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Some numerical approaches to solve fluid structure interaction problems in blood flow are reviewed. Fluid structure interaction
is the interaction between a deformable structure with either an internal or external flow. A discussion on why the compliant
artery associated with fluid structure interaction should be taken into consideration in favor of the rigid wall model being
included. However, only the Newtonianmodel of blood is assumed, while various structure models which include, amongst others,
generalized string models and linearly viscoelastic Koiter shell model that give a more realistic representation of the vessel walls
compared to the rigid structure are presented. Since there exists a strong addedmass effect due to the comparable densities of blood
and the vessel wall, the numerical approaches to overcome the added mass effect are discussed according to the partitioned and
monolithic classifications, where the deficiencies of each approach are highlighted. Improved numerical methods which are more
stable and offer less computational cost such as the semi-implicit, kinematic splitting, and the geometrical multiscale approach
are summarized, and, finally, an appropriate structure and numerical scheme to tackle fluid structure interaction problems are
proposed.

1. Introduction

Fluid structure interaction is defined as the interaction
between deformable structures with an internal or surround-
ing fluid flow. Such deformation can either be stable or
oscillatory. Problems involving fluid structure interaction are
classified into the one-way problem which occurs when the
movement of the structure controls the motion of fluid but
the fluid’smotion does not influence the structure, or the two-
way fluid structure interaction problem when the movement
of the structure influences the motion of the fluid and vice
versa [1].

Fluid structure interaction is more often considered in
modelling biofluids because the interaction between the
blood and vessel wall is of great clinical interest, for example,
in studying cardiovascular diseases which are a major cause
of death in developed countries [2].

The interaction between blood flow and vessel wall is
often neglected because the coupled fluid and solid equations
are complicated and difficult to solve [3]. Earlier numerical

models used to predict blood flow are based on rigid
geometries [4] in which only the arterial lumen needs to
be reconstructed and discretized, yielding results that are
reasonably accurate and can be obtained in a relatively short
time [5]. However, there are still further considerations to be
taken into account such as the elastic nature and stresses on
the arterial wall that play crucial roles in arterial disease, as
well as thematerial property alterationswith the development
of the atherosclerotic lesion [6].

Numerous studies had been carried out to compare the
effect of the rigid and compliant wall on blood flow. Lee and
Xu [7] indicated that the axial velocities at the center being of
a rigid wall are higher compared to the ones in the compliant
model. Mass conservation theory is utilized to explain such
phenomena as the internal fluid pressure exerted on the vessel
wall pushes the vessel wall outward consistently and slows
the fluid flow due to the flow area expansion. Rigid wall sim-
ulation of blood flow through arteries also overpredicts the
wall shears stress. These findings showed that incorporating
fluid structure interaction has significant effects on blood
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flow characteristics [2, 7]. Siogkas et al. [5] considered a rigid
wall assumption and fluid structure interaction simulations
of blood flow in the arterial segments. They concluded that
the computational time for the simulation of fluid structure
interaction is longer than that of the rigid wall assumption. It
was found that the required time for the simulation is 30–40
minutes in the case of rigid wall but takes almost 5 hours in
the compliant vessel.

Fluid structure interaction describes the wave propaga-
tion in arteries driven by the pulsatile blood flow. From the
theoretical point of view, such problems are complex and
challenging due to the high nonlinearity of the problem. Not
only the fluid equation exhibits nonlinearity, the structure
displacement modifies the fluid domain which generates
geometrical nonlinearities as well [8].

The generalized string model had been utilized as the
structure of blood flow in compliant vessels and arteries [9–
15]. Causin et al. [16] explained that the generalized string
model is a structural model derived from the theory of linear
elasticity for a cylindrical tube with small thickness. The
reference configuration is a cylindrical surface of the base
circle radius𝑅 that is supposed tomove in radially, neglecting
the longitudinal and angular displacements. Nobile and
Vergara [15] pointed out that the generalized string model
neglects bending as well. According to Čanić et al. [17–20],
there are no analytical results which are able to prove the well
posedness of fluid structure interaction problems without
assuming the structure model that includes the higher order
derivative terms, capturing the viscoelastic behavior, or the
terms describing bending rigidity. In hemodynamics, there
exists a strong added mass effect issue in which the fluid and
structure have comparable densities. If the structure density
is higher than the fluid density, such as in aeroelasticity, the
added mass effect is negligible. Various structural models are
discussed in Section 2.

