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This paper deals with the problem of resilient finite-time control for a class of stochastic nonlinear systems. The notion of finite-
time annular domain stability of stochastic nonlinear systems is first introduced. Then, some sufficient conditions are given for
the existence of resilient state feedback finite-time annular domain stabilizing controller, which are expressed in terms of matrix
inequalities. A double-parameter searching algorithm is proposed to solve these obtained matrix inequalities. Finally, an example
is given to illustrate the effectiveness of the developed method.

1. Introduction

Finite-time stability is a concept that was first introduced
in the 1950s, which plays an important role in the study
of the transient behavior of systems. Roughly speaking, a
system is said to be finite-time stable (FTS) if, given a
bound on the initial condition, its state does not exceed a
certain threshold during a specified time interval. Various
developments and extensions in the field of FTS have been
implemented, most of which have been applied to linear
systems [1–4]and nonlinear systems [5–7]. Nevertheless, the
FTS in [1–7] not only requires the state trajectory does
not exceed a given upper bound during a prespecified time
interval, but it has no requirement for the lower bound of
state trajectory. Recently, [8] gave a new “finite-time stability”
for linear Itô stochastic systems. In fact, this kind of stability
is called “finite-time annular domain stability” (FTADS for
short) more precisely. Roughly speaking, a system is FTAD-
stable if its state trajectories do not exceed an upper bound
𝑐
2
and are not less than a lower bound 𝑐

1
(𝑐
1
< 𝑐
2
) during

the specific time interval. The FTADS can be used to solve
some problems not only from engineering practice, such
as chemical reaction temperature controlled systems and
electronic circuit systems [8], but also from medicine. For
example, the body’s normal systolic blood pressure is 90∼

130mmHg. If the body’s systolic blood pressure is less than
90mmHg, then one suffers from low blood pressure disease
[9].

On the other hand, stochastic nonlinear systems
have attracted considerable attention and have become
a popular research field of modern control theory [10–
13]. Reference [10] investigates 𝐻

∞
control problem for

a class of stochastic nonlinear systems with both state
and disturbance-dependent noise. References [11, 12]
studied the finite/infinite horizon mixed 𝐻

2
/𝐻
∞

control
problem for the stochastic nonlinear systems with
(𝑥, 𝑢, V)-dependent noise, respectively. Reference [13]
addressed stochastic passivity, feedback equivalence, and
global stabilization for a class of stochastic nonlinear
systems.

In the implement of state feedback control, there are often
some perturbations appearing in controller gain, which may
result in either the actuator degradations or the requirements
for readjustment of controller gains during the controller
implementation stage. Therefore, it is necessary and rea-
sonable that any controller should be able to tolerate some
levels of its gain variations, which motivates us to study
the resilient (nonfragile) state feedback controller problems.
Although there have been some study on designing the
resilient (nonfragile) controller [14, 15], up to date, to the
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author’s knowledge, the issue of resilient finite-time control
for stochastic nonlinear systems has not been investigated.

In this paper, we consider the problem of resilient FTAD-
stabilization for a class of stochastic nonlinear systems with
norm-bounded and time-varying uncertainties. By stochastic
analysis technology, Gronwall inequality, and neural network
method, some sufficient conditions are obtained for the
existence of resilient state feedback finite-time stabilizing
controller.The contributions of this paper lie in the following
two aspects. (1) The concept of FTADS is extended to a
class of stochastic nonlinear systems with norm-bounded
and time-varying uncertainties. More precisely, a system is
said to be FTAD-stable if, given a bound on the initial state
of the system, the state trajectories of the system do not
exceed an upper bound 𝑐

2
and are not less than a lower

bound 𝑐
1
(𝑐
1
< 𝑐
2
) in the mean square sense during a

prespecified time interval for all admissible uncertainties. (2)
The problem of resilient FTAD-stabilization is investigated
and a resilient state feedback controller is designed such
that the resulting closed-loop system is FTAD-stable for all
admissible uncertainties.

The paper is organized as follows. In Section 2, sys-
tem description along with necessary assumption is given.
Section 3 provides main results. An example is analyzed to
illustrate the results of the paper in Section 4. Section 5 gives
the conclusion.

Notation.𝐴𝑇 is transpose of a matrix or vector𝐴.𝐴 > 0 (𝐴 ≥
0) is positive definite (positive semidefinite) symmetric
matrix. 𝐿2F([0, 𝑇],R

𝑙
) is space of nonanticipative stochastic

process 𝑦(𝑡) ∈ R𝑙 with respect to an increasing 𝜎-algebra
F
𝑡
(𝑡 ≥ 0) satisfying E∫

𝑇

0
‖𝑦(𝑡)‖

2
𝑑𝑡 < ∞. 𝐼

𝑛×𝑛
is 𝑛 × 𝑛

identitymatrix. tr(𝐴) is trace of amatrix𝐴.𝜆max(𝐴)(𝜆min(𝐴))
is the maximum (minimum) eigenvalue of a real matrix 𝐴.
E{⋅} stands for the mathematical expectation operator with
respect to the given probability measure 𝑃. The asterisk “∗”
in a matrix is used to represent the term which is induced by
symmetry.

2. Preliminaries and Problem Statement

Consider the following stochastic nonlinear system:

𝑑𝑥 (𝑡) = [(𝐴
1
+ Δ𝐴
1
(𝑡)) 𝑥 (𝑡) + 𝐵

1
𝑢 (𝑡) + 𝑓 (𝑥 (𝑡))] 𝑑𝑡

+ [(𝐴
2
+ Δ𝐴
2
(𝑡)) 𝑥 (𝑡) + 𝐵

2
𝑢 (𝑡)] 𝑑𝑤 (𝑡) ,

𝑓 (0) = 0, 𝑥 (0) = 𝑥
0
∈ R𝑛,

(1)

where 𝑥(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ 𝐿2F(R+,R
𝑚
) are called the system

state, control input, respectively.𝑥
0
is the initial state.Without

loss of generality, throughout this paper, we assume 𝑤(𝑡)
to be one-dimensional standard Wiener process defined on
the probability space (Ω,F,F

𝑡
, 𝑃) with F

𝑡
= 𝜎{𝑤(𝑠) :

0 ≤ 𝑠 ≤ 𝑡}. 𝑓(𝑥(𝑡)) is assumed to be Borel measurable
functions of suitable dimensions such that (1) has a unique
strong solution on any finite interval [0, 𝑇]; see [16].𝐴

