 ∈ N

0

) to real numbers. The 𝑞-
factorial function [𝑛]

𝑞

! (𝑛 ∈ N
0

) of 𝑛!, defined by

[𝑛]
𝑞

! := {
1 if 𝑛 = 0,

[𝑛]
𝑞

[𝑛 − 1]
𝑞

⋅ ⋅ ⋅ [2]
𝑞

[1]
𝑞

if 𝑛 ∈ N,
(26)

can be rewritten as follows:

(1 − 𝑞)
−𝑛

∞

∏

𝑘=0

(1 − 𝑞
𝑘+1

)

(1 − 𝑞𝑘+1+𝑛)
=

(𝑞; 𝑞)
∞

(𝑞𝑛+1; 𝑞)
∞

(1 − 𝑞)
−𝑛

:= Γ
𝑞

(𝑛 + 1) (0 < 𝑞 < 1) .

(27)

By replacing 𝑛 by 𝑎 − 1 in (27), Jackson [18] defined the 𝑞-
Gamma function Γ

𝑞

(𝑎) by

Γ
𝑞

(𝑎) :=
(𝑞; 𝑞)
∞

(𝑞𝑎; 𝑞)
∞

(1 − 𝑞)
1−𝑎

(0 < 𝑞 < 1) . (28)

The 𝑞-analogue of (𝑡 − 𝑎)
𝑛 is defined by the polynomial

(𝑡 − 𝑎)
𝑛

𝑞

:= {
1 (𝑛 = 0)

(𝑡 − 𝑎) (𝑡 − 𝑞𝑎) ⋅ ⋅ ⋅ (𝑡 − 𝑞
𝑛−1

𝑎) (𝑛 ∈ N)

= 𝑡
𝑛

(
𝑎

𝑡
; 𝑞)
𝑛

(𝑛 ∈ N
0

) .

(29)

Definition 4. Let R(𝛼) > 0; let 𝛽 and 𝜂 be real or complex
numbers. Then a 𝑞-analogue of Saigo’s fractional integral
𝐼
𝛼,𝛽,𝜂

𝑞

is given for |𝜏/𝑡| < 1 by (see [19, p. 172, Equation (2.1)])

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑓 (𝑡)} :=
𝑡
−𝛽−1

Γ
𝑞

(𝛼)

× ∫

𝑡

0

(
𝑞𝜏

𝑡
; 𝑞)
𝛼−1

∞

∑

𝑚=0

(𝑞
𝛼+𝛽

; 𝑞)
𝑚

(𝑞
−𝜂

; 𝑞)
𝑚

(𝑞𝛼; 𝑞)
𝑚

(𝑞; 𝑞)
𝑚

⋅ 𝑞
(𝜂−𝛽)𝑚

(−1)
𝑚

𝑞
−(
𝑚

2

)
(
𝜏

𝑡
− 1)

𝑚

𝑞

𝑓 (𝜏) 𝑑
𝑞

𝜏.

(30)

The integral operator 𝐼𝛼,𝛽,𝜂
𝑞

includes both the 𝑞-analogues
of the Riemann-Liouville and Erdélyi-Kober fractional inte-
gral operators given by the following definitions.

Definition 5. A 𝑞-analogue of Riemann-Liouville fractional
integral operator of a function 𝑓(𝑡) of an order 𝛼 is given by
(see [20])

𝐼
𝛼

𝑞

{𝑓 (𝑡)} : (= 𝐼
𝛼,−𝛼,𝜂

𝑞

{𝑓 (𝑡)})

=
𝑡
𝛼−1

Γ
𝑞

(𝛼)
∫

𝑡

0

(
𝑞𝜏

𝑡
; 𝑞)
𝛼−1

𝑓 (𝜏) 𝑑
𝑞

𝜏

(𝛼 > 0; 0 < 𝑞 < 1) ,

(31)

where (𝑎; 𝑞)
𝛼

is given by (17).

Definition 6. A 𝑞-analogue of the Erdélyi-Kober fractional
integral operator for 𝛼 > 0, 𝜂 ∈ R, and 0 < 𝑞 < 1 is given
by (see [20])

𝐼
𝜂,𝛼

𝑞

{𝑓 (𝑡)} : (= 𝐼
𝛼,0,𝜂

𝑞

{𝑓 (𝑡)})

=
𝑡
−𝜂−1

Γ
𝑞

(𝛼)
∫

𝑡

0

(
𝑞𝜏

𝑡
; 𝑞)
𝛼−1

𝜏
𝜂

𝑓 (𝜏) 𝑑
𝑞

𝜏

(𝛼 > 0; 0 < 𝑞 < 1) .