Numerical approaches of fluid structure interaction
which are discussed in Section 3 can be broadly classified into
two: the partitioned approach and the monolithic approach.
Partitioned approach can be further subdivided into the
loosely and strongly coupled algorithms [20–27]. In hemody-
namics, the use of explicit partitioned algorithm turns out to
be problematic where stability is concerned, particularly due
to the added mass effect. In addition, the implicit partitioned
algorithms are also affected by the added mass effect in terms
of convergence. Special treatment of the interface conditions
needs to be considered [8, 16, 28–30]. To date, it seems that
only the monolithic and implicit schemes are applicable in
blood flow simulation involving fluid structure interaction.
However, they are costly in terms of computational cost,
computational time, and memory requirement [9–11, 31–33].
In Section 4, the improved numerical methods which are
stable but with low computational time are summarized.

2. Fluid Structure Interaction
Problem Formulation

Fluid structure interaction problem can be divided into
three parts: fluid problem, structure problem, and coupling
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Figure 1: Sketch of flow region [9, 10].

condition. The model discussed here is based on the work
of [9, 10]. Consider the flow of an incompressible, viscous
Newtonian fluid in a two-dimensional symmetric channel
with thin and deformable walls in Figure 1.

2.1. The Fluid Problem. Let 𝑥
1
and 𝑥

2
denote the horizontal

and vertical coordinates, respectively. Assume that the fluid
domain is supplanted by a symmetry boundary condition at
the axis of symmetry. The fluid domain is denoted by Ω(𝑡),
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The fluid flow is governed by the Navier-Stokes equations:

𝜌
𝑓
(
𝜕u
𝜕𝑡

+ u ⋅ ∇u) = ∇ ⋅ 𝜎, ∇ ⋅ u = 0,

in Ω (𝑡) for 𝑡 ∈ (0, 𝑇) ,

(3)

where u = (𝑢
1
, 𝑢
2
) is the fluid velocity, 𝑝 is the fluid pressure,

𝜌
𝑓
is the fluid density, and 𝜎 is the fluid stress tensor.The fluid

is assumed asNewtonian so that the fluid stress tensor is given
by 𝜎 = −𝑝I + 2𝜇D(u), where 𝜇 is the fluid viscosity andD(u)
is the rate-of-strain tensorD(u) = ((∇u) + (∇u)𝑇)/2.

Blood is known as a suspension of red blood cells, white
blood cells, and platelets in plasma. Although blood is not a
Newtonian fluid, it is well accepted that, in medium-to-large
arteries, the Newtonian assumption is acceptable. The non-
Newtonian nature due to the particular rheology is relevant
to the small arteries and capillaries where the diameter of the
arteries and the size of the cell are comparable [18, 35]. For a
critical review on blood flow, one can refer to [36] where the
blood rheology, blood viscosity models, and conditions are
listed. In this paper, only Newtonian fluid will be considered
as in [9–11, 33].

2.2. The Structure Problem. Since the fluid structure inter-
action problem is complicated, the simplified model is used
whenever possible. Previous studies indicated that the simpli-
fied mathematical model presenting the major physical char-
acteristics is reasonable. A common set of simplifyingmodels
includes the use of two-dimensional models instead of the
more realistic three-dimensional ones, cylindrical geometry
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of a section of an artery without branching, neglecting the
viscoelastic term and the bending rigidity, and even a further
reduction to one-dimensional models. The two-dimensional
and three-dimensional models are rather complex while the
one-dimensional models suffer from a serious drawback as
they are not closed and oversimplifying the viscous fluid [18–
20].