1
,𝐴
2
∈

R𝑛×𝑛, 𝐵
1
, 𝐵
2
∈ R𝑛×𝑚 are constant matrices. Δ𝐴

1
(𝑡), Δ𝐴

2
(𝑡)

are unknown matrices with time-varying uncertainties and
satisfy the following conditions:

[Δ𝐴1
Δ𝐴
2] = 𝑀𝐹 (𝑡) [

𝑁
1
𝑁
2] , (2)

where𝑀, 𝑁
1
, and 𝑁

2
are known matrices with appropriate

dimensions; 𝐹(𝑡) : R → R𝑘×𝑙 is an unknown time-varying
matrix function, which satisfies

𝐹
𝑇
(𝑡) 𝐹 (𝑡) ≤ 𝐼, ∀𝑡 > 0. (3)

The parameter uncertainties are said to be admissible if (2)
and (3) hold.

Remark 1. This kind of model (1) contains a large class of
practical systems and has been widely investigated in control,
filtering, and stability analysis [17–20].

Next, using LDI technique mentioned, nonlinear func-
tion 𝑓(𝑥(𝑡)) is to be parameterized by multilayer neural
networks (MNNs). Here, we use the method in [21–23]. For
the readers’ convenience, the concrete process is as follows.
Let the single hidden layer perceptron N(𝑥(𝑡),W

1
,W
2
) be

suitably trained to approximate the nonlinear term 𝑓(𝑥(𝑡)),
which is described in matrix-vector notation as
N (𝑥 (𝑡) ,W

1
(𝑥 (𝑡)) ,W

2
(𝑥 (𝑡))) = 𝜙

2
[W
2
𝜙
1
[W
1
𝑥 (𝑡)]] ,

(4)

where W
𝑖
∈ 𝑅
𝑛ℎ×𝑛, 𝑖 = 1, 2, denote the connecting weight

matrices of neurons, and 𝜙
𝑖
(⋅) denotes the activation function

vector of the NNs, which is defined as

𝜙
𝑖
[𝛾] = [𝜓

1
(𝜇
1
) , 𝜓
2
(𝜇
2
) , . . . , 𝜓

𝑛
(𝜇
𝑛
)]
𝑇 (5)

in which we let

𝜓
𝑗
(𝜇
𝑗
) = 𝜒
𝑗
(

1 − 𝑒
−𝜇/𝑞𝑗

1 + 𝑒
−𝜇/𝑞𝑗

) , 𝑞
𝑗
, 𝜒
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛.

(6)

The maximum and minimum derivatives of activation func-
tion 𝜓

𝑗
are defined as follows:

ℎ
𝑗
(𝑘, 𝜓
𝑗
) =

{
{
{
{
{
{

{
{
{
{
{
{

{

min
𝛾𝑗

𝜕𝜓
𝑗
(𝛾
𝑗
)

𝜕𝛾
𝑗

, 𝑘 = 0,

max
𝛾𝑗

𝜕𝜓
𝑗
(𝛾
𝑗
)

𝜕𝛾
𝑗

, 𝑘 = 1.

(7)

The activation function 𝜓
𝑗
can be rewritten in the following

min-max form:
𝜓
𝑗
= 𝜂
𝑗
(0) ℎ
𝑗
(0, 𝜓
𝑗
) + 𝜂
𝑗
(1) ℎ
𝑗
(1, 𝜓
𝑗
) , (8)

where 𝜂
𝑗
(𝑘), 𝑘 = 0, 1, is a set of positive real numbers

associated with 𝜓
𝑗
satisfying 𝜂

𝑗
(𝑘) > 0 and 𝜂

𝑗
(0) + 𝜂

𝑗
(1) = 1.

According to the approximation theorem, for a given
accuracy 𝜌 > 0, there exist constant weight matrices W∗

𝑖

defined as
(W
∗

1
,W
∗

2
)

= arg min
(W
∗

1
,W∗
2 )

{max
𝑥(𝑡)∈𝐷

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥 (𝑡)) −N (𝑥 (𝑡) ,W

1
,W
2
)
󵄩
󵄩
󵄩
󵄩
} ,

(9)
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where𝐷 ∈ R𝑚 is a compact set, such that

max
𝑥(𝑡)∈𝐷

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥 (𝑡)) −N (𝑥 (𝑡) ,W

∗

1
,W
∗

2
)
󵄩
󵄩
󵄩
󵄩
≤ 𝜌 ‖𝑥 (𝑡)‖ . (10)

Denote a set of 𝑛
𝑖
-dimensional index vectors of the 𝑖th layer

(𝑖 = 1, 2) as

𝜅
𝑛𝑖
= 𝜅
𝑛𝑖
(𝜎) = {𝜎 ∈ R𝑛𝑖 | 𝜎

𝑗
∈ {0, 1} , 𝑗 = 1, . . . , 𝑛

𝑖
} , (11)

where 𝜎 is used as binary indicator. The 𝑖th layer with 𝑛
𝑖

neutrons has 2𝑛𝑖 combinations of binary indicator with 𝑘 =
0, 1, and the elements of index vectors for two-layer NNs have
2
𝑛2
× 2
𝑛1 combinations in the Θ = 𝜅

𝑛2
⊕ 𝜅
𝑛1
.

By using (7) and adopting the compact representation
[21], the NNs (4) can be expressed as follows:

N (𝑥 (𝑡) ,W
∗

1
,W
∗

2
)

= 𝜙
2

[

[

[

[

[

[

[

[

[

W∗
2

[

[

[

[

[

[

[

[

[

1

∑

𝑘=0

𝜂
1,1
(𝑘) ℎ
1,1
(𝑘, 𝜓
1,1
× (W∗

1
𝑥)
1
)

...
1

∑

𝑘=0

𝜂
1,𝑛1
(𝑘) ℎ
1,𝑛1
(𝑘, 𝜓
1,𝑛1

× (W∗
1
𝑥)
𝑛1
)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= ∑

𝜎∈Θ

]
𝜎
𝐴
𝜎
(𝜎, 𝜙,W

∗
) 𝑥 (𝑡) ,

(12)

where

𝐴
𝜎
= diag [ℎ

2,𝑗
(𝜎
2,𝑗
, 𝜓
2,𝑗
)]W
∗

2
diag [ℎ

1,𝑗
(𝜎
1,𝑗
, 𝜓
1,𝑗
)]W
∗

1

(13)