(32)

2. Certain Inequalities Involving Saigo
Fractional Integral Operator

Here, we start with presenting an inequality involving Saigo
fractional integral (8) asserted by the following lemma.

Lemma 7. Let 𝑓 and 𝑔 be two continuous and synchronous
functions on [0,∞) and let 𝑢, V : [0,∞) → [0,∞) be
continuous functions. Then the following inequality holds true:

𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑢 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{V (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{V (𝑡)} 𝐼𝛼,𝛽,𝜂
0,𝑡

{𝑢 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

≥ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑢 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{V (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{V (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑢 (𝑡) 𝑔 (𝑡)} ,

(33)

for all 𝑡 > 0, 𝛼 > 0, and 𝛽, 𝜂 ∈ R with 𝛼 + 𝛽 ≧ 0 and 𝜂 ≦ 0.
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Proof. Let 𝑓 and 𝑔 be two continuous and synchronous
functions on [0,∞). Then, for all 𝜏, 𝜌 ∈ (0, 𝑡) with 𝑡 > 0,
we have

(𝑓 (𝜏) − 𝑓 (𝜌)) (𝑔 (𝜏) − 𝑔 (𝜌)) ≥ 0, (34)

or, equivalently,

𝑓 (𝜏) 𝑔 (𝜏) + 𝑓 (𝜌) 𝑔 (𝜌) ≥ 𝑓 (𝜏) 𝑔 (𝜌) + 𝑓 (𝜌) 𝑔 (𝜏) . (35)

Consider the following function 𝐹(𝑡, 𝜏) defined by

𝐹 (𝑡, 𝜏) =
𝑡
−𝛼−𝛽

(𝑡 − 𝜏)
𝛼−1

Γ (𝛼)
2

𝐹
1

(𝛼 + 𝛽, −𝜂; 𝛼; 1 −
𝜏

𝑡
)

(𝜏 ∈ (0, 𝑡) ; 𝑡 > 0)

=
1

Γ (𝛼)

(𝑡 − 𝜏)
𝛼−1

𝑡𝛼+𝛽
+
(𝛼 + 𝛽) (−𝜂)

Γ (𝛼 + 1)

(𝑡 − 𝜏)
𝛼

𝑡𝛼+𝛽+1

+
(𝛼+𝛽) (𝛼+𝛽+1) (−𝜂) (−𝜂+1)

Γ (𝛼+2)

(𝑡−𝜏)
𝛼+1

𝑡𝛼+𝛽+2
+⋅ ⋅ ⋅ .

(36)

We observe that each term of the above series is nonnegative
under the conditions in Lemma 7, and, hence, the function
𝐹(𝑡, 𝜏) remains nonnegative for all 𝜏 ∈ (0, 𝑡) (𝑡 > 0).

Now, by multiplying both sides of (35) by 𝐹(𝑡, 𝜏)𝑢(𝜏)

defined by (36), integrating the resulting inequality with
respect to 𝜏 from 0 to 𝑡, and using (8), we get

𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑢 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} + 𝑓 (𝜌) 𝑔 (𝜌) 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑢 (𝑡)}

≥ 𝑔 (𝜌) 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑢 (𝑡) 𝑓 (𝑡)} + 𝑓 (𝜌) 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑢 (𝑡) 𝑔 (𝑡)} .

(37)

Next, bymultiplying both sides of (37) by𝐹(𝑡, 𝜌)V(𝜌) (𝜌 ∈

(0, 𝑡); 𝑡 > 0), where 𝐹(𝑡, 𝜌) is given when 𝜏 is replaced by 𝜌

in (36), integrating the resulting inequality with respect to 𝜌

from 0 to 𝑡, and using (8), we are led to the desired result (33).

Theorem 8. Let 𝑓 and 𝑔 be two continuous and synchronous
functions on [0,∞) and let 𝑙, 𝑚, 𝑛 : [0,∞) → [0,∞) be
continuous functions. Then the following inequality holds true:

2𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

+ 2𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

≥ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑔 (𝑡)}] ,

(38)

for all 𝑡 > 0, 𝛼 > 0, and 𝛽, 𝜂 ∈ R with 𝛼 + 𝛽 ≧ 0 and 𝜂 ≦ 0.

Proof. By setting 𝑢 = 𝑚 and V = 𝑛 in Lemma 7, we get

𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

≥ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)} .

(39)

Since 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙(𝑡)} ≧ 0 under the given conditions, by
multiplying both sides of (39) by 𝐼𝛼,𝛽,𝜂

0,𝑡

{𝑙(𝑡)}, we have

𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)}] .