Recent studies on the two-dimensional models with
some simplification assumptions include that of Nobile and
Vergara [15]. They assumed that the structure behaves as a
membrane which implies that the structure is a thin elastic
shell with no bending, whose thickness is neglected and
which can be described by a two-dimensional manifold. A
simple inertia-algebraic membrane model which considers
small deformation is considered.The structure equation with
initial conditions is as follows:
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where 𝜂
0
, 𝜂V are initial conditions. If in the particular case

𝜌
𝑠
= 0, it is known as the algebraic model.
Nobile [37] proposed a generalised string model derived

from a cylindrical configuration. Let

Γ = {(𝑟, 𝜃, 𝑧) : 𝑟 = 𝑅
0
, 0 ≤ 𝑧 ≤ 𝐿, 0 ≤ 𝜃 < 2𝜋} (5)

be the cylindrical reference surface of radius 𝑅
0
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longitudinal and angular displacement are neglected; thus the
radial displacement 𝜂
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where 𝑘𝐺ℎ(𝜕
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) account for shear deformation while

𝛾(𝜕
3
𝜂
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2
𝜕𝑡) introduced the viscoelastic behaviour. By

neglecting the viscoelastic terms and the term of second
derivatives in 𝑧, the resulting equation (7) is so-called
independent ring model
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Further simplification by neglecting the inertia term will
result in the simple algebraic equation
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= 𝑝 − 𝑝ext. (8)

Generalised string model had been widely used as the
structure of blood flow in compliant vessels and arteries
[12–16, 32]. It is derived from the theory of linear elasticity
for a cylindrical tube with small thickness. The reference
configuration is a cylindrical surface of the base circle radius

𝑅 that is supposed to move in radially, the longitudinal and
angular displacements being neglected [16]. Causin et al. [16]
suggested that the results will be more qualitative in the
present example of a nonnegligible second-order term.

Guidoboni et al. [9, 10] proposed the generalized string
model which includes the elastic and viscoelastic behavior.
Γ(𝑡) is assumed as a linearly viscoelastic thin shell, undergoing
only transversal displacement 𝜂 = 𝜂(𝑥, 𝑡):
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(9)

Čanić et al. [18–20] stated that there are no analyti-
cal results which are able to prove the well posedness of
fluid structure interaction problems without assuming the
structure model that includes the higher order derivative
terms capturing the viscoelastic behavior or with the terms
describing bending rigidity. They explained that the bending
rigidity of the vessels walls which are being neglected might
mean oversimplifying the physics.Thus, their motivationwas
to derive the Koiter shell equations in cylindrical coordinate.
The linearly viscoelastic cylindrical Koiter shell model is
given as
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There are two interesting features: bending rigidity plays a
nonnegligible role in the 𝜀

2 approximation of the original
problem, and the fluid viscous dissipation imparts long-term
viscoelastic memory effects on the motion of the arterial
walls.

2.3. The Coupling Condition. The coupling condition
between both fluid and structure is

𝑢
1
= 0, 𝑢

2
=

𝜕𝜂

𝜕𝑡
on Γ (𝑡) for 𝑡 ∈ (0, 𝑇) . (11)

The initial and boundary conditions for fluid velocity u and
the structure displacement 𝜂 are prescribed as

u = 0, 𝜂 = 0,
𝜕𝜂

𝜕𝑡
= 0,

𝜂 (0, 𝑡) = 0, 𝜂 (𝐿, 𝑡) = 0.

(12)

3. Numerical Approaches for Fluid
Structure Interaction Problems

In this paper, the numerical approaches in solving fluid struc-
ture interaction problems are classified into two: namely, the
partitioned and the monolithic approach [20–24, 26]. Other
numerical approaches such as the conforming and non-
conforming mesh associated with the immersed boundary
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method in solving fluid structure interactions have been
reviewed in [27].

Partitioned approach treats the fluid and structure prob-
lems as two computational fields which can be solved using
two distinct solvers. The interface conditions between the
fluid and structure are solved through loosely or strongly
coupled algorithms [20–24, 26, 27]. Figure 2 shows that
loosely coupled algorithms are known as explicit algorithms
while strongly coupled algorithms are known as implicit
algorithms.

Partitioned approach is based on the successive solution
of three subproblems and allows one to reuse the existing
codes. Monolithic approach treats the fluid and structure as
a single system. In other words, flow and structure problem
is solved with a single code. The interfacial conditions are
implicit in the solution procedure. The solution procedures
of the monolithic and partitioned approach are illustrated
in Figure 3 where 𝑆

𝑓 and 𝑆
𝑠 denote the fluid and structure

solution, respectively [21, 23, 27].