∑

𝜎∈𝜅𝑛2
⊕𝜅𝑛1

]
𝜎

=

1

∑

𝑘2,𝑛2
=0,...,𝑘2,1=0

1

∑

𝑘2,𝑛1
=0,...,𝑘1,1=0

𝜂
2,𝑛2
(𝑘
2,𝑛2
) ⋅ ⋅ ⋅ 𝜂

2,1
(𝑘
2,1
)

× 𝜂
1,𝑛1
(𝑘
1,𝑛1
) ⋅ ⋅ ⋅ 𝜂

1,1
(𝑘
1,1
) = 1

𝜂
𝑖,𝑗
(𝜎
𝑖,𝑗
) ≥ 0, 𝜎

𝑖𝑗
= 0, 1,

𝜂
𝑖,𝑗
(0) + 𝜂

𝑖,𝑗
(1) = 1, 𝑖 = 1, 2, 𝑗 = 𝑛

1
, 𝑛
2
.

(14)

Thus, by means of NNs, the resulting system (1) is trans-
formed into a group of LDIs with error bound; that is,

𝑑𝑥 (𝑡) = [(𝐴
1
+ Δ𝐴
1
(𝑡) + ∑

𝜎∈Θ

]
𝜎
𝐴
𝜎
)𝑥 (𝑡)

+𝐵
1
𝑢 (𝑡) + Δ𝑓 (𝑥 (𝑡)) ] 𝑑𝑡

+ [(𝐴
2
+ Δ𝐴
2
(𝑡)) 𝑥 (𝑡) + 𝐵

2
𝑢 (𝑡)] 𝑑𝑤 (𝑡) ,

𝑓 (0) = 0, 𝑥 (0) = 𝑥
0
∈ R𝑛,

(15)

where

Δ𝑓 (𝑥 (𝑡)) = max
𝑥(𝑡)∈𝐷

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥 (𝑡)) −N (𝑥 (𝑡) ,W

∗

1
,W
∗

2
)
󵄩
󵄩
󵄩
󵄩

≤ 𝜌 ‖𝑥 (𝑡)‖

(16)

denotes the approximation errors of the NNs.

Remark 2. Such parameterization makes sense because any
continuous nonlinear function can be approximated arbitrar-
ily well on a compact interval by NNs.

In the following, we will extend FTADS in [8] to stochas-
tic nonlinear systems. It is formalized through the following
definition.

Definition 3. Given positive real scalars 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, and 𝑇,

with 0 < 𝑐
1
< 𝑐
3
< 𝑐
4
< 𝑐
2
, and a positive definite matrix

𝑅. Stochastic nonlinear system (1) with 𝑢(𝑡) = 0 is said
to be FTAD-stable with respect to (𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, 𝑅) for all

admissible uncertainties, if

𝑐
3
≤ E [𝑥

𝑇

0
𝑅𝑥
0
] ≤ 𝑐
4
󳨐⇒ 𝑐
1
< E [𝑥

𝑇
(𝑡) 𝑅𝑥 (𝑡)] < 𝑐

2
,

∀𝑡 ∈ [0, 𝑇] .

(17)

Remark 4. The FTADS requires the state trajectory not only
not to exceed a given upper bound, but also not to be less
than a given lower bound, which is different from FTS in [1–
7]. The FTS only requires the state trajectory not to exceed
a given upper bound. It is noted that a system which is FTS
may not be FTADS. This point can be verified as follows.
Although a system is FTS, its state trajectory may cross the
region {𝑥(𝑡)|E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)] < 𝑐

1
}.

Next, we construct the following resilient state feedback
controller for system (1):

𝑢 (𝑡) = 𝐾 (𝑡) 𝑥 (𝑡) , (18)

where 𝐾(𝑡) = 𝐾 + Δ𝐾(𝑡) and 𝐾 is a constant and Δ𝐾(𝑡) is a
perturbed matrix which is assumed to be

Δ𝐾 (𝑡) = 𝐷
3
𝐹 (𝑡)𝑁

3
, (19)

where 𝐷
3
and 𝑁

3
are known real constant matrices with

appropriate dimensions and the time-varying uncertain
matrix 𝐹(𝑡) satisfies (3).

Remark 5. Theuncertainty part of the resilient controller (18)
is supposed to be 2-norm-bounded which is fit for general
parameter perturbation case.

The aim of this paper is to design resilient controller (18)
such that the following closed-loop system,

𝑑𝑥 (𝑡) = [𝐴
1
𝑥 (𝑡) + Δ𝑓 (𝑥 (𝑡))] 𝑑𝑡 + 𝐴

2
𝑥 (𝑡) 𝑑𝑤 (𝑡) ,

𝑓 (0) = 0, 𝑥 (0) = 𝑥
0
∈ R𝑛,

(20)

is FTAD-stable with respect to (𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, 𝑅), where𝐴

1
=

𝐴
1
+Δ𝐴
1
,𝐴
1
= ∑
𝜎∈Θ

]
𝜎
𝐴
𝜎
+𝐴
1
+𝐵
1
𝐾,Δ𝐴

1
= Δ𝐴

1
+𝐵
1
Δ𝐾,
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𝐴
2
= 𝐴
2
+ 𝐵
2
𝐾+Δ𝐴

2
+ 𝐵
2
Δ𝐾, and 𝐶

1
= 𝐶
1
+𝐷
1
𝐾+𝐷

1
Δ𝐾

and
Δ𝑓 (𝑥 (𝑡)) = max

𝑥(𝑡)∈𝐷

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥 (𝑡)) −N (𝑥 (𝑡) ,W

∗

1
,W
∗

2
)
󵄩
󵄩
󵄩
󵄩

≤ 𝜌 ‖𝑥 (𝑡)‖

(21)

denotes the approximation errors of the NNs.
In the following, we give some lemmas which will be used

in the next sections.