(40)

Similarly, by replacing 𝑢, V by 𝑙, 𝑛 and 𝑢, V by 𝑙,𝑚, respectively,
in (33) and then multiplying both sides of the resulting
inequalities by 𝐼𝛼,𝛽,𝜂

0,𝑡

{𝑚(𝑡)} and 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛(𝑡)} both of which are
nonnegative under the given assumptions, respectively, we
get the following inequalities:

𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑔 (𝑡)}] ,
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𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑔 (𝑡)}] .

(41)

Finally, by adding (40) and (41), side by side, we arrive at the
desired result (38).

We present another inequality involving the Saigo frac-
tional integral operator in (8) asserted by the following
lemma.

Lemma 9. Let 𝑓 and 𝑔 be two continuous and synchronous
functions on [0,∞) and let 𝑢, V : [0,∞) → [0,∞) be
continuous functions. Then the following inequality holds true:

𝐼
𝛾,𝛿,𝜁

0,𝑡

{V (𝑡)} 𝐼𝛼,𝛽,𝜂
0,𝑡

{𝑢 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛾,𝛿,𝜁

0,𝑡

{V (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑢 (𝑡)}

≥ 𝐼
𝛾,𝛿,𝜁

0,𝑡

{V (𝑡) 𝑔 (𝑡)} 𝐼𝛼,𝛽,𝜂
0,𝑡

{𝑢 (𝑡) 𝑓 (𝑡)}

+ 𝐼
𝛾,𝛿,𝜁

0,𝑡

{V (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑢 (𝑡) 𝑔 (𝑡)} ,

(42)

for all 𝑡 > 0, 𝛼 > 0, 𝛾 > 0, and 𝛽, 𝜂, 𝛿, 𝜁 ∈ R with 𝛼 + 𝛽 ≧ 0,
𝜂 ≦ 0, 𝛾 + 𝛿 ≧ 0, and 𝜁 ≦ 0.

Proof. By multiplying both sides of (37) by

𝑡
−𝛾−𝛿

(𝑡 − 𝜌)
𝛾−1

Γ (𝛾)
2

𝐹
1

(𝛾 + 𝛿, −𝜁; 𝛾; 1 −
𝜌

𝑡
) V (𝜌)

(𝜌 ∈ (0, 𝑡) ; 𝑡 > 0) ,

(43)

which remains nonnegative under the conditions in (42),
integrating the resulting inequality with respect to 𝜌 from 0

to 𝑡, and using (8), we get the desired result (42).

Theorem 10. Let 𝑓 and 𝑔 be two continuous and synchronous
functions on [0,∞) and let 𝑙, 𝑚, 𝑛 : [0,∞) → [0,∞) be
continuous functions. Then the following inequality holds true:

𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡)} [2𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑚 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)}]

+ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)}]

+ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} [𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)}] ,

(44)

for all 𝑡 > 0, 𝛼 > 0, 𝛾 > 0, and 𝛽, 𝜂, 𝛿, 𝜁 ∈ R with 𝛼 + 𝛽 ≧ 0,
𝜂 ≦ 0, 𝛾 + 𝛿 ≧ 0, and 𝜁 ≦ 0.

Proof. By setting 𝑢 = 𝑚 and V = 𝑛 in (42), we have

𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)}

≥ 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)}

+ 𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)} .

(45)

By multiplying both sides of (45) by 𝐼𝛼,𝛽,𝜂
0,𝑡

{𝑙(𝑡)}, after a little
simplification, we get

𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡)} [𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡)} [𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)}] .

(46)

Now, by replacing 𝑢, V by 𝑙, 𝑛 and 𝑢, V by 𝑙, 𝑚 in (42),
respectively, and then multiplying both sides of the resulting
inequalities by 𝐼

𝛼,𝛽,𝜂

0,𝑡

{𝑚(𝑡)} and 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛(𝑡)}, respectively, we
get the following two inequalities:

𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} [𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑚 (𝑡)} [𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑔 (𝑡)}] ,
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𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} [𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑚 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑛 (𝑡)} [𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

0,𝑡

{𝑙 (𝑡) 𝑔 (𝑡)}] .

(47)

Finally, we find that the inequality (44) follows by adding the
inequalities (46) and (47), side by side.

Remark 11. It may be noted that the inequalities (38) and
(44) in Theorems 8 and 10, respectively, are reversed, if the
functions are asynchronous on [0,∞). The special case of
(44) in Theorem 10, when 𝛼 = 𝛾, 𝛽 = 𝛿, and 𝜂 = 𝜁, is easily
seen to yield the inequality (38) in Theorem 8.

Here, we derive certain, presumably, new integral
inequalities by setting 𝛽 = 0 in (38) and 𝛽 = 0 = 𝛿 in (44),
respectively, and applying the integral operator (12) to the
resulting inequalities, we obtain two integral inequalities
involving Erdélyi-Kober fractional integral operators stated
in Corollaries 12 and 13 below.