3.1. Partitioned Approach. According to Sieber [34], infor-
mation in loosely coupling algorithms will be exchanged
between the solvers only once per time step. This implies
that the fluid and structure should be in equilibrium. Then
the data can be exchanged only if both fluid and structure
variables are constant within each time step. Before starting
the iterations process, all materials, fluid properties param-
eters, fluid and structure variables, time step, and the con-
vergence criteria should be initialized. However, convergence
problemsmight increase due to the nature of explicit coupling
algorithms. Thus the choice of time-step size was restricted
and it was not suitable for large structural deformations
problems. Figure 4 shows the comparison in terms of stability,
generality, and programming efforts for both couplings.

Andersson and Ahl [26] summarized some issues about
loosely and strongly coupled algorithms. For loosely coupled
algorithms, instability issue increases with decreasing the
mass density ratio. Besides, the decrease in time-step size
further increases the instability, known as the artificial added
mass effect. Errors in the predictions along with the added
mass effect caused the incorrect coupling forces that led to
the instability. For strongly coupled algorithms, it was more
stable for low mass density ratio. On the other hand, due to
more subiterations, the computational time increases when
the ratio is reduced.

Deparis et al. [38] stated that standard loosely coupling
algorithms solved the fluid, geometry, and the interface
explicitly and the structure implicitly.The computational cost
was cheap but unstable especially when the structure was
light. Several suggestions had beenmade to overcome the sta-
bility issues. Nobile and Vergara [29] proposed Robin inter-
face conditions to be enforced to solve fluid and structure
subproblems. Burman and Fernández [28] proposed a sta-
bilized explicit coupling for fluid structure interaction based
on Nitsche’s scheme. Numerical simulation of fluid structure
interaction problems involving a viscous compressible fluid
and elastic structure was considered. The explicit coupling
scheme without correction had given a stable approximation

with poor accuracy. High order accuracy was achieved after a
few correction iterations and the results were comparable to
that with implicit scheme solution [28].

It has also been suggested that the geometry and interface
coupling should be treated implicitly [18]. Vierendeels et al.
[39] proposed a coupling method for strongly coupled fluid
structure interaction problems with partitioned solvers.They
solved the reduced ordermodels for fluid and structure prob-
lem and a small number of coupling iterations. Commercial
CFD software package Fluent 6.2 was used as the fluid solver
and Abaqus 6.5 was used as the structural solver. This cou-
pling method showed a satisfactory convergence behavior.
Thus, it can be summarized that the explicit partitioned
algorithms are not suitable for problems in hemodynamics.
It was proved to be problematic with the stability issues as
the added mass effect of the fluid on the structure [16, 25,
29]. Implicit partitioned algorithms were also affected by the
added mass effect as they converge slowly. Special treatments
of the interface conditions had to be considered.

3.2. Monolithic Approach. Deficiencies in the partitioned
method had motivated the investigation on monolithic
methods [21]. Hron and Turek [40] and Hron and Mádĺık
[41] stated that the monolithic approach which treated the
problem as a single continuum with coupling automatically
takes care of the internal interface. This gets rid of the
problematic interface treatment when the fluid and structure
are solved separately. The results computed using monolithic
approaches were ten times more accurate, but the computa-
tional cost was three to four times higher than those of the
partitioned methods as stated in Michler et al. [21].

Heil [22] explained that if the fluid is incompressible or
the problem is steady, the solution of a large systemof coupled
nonlinear algebraic equations is needed. The solution of a
nonlinear system by Newton’s method was utilized since it
yielded a powerful and rapidly converging scheme. However,
repeated assembly of the Jacobian matrix and the solutions
associated with the linear systems for Newton corrections
contributed to the increase in computational cost. Thus they
developed an efficient preconditioning technique that allows
the rapid iterative solution instead of applying the Newton
method as in [20].

Heil et al. [20] studied the fluid structure interaction
in collapsible channel with monolithic and partitioned
approaches. Both approacheswere competitive in the test case
involving steady problems. In unsteady problems, strongly
coupled partitioned solvers suffered from severe convergence
problems and an under-relaxation parameter needs to be
applied in stabilizing the solution procedure. Monolithic
solvers become more essential in unsteady problems but
required an efficient precondition for the large problems,
particularly in three-dimensional problems [20].