Lemma 6 (Itô-type formula). For a given 𝑉(𝑥) ∈ 𝐶
2
(𝑅
𝑛
),

associated with the following stochastic system:
𝑑𝑥 (𝑡) = 𝑓 (𝑥) 𝑑𝑡 + 𝑔 (𝑥) 𝑑𝑤 (𝑡) , (22)

the infinitesimal generator operator is defined by

L𝑉 (𝑥) =
𝜕𝑉

𝜕𝑥

𝑓 (𝑥) +

1

2

Tr[𝑔𝑇 (𝑥) 𝜕
2
𝑉

𝜕𝑥
2
𝑔 (𝑥)] . (23)

Lemma 7 (Gronwall inequality). Let 𝜃(𝑡) be a nonnegative
function such that

𝜃 (𝑡) ≤ 𝑎 + 𝑏∫

𝑡

0

𝜃 (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇 (24)

for some constants 𝑎, 𝑏 ≥ 0, and then one has
𝜃 (𝑡) ≤ 𝑎 exp (𝑏𝑡) , 0 ≤ 𝑡 ≤ 𝑇. (25)

Lemma 8 (see [8]). Let 𝜃(𝑡) be a nonnegative function such
that

𝜃 (𝑡) ≥ 𝑎 + 𝑏∫

𝑡

0

𝜃 (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇 (26)

for some constants 𝑎, 𝑏 ≥ 0, and then one has
𝜃 (𝑡) ≥ 𝑎 exp (𝑏𝑡) , 0 ≤ 𝑡 ≤ 𝑇. (27)

Lemma 9. Let 𝐿,𝑀, 𝐹, and𝑁 be real matrices of appropriate
dimension with𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼.Then, for a positive scalar 𝜖 > 0,
one has

𝐿 +𝑀𝐹 (𝑡)𝑁 + 𝑁
𝑇
𝐹
𝑇
(𝑡)𝑀
𝑇

≤ 𝐿 + 𝜖𝑀𝑀
𝑇
+ 𝜖
−1
𝑁
𝑇
𝑁.

(28)

3. Resilient Finite-Time Controller Design

In this section, we consider resilient FTAD-stabilization for
system (1). First, an important lemma is given.

Lemma 10. If there exist 𝛼 ≥ 0, 𝛽 ≥ 0, a symmetric positive
definite 𝑄, and a matrix 𝐾 such that

[
∐ 𝑄𝐴

𝑇

2

∗ −𝑄

] < 0, (29)

[
⨆ 𝑄𝐴

𝑇

2

∗ −𝑄

] < 0, (30)

𝑐
1

𝜆min (𝑄)
<

𝑐
2

𝜆max (𝑄)
𝑒
−𝛼𝑇
, (31)

𝑐
1
𝜆max (𝑄) − 𝑐3𝜆min (𝑄) < 0, (32)

then system (20) is FTAD-stable with respect to
(𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, 𝑅), where 𝑄 = 𝑅

−1/2
𝑄𝑅
−1/2, ∐ =

𝑄𝐴
∗

1

𝑇

+ 𝐴
∗

1
𝑄 + 2𝜌𝑄 − 𝛼𝑄, ⨆ = 𝛽𝑄 − 𝑄𝐴

∗

1

𝑇

− 𝐴
∗

1
𝑄,

and 𝐴∗
1
= 𝐴
𝜎
+ 𝐴
1
+ 𝐵
1
𝐾 + Δ𝐴

1
+ 𝐵
1
Δ𝐾.

Proof. Step 1. E[𝑥𝑇(0)𝑅𝑥(0)] < 𝑐
4
⇒ E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)] < 𝑐

2
.

Take a quadratic function𝑉(𝑥(𝑡)) = 𝑥𝑇(𝑡)𝑄−1𝑥(𝑡), where
𝑄 = 𝑅

−1/2
𝑄𝑅
−1/2 with 𝑄 > 0 being a solution to (29)–(32).

Applying Itô formula for 𝑉(𝑥(𝑡)) along the trajectory of the
system (20) and considering Δ𝑓(𝑥(𝑡)) ≤ 𝜌‖𝑥(𝑡)‖, ∑

𝜎∈Θ
]
𝜎
=

1, we obtain

L𝑉 (𝑥 (𝑡)) = [𝐴
1
𝑥 (𝑡) + Δ𝑓 (𝑥 (𝑡))]

𝑇

𝑄
−1
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑄
−1
[𝐴
1
𝑥 (𝑡) + Δ𝑓 (𝑥 (𝑡))]

+ 𝑥
𝑇
(𝑡) 𝐴
𝑇

2
𝑄
−1
𝐴
2
𝑥 (𝑡)

≤ 𝑥
𝑇
(𝑡) [𝐴

𝑇

1
𝑄
−1
+ 𝑄
−1
𝐴
1
+ 2𝜌𝑄

−1

+𝐴
𝑇

2
𝑄
−1
𝐴
2
] 𝑥 (𝑡)

= 𝑥
𝑇
(𝑡) ∑

𝜎∈Θ

]
𝜎
[𝐴
∗

1

𝑇

𝑄
−1
+ 𝑄
−1
𝐴
∗

1

+2𝜌𝑄
−1
+ 𝐴
𝑇

2
𝑄
−1
𝐴
2
] 𝑥 (𝑡) ,

(33)

where 𝐴∗
1
= 𝐴
𝜎
+ 𝐴
1
+ 𝐵
1
𝐾 + Δ𝐴

1
+ 𝐵
1
Δ𝐾.

Before and after multiplying (29) by

[

𝑄
−1

0

∗ 𝑄
−1] , (34)

(29) becomes

[
𝐴
∗

1

𝑇

𝑄
−1
+ 𝑄
−1
𝐴
∗

1
+ 2𝜌𝑄

−1
− 𝛼𝑄
−1
𝐴
𝑇

2
𝑄
−1

∗ −𝑄
−1
] < 0. (35)

According to Schur complement, (35) is equivalent to the
following inequality:

𝐴
∗

1

𝑇

𝑄
−1
+ 𝑄
−1
𝐴
∗

1
+ 2𝜌𝑄

−1

+ 𝐴
𝑇

2
𝑄
−1
𝐴
2
− 𝛼𝑄
−1
< 0.