Corollary 12. Let𝑓 and 𝑔 be two continuous and synchronous
functions on [0,∞) and let 𝑙, 𝑚, 𝑛 : [0,∞) → [0,∞) be
continuous functions. Then the following inequality holds true:

2𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡)} [𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡)} 𝐼
𝛼,𝜂

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝜂

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

+ 2𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡)} 𝐼
𝛼,𝜂

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

≥ 𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡)} [𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝜂

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝜂

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡)} [𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝜂

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝜂

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝛼,𝜂

0,𝑡

{𝑛 (𝑡)} [𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (t)} 𝐼𝛼,𝜂
0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡) 𝑔 (𝑡)}] ,

(48)

for all 𝑡 > 0, 𝛼 > 0, and 𝜂 ∈ R.

Corollary 13. Let𝑓 and 𝑔 be two continuous and synchronous
functions on [0,∞) and let 𝑙, 𝑚, 𝑛 : [0,∞) → [0,∞) be
continuous functions. Then the following inequality holds true:

𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡)} [2𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡)} 𝐼
𝛾,𝜁

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼,𝜂

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛾,𝜁

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛾,𝜁

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} [𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡)} 𝐼
𝛾,𝜁

0,𝑡

{𝑛 (𝑡)}

+𝐼
𝛼,𝜂

0,𝑡

{𝑛 (𝑡)} 𝐼
𝛾,𝜁

0,𝑡

{𝑚 (𝑡)}]

≥ 𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡)} [𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾,𝜁

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾,𝜁

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)}]

+ 𝐼
𝛼,𝜂

0,𝑡

{𝑚 (𝑡)} [𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾,𝜁

0,𝑡

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾,𝜁

0,𝑡

{𝑛 (𝑡) 𝑓 (𝑡)}]

+ 𝐼
𝛼,𝜂

0,𝑡

{𝑛 (𝑡)} [𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾,𝜁

0,𝑡

{𝑚 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝜂

0,𝑡

{𝑙 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾,𝜁

0,𝑡

{𝑚 (t) 𝑓 (𝑡)}] ,

(49)

for all 𝑡 > 0, 𝛼 > 0, 𝛾 > 0, and 𝜂, 𝜁 ∈ R.

Remark 14. The special cases 𝛽 = −𝛼 in Theorem 8 and 𝛽 =

−𝛼 and 𝛿 = −𝛾 in Theorem 10 are seen to yield the known
fractional integral inequalities due to Dahmani [21].

3. Saigo Fractional 𝑞-Integral Inequalities

We establish certain 𝑞-integral inequalities which are the 𝑞-
analogues (or extensions) of the results derived in the preced-
ing section, some of which are presumably new ones. For our
purpose, we begin with providing comparison properties for
the fractional 𝑞-integral operators asserted by the following
lemma.

Lemma 15. Let 0 < 𝑞 < 1 and 𝑓 : [0,∞) → R be continuous
functions with 𝑓(𝑡) ≥ 0, for all 𝑡 ∈ [0,∞). Then we have the
following inequalities:

(i) the Saigo fractional 𝑞-integral operator of the function
𝑓(𝑡) in (30):

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑓 (𝑡)} ≥ 0, (50)

for all 𝛼 > 0 and 𝛽, 𝜂 ∈ R with 𝛼 + 𝛽 > 0 and 𝜂 < 0;
(ii) the 𝑞-analogue of Riemann-Liouville fractional integral

operator of the function 𝑓(𝑡) of an order 𝛼 in (31):

𝐼
𝛼

𝑞

{𝑓 (𝑡)} ≥ 0, (51)

for all 𝛼 > 0;
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(iii) the 𝑞-analogue of Erdélyi-Kober fractional integral
operator of the function 𝑓(𝑡) in (32):

𝐼
𝜂,𝛼

𝑞

{𝑓 (𝑡)} ≥ 0, (52)

for all 𝛼 > 0 and 𝜂 ∈ R.

Proof. By applying (23) to the 𝑞-integral in (30), we have

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑓 (𝑡)} =
𝑡
−𝛽−1

Γ
𝑞

(𝛼)

×

∞

∑

𝑚=0

(𝑞
𝛼+𝛽

; 𝑞)
𝑚

(𝑞
−𝜂

; 𝑞)
𝑚

(𝑞𝛼; 𝑞)
𝑚

(𝑞; 𝑞)
𝑚

𝑞
(𝜂−𝛽)𝑚

(−1)
𝑚

𝑞
−(
𝑚

2

)

⋅ (1−𝑞) 𝑡

∞

∑

𝑗=0

𝑞
𝑗

{(𝑞
𝑗+1

; 𝑞)
𝛼−1

(𝑞
𝑗

−1)
𝑚

𝑞

𝑓 (𝑞
𝑗

𝑡)} .