Razzaq et al. [42, 43] presented numerical simulation of
fluid structure interaction in hemodynamics withmonolithic
approach. They restricted the research on two-dimensional
models which allow the systematic tests of the proposed
methods. The corresponding monolithic treatment of the
fluid structure interaction problems suggested that a stable
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Types of the coupling
scheme
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Figure 2: Coupling schemes in solving fluid structure interaction problems.
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Figure 3: Schematic of (a) partitioned approach and (b) monolithic approach [27].

 One time step After each iteration 
equations 

Stability 

Generality 

Programming efforts 

One code of system of 

Loosely coupling Strong coupling

Figure 4: Comparing between loosely and strongly coupling algorithms [34].

second-order time stepping scheme as well as the same finite
elements for fluid and structure should be utilized. Hron and
Turek [40] and Hron and Mádĺık [41] applied different types
of discretization in space and time.They solved the simplified
two-dimensional examples with finite element and Crank-
Nicolson for the space and time discretization, respectively.
The resulting nonlinear algebraic system was solved by an
approximate Newton’s method.The results obtained had high
accuracy and robustness.

4. Improved Numerical Methods

Although stability and accuracy of partitioned approach
can be improved through prediction techniques, their error
remains larger than monolithic solutions [20, 21]. To date,
monolithic and implicit schemes seem to be applicable in
fluid structure interactions in blood flow. However, subit-
erations that are performed at each time step increase the
computational time and computational costs [9, 10, 30–33].
Several approaches based on the coupling algorithms had

been proposed in recent research works, such as the semi-
implicit, kinematic splitting algorithm, and the geometrical
multiscale approach.

4.1. Semi-Implicit Approach. Fernández et al. [30, 31] pro-
posed a semi-implicit scheme to solve the numerical simula-
tion of fluid structure interaction problems involving strong
added mass effect, particularly in hemodynamics. The idea
of the semi-implicit scheme was to treat the added mass
effect implicitlywhile other contributions such as geometrical
nonlinearities, viscous, and convective effects are solved
explicitly. Such explicit-implicit splitting can be naturally
performed using a Chorin-Temam projection scheme in the
fluid. The authors claimed that this scheme was numerically
stable, given in theoretical and numerical evidence for a wide
range of physical and discrete parameters.

However, Astorino et al. [44] stated that the scheme
proposed in [30, 31] had computing limitations such that

(i) it was assumed that the fluid problem is to be solved
with a projection scheme;
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(ii) the energy was not perfectly balanced. Astorino et al.
[44] then modified the scheme in [30, 31] by treating
the explicit part of the coupling with Nitsche-based
mortaring.The authors claimed that their schemewas
independent of the added mass effect.

Badia et al. [8] proposed a similar previous semi-implicit
approach which was based on the inexact block-LU factor-
ization of the linear system. The linear system was obtained
after the space-time discretization and linearization of the
fluid structure interaction problems. The idea presented was
to decouple the fluid velocity computation of the strongly
coupled fluid structure system. Only pressure and structure
unknowns were involved, with the advantage of reducing
the computational costs and maintaining stability. Since the
pressure was still coupled to the structure, the stability of the
scheme was independent of the added mass effect.

4.2. Kinematic Splitting Algorithm. Guidoboni et al. [9, 10,
33] proposed a new version of the loosely coupled-type
algorithm. The algorithm which is known as the kinemati-
cally coupled scheme is aligned with the crucial role of the
kinematic condition for the proposed algorithm.This scheme
applied the hypothesis that the arterial wall was modelled
as a thin shell so that such scheme does not suffer from
instabilities related to the high nonlinear interfacial coupling
between the flow and structure.The idea of the kinematically
coupled scheme was presented as follows.

(1) Use operator splitting for time-discretization.
(2) No iterations between the fluid and structure sub-

problems were required.
(3) Impose the kinematic condition in strong form in

order to maintain the tight link between fluid and
structure in each sub-problem.

(4) The fluid stress at the interface did not have to be
computed explicitly.