(36)

From (33) and (36), it is easy to obtain that

L𝑉 (𝑥 (𝑡)) < 𝛼𝑉 (𝑥 (𝑡)) . (37)

Integrating both sides of (37) from 0 to 𝑡 with 𝑡 ∈ [0, 𝑇] and
then taking the expectation, it yields

E𝑉 (𝑥 (𝑡)) < E𝑉 (𝑥 (0)) + 𝛼∫
𝑡

0

E𝑉 (𝑥 (𝑠)) 𝑑𝑠. (38)
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By Lemma 7, we obtain

E𝑉 (𝑥 (𝑡)) < E𝑉 (𝑥 (0)) 𝑒
𝛼𝑡
. (39)

According to given conditions, it follows that

E𝑉 (𝑥 (𝑡)) = E [𝑥
𝑇
(𝑡) 𝑅
1/2
𝑄
−1
𝑅
1/2
𝑥 (𝑡)]

≥ 𝜆min (𝑄
−1
)E [𝑥

𝑇
(𝑡) 𝑅𝑥 (𝑡)] ,

𝑉 (𝑥 (0)) 𝑒
𝛼𝑡
= E [𝑥

𝑇
(0) 𝑅
1/2
𝑄
−1
𝑅
1/2
𝑥 (0)] 𝑒

𝛼𝑡

≤ 𝜆max (𝑄
−1
)E [𝑥

𝑇
(0) 𝑅𝑥 (0)] 𝑒

𝛼𝑡

≤ 𝜆max (𝑄
−1
) 𝑐
1
𝑒
𝛼𝑇
.

(40)

From (40), we easily obtain

E [𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡)] ≤ 𝜆max (𝑄) 𝑒

𝛼𝑇 𝑐
1

𝜆min (𝑄)
. (41)

By the condition (31), it is obvious that E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)] < 𝑐
2
.

Step 2. 𝑐
3
< E[𝑥𝑇(0)𝑅𝑥(0)] ⇒ 𝑐

1
< E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)].

By Schur complement, (30) is equivalent to

𝛽𝑄 − 𝑄𝐴
∗

1

𝑇

− 𝐴
∗

1
𝑄 + 𝑄𝐴

∗

2

𝑇

𝑄
−1
𝐴
∗

2

𝑇

𝑄 < 0.
(42)

Before and after multiplying (42) by 𝑄−1, we obtain

𝛽𝑄
−1
− 𝐴
∗

1

𝑇

𝑄
−1
− 𝑄
−1
𝐴
∗

1
+ 𝐴
∗

2

𝑇

𝑄
−1
𝐴
∗

2
< 0.

(43)

Consider (33), and (43) implies

L𝑉 (𝑥 (𝑡)) > 𝛽𝑉 (𝑥 (𝑡)) . (44)

Integrating both sides of (44) from 0 to 𝑡 with 𝑡 ∈ [0, 𝑇] and
then taking the expectation, it yields

E𝑉 (𝑥 (𝑡)) > E𝑉 (𝑥 (0)) + 𝛽∫
𝑡

0

E𝑉 (𝑥 (𝑠)) 𝑑𝑠. (45)

By Lemma 8, we conclude that

E𝑉 (𝑥 (𝑡)) > E𝑉 (𝑥 (0)) 𝑒
𝛽𝑡
. (46)

According to the given conditions, it follows that

E [𝑥
𝑇
(0) 𝑅
1/2
𝑄
−1
𝑅
1/2
𝑥 (0)] 𝑒

𝛽𝑡

< E [𝑥
𝑇
(𝑡) 𝑅
1/2
𝑄
−1
𝑅
1/2
𝑥 (𝑡)]

< 𝜆max (𝑄
−1
)E [𝑥

𝑇
(𝑡) 𝑅𝑥 (𝑡)] ,

𝑐
3
𝜆min (𝑄

−1
) < 𝜆min (𝑄

−1
)E [𝑥

𝑇
(0) 𝑅𝑥 (0)] 𝑒

𝛽𝑡

< E [𝑥
𝑇
(0) 𝑅
1/2
𝑄
−1
𝑅
1/2
𝑥 (0)] 𝑒

𝛽𝑡
.

(47)

Because of condition (32), we obtain

𝑐
1
< E [𝑥

𝑇
(𝑡) 𝑅𝑥 (𝑡)] . (48)

From (48), it readily follows that 𝑐
3
< E[𝑥𝑇(0)𝑅𝑥(0)] implies

that 𝑐
1
< E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)].

The following theorem gives a sufficient condition for
resilient FTAD-stabilization of system (1).

Theorem 11. If there exist scalars 𝛼 ≥ 0, 𝛽 ≥ 0, and positive
scalars 𝜖

𝑖
(𝑖 = 1, . . . , 4), 𝜆

1
, 𝜆
2
, a symmetric positive definite𝑄,

and a matrix 𝐿 such that

[

[

Λ
11
Λ
12

0

∗ Λ
22

0

∗ ∗ Λ
33

]

]

< 0, (49)

[

[

Φ
11
Λ
12

0

∗ Λ
22

0

∗ ∗ Λ
33

]

]

< 0, (50)

𝜆
1
𝐼 < 𝑄 < 𝜆

2
𝐼, (51)

𝑐
4
𝜆
2
𝑒
𝛼𝑇
− 𝑐
2
𝜆
1
< 0, (52)

𝑐
1
𝜆
2
− 𝑐
3
𝜆
1
< 0, (53)

then system (20) is FTAD-stable with respect to
(𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, 𝑅), where Λ

11
= Υ

11
+ 2𝜌𝑄 − 𝛼𝑄,

Φ
11

= 𝛽𝑄 − Υ
11
, Λ
12

= [𝑁
1
𝑄 𝑄𝑁

𝑇

3
𝑄𝑁
𝑇

2
Θ
15
],

Λ
22

= diag {−𝜖1𝐼, −𝜖2𝐼, 𝜖3𝐼}, Λ 33 = [
Θ55 𝑄̃𝑁

𝑇

3

𝑁3𝑄̃ −𝜖3𝐼
],

Θ
15
= 𝑄𝐴

𝑇

2
+ 𝐿
𝑇
𝐵
𝑇

2
, Θ
55
= −𝑄 + 𝜖

3
𝐵
2
𝐷
3
𝐷
𝑇

3
𝐵
𝑇

2
+ 𝜖
4
𝑀𝑀
𝑇,

Υ
11
= 𝐴
∗

11
𝑄+𝑄𝐴

∗

11

𝑇

+𝐵
1
𝐿+𝐿
𝑇
𝐵
𝑇

1
+𝜖
1
𝑀𝑀
𝑇
+𝜖
2
𝐵
1
𝐷
3
𝐷
𝑇

3
𝐵
𝑇

1
,

and 𝐴∗
11
= 𝐴
𝜎
+ 𝐴
1
. In this case, a desired controller gain is

given by 𝐾 = 𝐿𝑄−1.