(53)

It is easy to see that

Γ
𝑞

(𝛼) > 0; (𝑞
𝛼

; 𝑞)
𝑚

> 0;

(𝑞
𝑗+1

; 𝑞)
𝛼−1

=

(𝑞
𝑗+1

; 𝑞)
∞

(𝑞𝛼+𝑗; 𝑞)
∞

> 0,

(54)

for all 𝛼 > 0 and 𝑗,𝑚 ∈ N
0

. Next, for simplicity,

ℎ (𝑗,𝑚; 𝑞) := (−1)
𝑚

(𝑞
𝑗

− 1)
𝑚

𝑞

(𝑗, 𝑚 ∈ N
0

) . (55)

Then we claim that ℎ(𝑗, 𝑚; 𝑞) ≥ 0, for all 𝑗,𝑚 ∈ N
0

. We find
from (29) that

ℎ (𝑗,𝑚; 𝑞) = (−1)
𝑚

𝑞
𝑗𝑚

(
1

𝑞𝑗
; 𝑞)

𝑚

= 𝑞
𝑗𝑚

(−1)
𝑚

𝑚−1

∏

𝑘=0

(1 − 𝑞
𝑘−𝑗

) .

(56)

It is easy to see that, if𝑚 > 𝑗, then ℎ(𝑗,𝑚; 𝑞) = 0. On the other
hand, if𝑚 ≤ 𝑗, then we have

ℎ (𝑗,𝑚; 𝑞) = 𝑞
𝑗𝑚

𝑚−1

∏

𝑘=0

(𝑞
𝑘−𝑗

− 1) > 0, (57)

since 𝑘 − 𝑗 < 0, for all 𝑘 with 0 ≤ 𝑘 ≤ 𝑚 − 1 < 𝑚 ≤ 𝑗.
Finally, we find that, under the given conditions, each term
in the double series of (53) is nonnegative.This completes the
proof of (50). The other two inequalities in (51) and (52) may
be easily proved.

For convenience and simplicity, we define the following
functionH by

H (𝜏, 𝑡, 𝑢 (𝜏) ; 𝛼, 𝛽, 𝜂; 𝑞)

:=
𝑡
−𝛽−1

Γ
𝑞

(𝛼)
(
𝑞𝜏

𝑡
; 𝑞)
𝛼−1

⋅

∞

∑

𝑚=0

(𝑞
𝛼+𝛽

; 𝑞)
𝑚

(𝑞
−𝜂

; 𝑞)
𝑚

(𝑞𝛼; 𝑞)
𝑚

(𝑞; 𝑞)
𝑚

× 𝑞
(𝜂−𝛽)𝑚

(−1)
𝑚

𝑞
−(
𝑚

2

)
(
𝜏

𝑡
− 1)

𝑚

𝑞

𝑢 (𝜏) ,

(58)

where 𝑡 > 0, 0 ≤ 𝜏 ≤ 𝑡; 𝛼 > 0, 𝛽, 𝜂 ∈ R with 𝛼 + 𝛽 > 0

and 𝜂 < 0; 0 < 𝑞 < 1; 𝑢 : [0,∞) → [0,∞) is a continuous
function. As in the process of Lemma 15, it is seen that

H (𝜏, 𝑡, 𝑢 (𝜏) ; 𝛼, 𝛽, 𝜂; 𝑞) ≥ 0, (59)

under the conditions given in (58).
Here, we present two 𝑞-integral inequalities involving the

Saigo fractional 𝑞-integral operator (30) stated in Lemmas 16
and 17 below.

Lemma 16. Let 0 < 𝑞 < 1; let 𝑓 and 𝑔 be two continuous and
synchronous functions on [0,∞); let 𝑢 : [0,∞) → [0,∞) be a
continuous function. Then the following inequality holds true,
for 𝑡 ∈ (0,∞),

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑢 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{V (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼,𝛽,𝜂

𝑞

{V (𝑡)} 𝐼𝛼,𝛽,𝜂
𝑞

{𝑢 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

≥ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑢 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{V (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼,𝛽,𝜂

𝑞

{V (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑢 (𝑡) 𝑔 (𝑡)} ,

(60)

for all 𝛼 > 0 and 𝛽, 𝜂 ∈ R with 𝛼 + 𝛽 > 0 and 𝜂 < 0.

Proof. Since 𝑓 and 𝑔 are two synchronous functions on
[0,∞), for all 𝜏, 𝜌 ≥ 0, the inequality (35) is satisfied.
By multiplying both sides of (35) by H(𝜏, 𝑡, 𝑢(𝜏); 𝛼, 𝛽, 𝜂; 𝑞)

in (58) together with (59) and taking 𝑞-integration of the
resulting inequality with respect to 𝜏 from 0 to 𝑡 with the aid
of Definition 4, we get

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑢 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} + 𝑓 (𝜌) 𝑔 (𝜌) 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑢 (𝑡)}

≥ 𝑔 (𝜌) 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑢 (𝑡) 𝑓 (𝑡)} + 𝑓 (𝜌) 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑢 (𝑡) 𝑔 (𝑡)} .

(61)

Next, by multiplying both sides of (61) by
H(𝜌, 𝑡, V(𝜌); 𝛼, 𝛽, 𝜂; 𝑞) in (58) together with (59), taking
𝑞-integration of the last resulting inequality with respect to 𝜌
from 0 to 𝑡, and using Definition 4, we are led to the desired
result (60).

Lemma 17. Let 0 < 𝑞 < 1; let 𝑓 and 𝑔 be two continuous and
synchronous functions on [0,∞); let 𝑢, V : [0,∞) → [0,∞)
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be continuous functions. Then the following inequality holds
true, for 𝑡 ∈ (0,∞),

𝐼
𝛾,𝛿,𝜁

𝑞

{V (𝑡)} 𝐼𝛼,𝛽,𝜂
𝑞

{𝑢 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛾,𝛿,𝜁

𝑞

{V (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑢 (𝑡)}

≥ 𝐼
𝛾,𝛿,𝜁

𝑞

{V (𝑡) 𝑔 (𝑡)} 𝐼𝛼,𝛽,𝜂
𝑞

{𝑢 (𝑡) 𝑓 (𝑡)}

+ 𝐼
𝛾,𝛿,𝜁

𝑞

{V (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑢 (𝑡) 𝑔 (𝑡)} ,

(62)

for all 𝛼 > 0, 𝛾 > 0, and 𝛽, 𝜂, 𝛿, 𝜁 ∈ Rwith 𝛼+𝛽 > 0, 𝛾+𝛿 > 0,
𝜂 < 0, and 𝜁 < 0.

Proof. By multiplying both sides of (61) by
H(𝜌, 𝑡, V(𝜌); 𝛾, 𝛿, 𝜁; 𝑞) in (58) together with (59) and
taking the 𝑞-integration of the resulting inequality with
respect to 𝜌 from 0 to 𝑡 with the aid of Definition 4, we get
the desired result (62).

Theorem 18. Let 0 < 𝑞 < 1; let 𝑓, 𝑔 : [0,∞) → R be
two continuous synchronous functions; let 𝑙, 𝑚, 𝑛 : [0,∞) →

[0,∞) be continuous functions. Then the following inequality
holds true, for 𝑡 ∈ (0,∞),

2𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

+ 2𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

≥ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑔 (t)}] ,
(63)

for all 𝛼 > 0 and 𝛽, 𝜂 ∈ R with 𝛼 + 𝛽 > 0 and 𝜂 < 0.

Proof. We start with (60) in Lemma 16; by putting 𝑢 = 𝑚 and
V = 𝑛, we get

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

≥ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)} .

(64)

By multiplying both sides of (64) by 𝐼𝛼,𝛽,𝜂
𝑞

{𝑙(𝑡)}, we have

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)}] .

(65)

Similarly, by replacing 𝑢, V by 𝑙, 𝑛 and 𝑢, V by 𝑙, 𝑚 in (60),
respectively and then multiplying both sides of the resulting
inequalities by 𝐼

𝛼,𝛽,𝜂

𝑞

{𝑚(𝑡)} and 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛(𝑡)}, respectively, we
get

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)}] ,

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)}] .

(66)

Finally, by adding (65) and (66), side by side, we arrive at the
desired result in Theorem 18.

Theorem 19. Let 0 < 𝑞 < 1; let 𝑓, 𝑔 : [0,∞) → R be
two continuous synchronous functions; let 𝑙, 𝑚, 𝑛 : [0,∞) →

[0,∞) be continuous functions. Then the following inequality
holds true, for 𝑡 ∈ (0,∞),

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡)} [2𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑚 (𝑡)}]
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≥ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)}]

+ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)}]

+ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} [𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)}] ,

(67)

for all 𝛼 > 0, 𝛾 > 0, and 𝛽, 𝜂, 𝛿, 𝜁 ∈ Rwith 𝛼+𝛽 > 0, 𝛾+𝛿 > 0,
𝜂 < 0, and 𝜁 < 0.

Proof. By setting 𝑢 = 𝑚 and V = 𝑛 in (62), we have

𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)}

≥ 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)}

+ 𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)} .