Proof. Substitute 𝐴∗
11
= 𝐴
∗

1
+ Δ𝐴

1
, 𝐴∗
1
= 𝐴
𝜎
+ 𝐴
1
+ 𝐵
1
𝐾,

Δ𝐴
1
= Δ𝐴

1
+ 𝐵
1
Δ𝐾, and 𝐴

2
= 𝐴
2
+ 𝐵
2
𝐾 + Δ𝐴

2
+ 𝐵
2
Δ𝐾

into (29) and (30), and let 𝐴∗
11
= 𝐴
𝜎
+ 𝐴
1
, (29), and (30),

respectively, become

𝑍 = [

Ξ
11
+ ΔΞ
11
𝑄𝐴
𝑇

2
+ 𝑄𝐾

𝑇
𝐵
𝑇

2
+ ΔΞ
12

∗ −𝑄

] < 0,

𝑍 = [

𝛽𝑄 − Π + ΔΞ
11
𝑄𝐴
𝑇

2
+ 𝑄𝐾

𝑇
𝐵
𝑇

2
+ ΔΞ
12

∗ −𝑄

] < 0,

(54)

where Π = 𝐴
∗

11
𝑄 + 𝑄𝐴

∗

11

𝑇

+ 𝐵
1
𝐾𝑄 + 𝑄𝐾

𝑇
𝐵
𝑇

1
,

Ξ
11

= Π + 2𝜌𝑄 − 𝛼𝑄, ΔΞ
11

= 𝑀𝐹(𝑡)𝑁
1
𝑄 +

𝑄𝑁
𝑇

1
𝐹
𝑇
(𝑡)𝑀
𝑇
+𝐵
1
𝐷
3
𝐹(𝑡)𝑁

3
𝑄+𝑄𝑁

𝑇

3
𝐹
𝑇
(𝑡)𝐷
𝑇

3
𝐵
𝑇

1
, andΔΞ

12
=

𝑄𝑁
𝑇

2
𝐹
𝑇
(𝑡)𝑀
𝑇
+ 𝑄𝑁

𝑇

3
𝐹
𝑇
(𝑡)𝐷
𝑇

3
𝐵
𝑇

2
.

In order to deal with the uncertainties described as the
form in (2), we use the following approach:

𝑍 = Ξ + ΔΞ, (55)

where

Ξ = [

Ξ
11
𝑄𝐴
𝑇

2
+ 𝑄𝐾

𝑇
𝐵
𝑇

2

∗ −𝑄

] ,

ΔΞ = [

ΔΞ
11
ΔΞ
12

∗ 0
] .

(56)
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According to Lemma 9, we obtain the following:

ΔΞ = ϝ
1
+ ϝ
𝑇

1
+ ϝ
2
+ ϝ
𝑇

2
+ ϝ
3
+ ϝ
𝑇

3
+ ϝ
4
+ ϝ
𝑇

4

≤ ℷ
1
+ ℷ
2
+ ℷ
3
+ ℷ
4
+ ℷ
5
+ ℷ
6
+ ℷ
7
+ ℷ
8

= [

Γ
11

0

∗ Γ
22

] ,

(57)

where

ϝ
1
= [𝑀

𝑇
0]

𝑇

𝐹 (𝑡) [𝑁
1
𝑄 0] ,

ϝ
2
= [𝐷
𝑇

3
𝐵
𝑇

1
0]

𝑇

𝐹 (𝑡) [𝑁
3
𝑄 0] ,

ϝ
3
= [0 𝐷

𝑇

3
𝐵
𝑇

2
]

𝑇

𝐹 (𝑡) [𝑁
3
𝑄 0] ,

ϝ
4
= [0 𝑀

𝑇
]

𝑇

𝐹 (𝑡) [𝑁
2
𝑄 0] ,

ℷ
1
= 𝜖
1
[𝑀
𝑇
0]

𝑇

[𝑀
𝑇
0] ,

ℷ
2
= 𝜖
−1

1
[𝑄𝑁
𝑇

1
0]

𝑇

[𝑄𝑁
𝑇

1
0] ,

ℷ
3
= 𝜖
2
[𝐷
𝑇

3
𝐵
𝑇

1
0]

𝑇

[𝐷
𝑇

3
𝐵
𝑇

1
0] ,

ℷ
4
= 𝜖
−1

2
[𝑁
3
𝑄 0]

𝑇

[𝑁
3
𝑄 0] ,

ℷ
5
= 𝜖
3
[0 𝐷

𝑇

3
𝐵
𝑇

2
]

𝑇

[0 𝐷
𝑇

3
𝐵
𝑇

2
] ,

ℷ
6
= 𝜖
−1

3
[0 𝑁

3
𝑄]

𝑇

[0 𝑁
3
𝑄] ,

ℷ
7
= 𝜖
4
[0 𝑀

𝑇
]

𝑇

[0 𝑀
𝑇
] ,

ℷ
8
= 𝜖
−1

4
[𝑁
2
𝑄 0]

𝑇

[𝑁
2
𝑄 0] ,

Γ
11
= 𝜖
1
𝑀𝑀
𝑇
+ 𝜖
−1

1
𝑁
1
𝑄𝑄𝑁

𝑇

1
+ 𝜖
2
𝐵
1
𝐷
3
𝐷
𝑇

3
𝐵
𝑇

1

+ 𝜖
−1

2
𝑄𝑁
𝑇

3
𝑁
3
𝑄 + 𝜖
−1

4
𝑄𝑁
𝑇

2
𝑁
2
𝑄,

Γ
22
= 𝜖
3
𝐵
2
𝐷
3
𝐷
𝑇

3
𝐵
𝑇

2
+ 𝜖
−1

3
𝑄𝑁
𝑇

3
𝑁
3
𝑄 + 𝜖
4
𝑀𝑀
𝑇
.