(68)

By multiplying both sides of (68) by 𝐼𝛼,𝛽,𝜂
𝑞

{𝑙(𝑡)}, after a little
simplification, we get

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡)} [𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡)} [𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)}] .

(69)

By replacing 𝑢, V by 𝑙, 𝑛 and 𝑢, V by 𝑙, 𝑚 in (60) and
then multiplying both sides of the resulting inequalities by
𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚(𝑡)} and 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛(𝑡)}, respectively, we get

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} [𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑚 (𝑡)} [𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)}] ,

𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} [𝐼
𝛾,𝛿,𝜁

𝑞

{𝑚 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡)}]

≥ 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑛 (𝑡)} [𝐼
𝛾,𝛿,𝜁

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)}

+𝐼
𝛾,𝛿,𝜁

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼,𝛽,𝜂

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)}] .

(70)

We, therefore, find that the inequality (67) follows by adding
the inequalities (69) and (70), side by side.

Remark 20. It is noted that the inequalities in (63) and (67)
are reversed if the functions 𝑓 and 𝑔 are asynchronous. It is
also easily seen that the special cases 𝛼 = 𝛾, 𝛽 = 𝛿, and 𝜂 = 𝜁

of (67) inTheorem 19 reduce to those inTheorem 18.

Following Garg and Chanchlani [19], the operator (30)
would reduce immediately to the extensively investigated
𝑞-analogue of Erdélyi-Kober and Riemann-Liouville type
fractional integral operators in (31) and (32), respectively
(see also [20]). Indeed, by suitably specializing the values of
parameters 𝛼 (and additionally 𝛿 in Theorem 19), the results
presented in this section would find further fractional 𝑞-
integral inequalities involving the 𝑞-analogues of Erdélyi-
Kober and Riemann-Liouville type fractional integral oper-
ators in (31) and (32). For example, if we set 𝛽 = −𝛼 in
Theorem 18 and 𝛽 = −𝛼 and 𝛿 = −𝛾 in Theorem 19,
respectively, andmake use of the relation (31), we are led to the
following, presumably, new 𝑞-integral inequalities involving
𝑞-Riemann-Liouville fractional integral operators given in
Corollaries 21 and 22 below.

Corollary 21. Let 0 < 𝑞 < 1; let 𝑓, 𝑔 : [0,∞) → R be
two continuous synchronous functions; let 𝑙, 𝑚, 𝑛 : [0,∞) →

[0,∞) be continuous functions. Then the following inequality
holds true, for 𝑡 ∈ (0,∞),

2𝐼
𝛼

𝑞

{𝑙 (𝑡)} [𝐼
𝛼

𝑞

{𝑚 (𝑡)} 𝐼
𝛼

𝑞

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼

𝑞

{𝑛 (𝑡)} 𝐼
𝛼

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

+ 2𝐼
𝛼

𝑞

{𝑚 (𝑡)} 𝐼
𝛼

𝑞

{𝑛 (𝑡)} 𝐼
𝛼

𝑞

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

≥ 𝐼
𝛼

𝑞

{𝑙 (𝑡)} [𝐼
𝛼

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝛼

𝑞

{𝑚 (𝑡)} [𝐼
𝛼

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝛼

𝑞

{𝑛 (𝑡)} [𝐼
𝛼

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛼

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)}] ,

(71)

for all 𝛼 > 0.

Corollary 22. Let 0 < 𝑞 < 1; let 𝑓, 𝑔 : [0,∞) → R be
two continuous synchronous functions; let 𝑙, 𝑚, 𝑛 : [0,∞) →

[0,∞) be continuous functions. Then the following inequality
holds true, for 𝑡 ∈ (0,∞),

𝐼
𝛼

𝑞

{𝑙 (𝑡)} [2𝐼
𝛼

𝑞

{𝑚 (𝑡)} 𝐼
𝛾

𝑞

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝛼

𝑞

{𝑛 (𝑡)} 𝐼
𝛾

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}
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+𝐼
𝛾

𝑞

{𝑛 (𝑡)} 𝐼
𝛼

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝛼

𝑞

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} [𝐼
𝛼

𝑞

{𝑚 (𝑡)} 𝐼
𝛾

𝑞

{𝑛 (𝑡)}

+𝐼
𝛼

𝑞

{𝑛 (𝑡)} 𝐼
𝛾

𝑞

{𝑚 (𝑡)}]

≥ 𝐼
𝛼

𝑞

{𝑙 (𝑡)} [𝐼
𝛼

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)}]

+ 𝐼
𝛼

𝑞

{𝑚 (𝑡)} [𝐼
𝛼

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)}]

+ 𝐼
𝛼

𝑞

{𝑛 (𝑡)} [𝐼
𝛼

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛼

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)}] ,

(72)

for all 𝛼 > 0 and 𝛾 > 0.