(58)

From the above procedure and by Schur complement,

𝑍 ≤
[

[

Λ
∗

11
Λ
12

0

∗ Λ
22

0

∗ ∗ Λ
33

]

]

, (59)

where Θ
11
= 𝐴
∗

11
𝑄 + 𝑄𝐴

∗

11

𝑇

+ 𝐵
1
𝐾𝑄 + 𝑄𝐾

𝑇
𝐵
𝑇

1
+ 2𝜌𝑄 −

𝛼𝑄 + 𝜖
1
𝑀𝑀
𝑇
+ 𝜖
2
𝐵
1
𝐷
3
𝐷
𝑇

3
𝐵
𝑇

1
, Θ
15
= 𝑄𝐴

𝑇

2
+ 𝑄𝐾

𝑇
𝐵
𝑇

2
, Θ
55
=

−𝑄+ 𝜖
3
𝐵
2
𝐷
3
𝐷
𝑇

3
𝐵
𝑇

2
+ 𝜖
4
𝑀𝑀
𝑇, Λ∗
11
= Θ
11
+ 2𝜌𝑄−𝛼𝑄, Λ

12
=

[𝑁
1
𝑄 𝑄𝑁

𝑇

3
𝑄𝑁
𝑇

2
Θ
15
], Λ
22
= diag {−𝜖1𝐼, −𝜖2𝐼, −𝜖3𝐼},

and Λ
33
= [
Θ55 𝑄̃𝑁

𝑇

3

𝑁3𝑄̃ −𝜖3𝐼
]. Let 𝐾𝑄 = 𝐿, and the right side of

(59) becomes (49), which guarantees 𝑍 < 0. Using the same
procedure, (50) guarantees 𝑍 < 0.

On the other hand, it is easy to check that (51) and (52)
can guarantee (31), and (53) can guarantee (32).

So, according to Lemma 10, system (20) is FTAD-stable
with respect to (𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, 𝑅).

In the special case, when Δ𝐾 = 0, Theorem 11 reduces the
following corollary.

Corollary 12. If there exist scalars 𝛼 ≥ 0, 𝛽 ≥ 0, and positive
scalars 𝜖

1
, 𝜖
2
, 𝜆
1
, 𝜆
2
, a symmetric positive definite 𝑄, and a

matrix 𝐿 such that (51)–(53) and

[

[

Δ
11

Δ
12

0

∗ −𝜖
2
𝐼 0

∗ ∗ Θ
∗

55

]

]

< 0,

[

[

Φ
∗

11
Δ
12

0

∗ −𝜖
2
𝐼 0

∗ ∗ Θ
∗

55

]

]

< 0,

(60)

then system (20) is FTAD-stable with respect to (𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
,

𝑇, 𝑅), where Δ
11
= Υ
11
+ 2𝜌𝑄 − 𝛼𝑄, Φ∗

11
= 𝛽𝑄 − Υ

11
, Δ
12
=

[𝑁
1
𝑄 𝑄𝑁

𝑇

2
Θ
∗

15
],Θ∗
15
= 𝑄𝐴

𝑇

2
+𝐿
𝑇
𝐵
𝑇

2
,Θ∗
55
= −𝑄+𝜖

2
𝑀𝑀
𝑇,

Υ
11
= 𝐴
∗

11
𝑄+𝑄𝐴

∗

11

𝑇

+𝐵
1
𝐿+𝐿
𝑇
𝐵
𝑇

1
+𝜖
1
𝑀𝑀
𝑇, and𝐴∗

11
= 𝐴
𝜎
+

𝐴
1
. In this case, a desired controller gain is given by𝐾 = 𝐿𝑄−1.

Remark 13. It is easy to see that the values of 𝛼 and 𝛽
determine the feasibility ofTheorem 11 and Corollary 12. The
procedure how to choose 𝛼 and 𝛽 is given in the next
subsection.

Next, a double-parameter searching algorithm is given to
solve thematrix inequalities inTheorem 11. Similar algorithm
can be applied to Corollary 12.

Algorithm 14. Step 1. Give 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, and 𝑅.

Step 2. Take a series of 𝛼
𝑖
(𝑖 = 1, . . . , 𝑛) by a step size 𝑑

1
and a

series of 𝛽
𝑗
(𝑗 = 1, . . . , 𝑚) by a step size 𝑑

2
.

Step 3. Set 𝑖 = 1, and take a 𝛼
𝑖
.

Step 4. Set 𝑗 = 1, and take a 𝛽
𝑗
.

Step 5. If (𝛼
𝑖
, 𝛽
𝑗
) makes (49)–(53) have feasible solutions, then

store (𝛼
𝑖
, 𝛽
𝑗
) into (𝑋(𝑖), 𝑌(𝑗)) and 𝛽

𝑗
= 𝛽
𝑗+1

and go to Step 5;
otherwise, go to Step 6.
Step 6. If 𝑖 + 1 < 𝑛, then 𝛼

𝑖
= 𝛼
𝑖+1

and take 𝛽
1
and go to Step

5. Otherwise, go to Step 7.
Step 7. Stop. If (𝑋, 𝑌) = (0, 0), then we cannot find (𝛼, 𝛽)
which makes (49)–(53) have feasible solution; otherwise,
there exists (𝛼, 𝛽) which makes (49)–(53) have feasible
solution.

Remark 15. By Algorithm 14, we can obtain a region sur-
rounded by 𝛼 and 𝛽, if it exists, which is used to select 𝛼 and
𝛽 for appropriate conditions.

4. Numerical Example

In this section, we provide an illustrative example to demon-
strate the effectiveness and advantages of the proposed
method.
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Example 1. Consider stochastic nonlinear system (1) with

𝐴
1
= [

−11 2

1 −15
] , 𝐵

1
= [

−0.3

0.4
] ,

𝐴
2
= [

0.3 0.2

0.4 0.5
] , 𝐵

2
= [

0.5

−0.4
] ,

𝑀 = [

0.2 0

0 0.3
] , 𝑁

1
= [

0.3 0

0 0.2
] ,

𝑁
2
= [

0.2 0

0 0.15
] , 𝑓 (𝑥 (𝑡)) = [

𝑒
𝑥1(𝑡) sin𝑥

1
(𝑡)

0

] .