Furthermore, if we set 𝛽 = 0 in Theorem 18 and 𝛽 = 0 =

𝛿 in Theorem 19, we obtain the following, presumably, new
inequalities involving 𝑞-analogue of the Erdélyi-Kober type
fractional integral operators asserted by Corollaries 23 and
24 below.

Corollary 23. Let 0 < 𝑞 < 1; let 𝑓, 𝑔 : [0,∞) → R be
two continuous synchronous functions; let 𝑙, 𝑚, 𝑛 : [0,∞) →

[0,∞) be continuous functions. Then the following inequality
holds true, for 𝑡 ∈ (0,∞),

2𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡)} [𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡)} 𝐼
𝜂,𝛼

𝑞

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝜂,𝛼

𝑞

{𝑛 (𝑡)} 𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

+ 2𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡)} 𝐼
𝜂,𝛼

𝑞

{𝑛 (𝑡)} 𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

≥ 𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡)} [𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝜂,𝛼

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝜂,𝛼

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡)} [𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝜂,𝛼

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝜂,𝛼

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)} 𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝜂,𝛼

𝑞

{𝑛 (𝑡)} [𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)}

+𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)}] ,

(73)

for all 𝛼 > 0.

Corollary 24. Let 0 < 𝑞 < 1; let 𝑓, 𝑔 : [0,∞) → R be
two continuous synchronous functions; let 𝑙, 𝑚, 𝑛 : [0,∞) →

[0,∞) be continuous functions. Then the following inequality
holds true, for 𝑡 ∈ (0,∞),

𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡)} [2𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡)} 𝐼
𝛾,𝛿

𝑞

{𝑛 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+ 𝐼
𝜂,𝛼

𝑞

{𝑛 (𝑡)} 𝐼
𝛾,𝛿

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+𝐼
𝛾,𝛿

𝑞

{𝑛 (𝑡)} 𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}]

+ 𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} [𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡)} 𝐼
𝛾,𝛿

𝑞

{𝑛 (𝑡)}

+𝐼
𝜂,𝛼

𝑞

{𝑛 (𝑡)} 𝐼
𝛾,𝛿

𝑞

{𝑚 (𝑡)}]

≥ 𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡)} [𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾,𝛿

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾,𝛿

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)}]

+ 𝐼
𝜂,𝛼

𝑞

{𝑚 (𝑡)} [𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾

𝑞

{𝑛 (𝑡) 𝑔 (𝑡)}

+𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾,𝛿

𝑞

{𝑛 (𝑡) 𝑓 (𝑡)}]

+ 𝐼
𝜂,𝛼

𝑞

{𝑛 (𝑡)} [𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡) 𝑓 (𝑡)} 𝐼
𝛾,𝛿

𝑞

{𝑚 (𝑡) 𝑔 (𝑡)}

+𝐼
𝜂,𝛼

𝑞

{𝑙 (𝑡) 𝑔 (𝑡)} 𝐼
𝛾,𝛿

𝑞

{𝑚 (𝑡) 𝑓 (𝑡)}] ,

(74)

for all 𝛼 > 0, 𝛿 > 0, and 𝛾, 𝜂 ∈ R.

4. Concluding Remarks

It is easy to see that

lim
𝑞→1

Γ
𝑞

(𝑎) = Γ (𝑎) ,

lim
𝑞→1

(𝑞
𝑎

; 𝑞)
𝑛

(1 − 𝑞)
𝑛

= (𝑎)
𝑛

,

(75)

where (𝑎)
𝑛

is the Pochhammer symbol given in (10). Taking
the limit of some of the results presented in Section 3 as 𝑞 →

1 with the aid of (75), the resulting inequalities are seen to
correspond with those results in Section 2. It is noted that the
inequalities in (71) and (72) are equal to the known ones by
Dahmani [21, pp. 494–496, Equations (8) and (24)].

Representations of the inequalities in terms of the frac-
tional integral operators have been investigated by many
researchers in the existing literature. Here, we have presented
some, presumably new Saigo type fractional integral inequal-
ities and their 𝑞-analogues by using the one parameters of
deformation. Very recently, Baleanu and Agarwal [22] also
gave some new Saigo type 𝑞-fractional integral inequalities
by using the two parameters of deformation 𝑞

1

and 𝑞
2

, which
are totally new and different ones from those presented here.
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[2] D. S. Mitrinović, Analytic Inequalities, Springer, Berlin, Ger-
many, 1970.

[3] P. L. Chebyshev, “Sur les expressions approximatives des inte-
grales definies par les autres prises entre les mêmes limites,”
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