(61)

The initial value is taken as 𝑥(0) = [1.5 − 1.2]
𝑇 and the

parameters 𝑐
1
= 1, 𝑐

2
= 25, 𝑐

3
= 3, 𝑐

4
= 5, 𝑇 = 0.25, and

𝑅 = 𝐼 are given.Now,we consider a single hidden layer neural
network with three hidden neurons to approximate the
nonlinear function 𝑒𝑥(𝑡) sin𝑥(𝑡). All parameters of activation
functions (5) associated with the hidden layer are chosen to
be 𝑞
𝑗
= 0.5, 𝜒

𝑗
= 1. For these activation functions, we

have ℎ
𝑗
(0, 𝜓
𝑗
) = 0, ℎ

𝑗
(1, 𝜓
𝑗
) = 1. The connection weights

are trained offline by using the back propagation algorithm.
The initial weights and state vector are placed by uniformly
distributed random numbers in [−1 1]. After 1000 training
steps, the optimal approximation weights are as follows:

𝑊
∗

1
= [3.3892 −4.4106 −4.4786]

𝑇

,

𝑊
∗

2
= [3.9513 −1.4257 −0.5506] .

(62)

The upper bound of approximation error is estimated as 𝜌 =
2 × 10

−5. Obviously, in this case, we have Θ = 2
3
× 2
1.

According to (13), 𝐴
𝜎
can be obtained as follows:

𝐴
1
= 𝐴
2
= 𝐴
3
= 𝐴
4
= 𝐴
5

= 𝐴
6
= 𝐴
7
= 𝐴
8
= 𝐴
9

= 𝐴
1⊕[0,0,0]

𝑇 = 𝐴
0⊕[𝑖,𝑗,𝑘]

𝑇 = [

0 0

0 0
] ,

(𝑖, 𝑗, 𝑘 ∈ {0, 1})

𝐴
10
= 𝐴
0⊕[1,0,0]

𝑇 = [

13.3917 0

0 0
] ,

𝐴
11
= 𝐴
0⊕[0,1,0]

𝑇 = [

6.2882 0

0 0
] ,

𝐴
12
= 𝐴
0⊕[0,0,1]

𝑇 = [

2.4659 0

0 0
] ,

𝐴
13
= 𝐴
0⊕[1,1,0]

𝑇 = [

19.68 0

0 0
] ,

𝐴
14
= 𝐴
0⊕[1,0,1]

𝑇 = [

15.8576 0

0 0
] ,

𝐴
15
= 𝐴
0⊕[0,1,1]

𝑇 = [

8.7541 0

0 0
] ,

𝐴
16
= 𝐴
0⊕[1,1,1]

𝑇 = [

22.1548 0

0 0
] .

(63)

Here, we design the following resilient state feedback
controller:

𝑢 (𝑡) = [𝑘1
+ Δ𝑘
1
(𝑡) 𝑘
2
+ Δ𝑘
2
(𝑡)] 𝑥 (𝑡) , (64)

where 𝑘
1
and 𝑘
2
will be determined and −0.5 ≤ Δ𝑘

1
(𝑡) ≤ 0.5

and −0.5 ≤ Δ𝑘
2
(𝑡) ≤ 0.5 represent some variations in the

gains of the controller. Then, we have

𝐷
3
= [1 1] ,

𝐹 (𝑡) = [

2Δ𝑘
1
(𝑡) 0

0 2Δ𝑘
2
(𝑡)
] ,

𝑁
3
= [

0.5 0

0 0.5
] .

(65)

Applying Algorithm 14 to Theorem 11, a region sur-
rounded by 𝛼 and 𝛽 is obtained, which is illustrated by
Figure 1. Selecting 𝛼 = 4, 𝛽 = 0 and solving (49)–(53), we
get

𝑄 = [

0.0769 0.0116

0.0116 0.1178
] , 𝜖

1
= 0.3291, 𝜖

2
= 0.3679,

𝜖
3
= 0.5085, 𝜖

4
= 0.2028, 𝜆

1
= 0.0699,

𝜆
2
= 0.1247, 𝐿 = [0.2373 0.3035] ,

𝐾 = [2.7388 2.3069] .

(66)

Therefore, the following resilient state feedback controller,

𝑢 (𝑡) = [2.7388 + Δ𝑘1 (
𝑡) 2.3069 + Δ𝑘

2
(𝑡)] 𝑥 (𝑡) (67)

is obtained.
When Δ𝐾 = 0, a nonresilient controller will be obtained.

Applying Algorithm 14 to Corollary 12, a region surrounded
by 𝛼 and 𝛽 is obtained, which is illustrated by Figure 2.
Selecting 𝛼 = 4, 𝛽 = 0 and solving (51)–(53) and (60), we
get

𝑄 = [

2.9461 0.4550

0.4550 4.5492
] , 𝜖

1
= 11.9272,

𝜖
2
= 13.2296,

𝜆
1
= 2.7195, 𝜆

2
= 4.8390,

𝐿 = [8.5249 12.2147] ,

𝐾 = [2.5178 2.4332] .

(68)
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Figure 1: A region by 𝛼 and 𝛽.
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Figure 2: A region by 𝛼 and 𝛽.

So, the following nonresilient state feedback controller,

𝑢 (𝑡) = [2.5178 2.4332] 𝑥 (𝑡) (69)

is obtained.
Next, a concrete response of closed-loop system of (1)

is presented in the resilient control design case. When
𝐹(𝑡) = 𝐼, the parameter perturbations are specific for
Δ𝐴
1
= 𝑀𝑁

1
, Δ𝐴
2
= 𝑀𝑁

2
, and Δ𝐾 = 𝐷

3
𝑁
3
. We,

respectively, apply resilient controller (67) and nonresilient
controller (69) to system (1). The evolutions of E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)]
of closed-loop system (20) are obtained, which show that
the closed-loop system of (1) is FTAD-stable with respect
to (1, 3, 5, 25, 0.25, 𝐼). The evolution of E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)] using
resilient controller is lower than that using nonresilient
controller in Figure 3, which shows that resilient controller
is superior to nonresilient controller.

5. Conclusion

In this study, we have studied the problem of resilient
controller design for a class of stochastic nonlinear systems.

0 0.05 0.1 0.15 0.2 0.25
0
1

3

5

10

15

20

25

t (s)

E
[x

T
(t
)R
x
(t
)]

Resilient case

Nonresilient case

Figure 3: The response of system (1) for E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)].

Some sufficient conditions for the existence of resilient
state feedback finite-time stabilizing controller have been
obtained, which are expressed in terms ofmatrix inequalities.
A double-parameter searching algorithm is proposed to solve
these obtained matrix inequalities. One example is presented
to illustrate the effectiveness of the proposed results. In
addition, we can also refer to [24–27] and extend the results
of this paper to networked systems, Markovian jumping
systems, sampled nonlinear systems, and so on.
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