Kinematically coupled scheme splits the structure into
two parts: the hydrodynamic load exerted by the fluid on the
structure and the purely elastic part without the hydrody-
namic load. The hydrodynamic part, consisting of the fluid
stress acting on the interface and the viscoelastic terms, is
treated together with the fluid. By adding the hydrodynamic
part of the structure equation to the fluid equation and by
utilizing the kinematic interface condition, they deal with the
inertia of both fluid and structure at the same time, thereby
getting around the difficulty associated with the added mass
effect.The elastic part was treated separately and this enabled
the use of a wide range of structural models [9, 10].

Guidoboni et al. [9, 10] considered the incompressible,
viscous Newtonian fluid in a two-dimensional channel with
thin, deformable walls in the generalized string model. Time
discretization via Lie’s operator splitting was applied through
the scheme. Since the operator splitting was developed only
for the first-order formulation, the kinematic boundary con-
dition was applied into the structure equation to transform
the second-order formulation to the first-order formulation.
The overall structure of the scheme was to solve the four

subproblemswith different numerical schemes. Existing fluid
and structure solvers can be used as “black boxes.” Numerical
results of kinematically coupled scheme showed excellent
agreement with those obtained using an implicit scheme
[9, 10].

Bukač et al. [11] extended the work of [9, 10] by replacing
the generalized string model with linearly viscoelastic cylin-
drical Koiter shell model. The authors tried to capture the
radial and longitudinal displacement of the linearly viscoelas-
tic Koiter shell for the underlying fluid structure interaction
problem. In addition, they aimed to increase the accuracy
of kinematically coupled scheme with the modified Lie’s
scheme. The modified scheme was named as kinematically
coupled 𝛽-scheme. The results were comparable with the
monolithic scheme in [8]. Such a scheme was modular and
easy to implement and had low computational cost.

The idea of kinematic splitting algorithm inspired
Lukáčová-Medvid’ová et al. [45] to propose a similar tech-
nique to solve the fluid structure interaction problems of non-
Newtonian fluids. Lukáčová-Medvid’ová et al. [45] claimed
that their approach was more general than [9, 10, 33] because
they allowed the use of second-order splitting method and
non-Newtonian rheology. They applied implicit backward
Euler discretization to the fluid and second-order Newmark
scheme for the structure. The results were conditionally
stable.

4.3. Geometrical Multiscale Approach. Formaggia et al. [13,
32] mentioned that although the coupling algorithm for fluid
structure interaction should be implicit, it is difficult to simu-
late large regions. The simulation of three-dimensional fluid
structure interaction suffered a pressure wave that had been
generated and reflected at the flow section.Thus, geometrical
multiscale approach was proposed by coupling the detailed
three-dimensional fluid structure interaction model with a
one-dimensional reduced model as shown in Figure 5. They
applied an implicit coupling on the three-dimensional fluid
structure interaction problem and the Lax-Wendroff scheme
on the one-dimensional model. The explicit numerical algo-
rithm was proposed for the geometrical multiscale coupling.
Formaggia et al. [13, 32] attempted to eliminate the spurious
reflection at the flow section through geometrical multiscale
approach by implying one-dimensional reducedmodel as the
absorbing boundary condition. The results showed that the
pressure wave is quite well absorbed by the one-dimensional
model.

Janela et al. [46] stated that as the flow is driven by a
pressure pulse generated by a constant pressure, the ves-
sel inflates initially near the inflow boundary. The motion
propagates along the vessel until it reaches the outflow
section and is reflected back. Such issue can be solved
through geometrical multiscale approach as proposed by
[32]. Janela et al. [47] proposed several absorbing boundary
conditions in order to cope with the spurious reflection.
The numerical approximation of three-dimensional and one-
dimensional coupling was performed through a staggered
algorithm, iterating the three-dimensional fluid structure
interaction and one-dimensional model.The coupling can be
performed implicitly, comprising subiterations at each time
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Figure 5:Three-dimensional and one-dimensional couplingmodel.

step or explicitly, with no subiterations at each time step. The
proposed linear absorbing boundary conditions had been
proven to be effective in absorbing the pressure wave.

Both Formaggia et al. [32] and Janela et al. [46, 47]
mentioned that the homogenous boundary condition will
lead to energy decay property. Standard homogenous bound-
ary condition introduces the spurious reflections of the
pressure wave which will cause the structure to continue
oscillating. Proper boundary conditions should be chosen in
order to cope with the reflection issues caused by the three-
dimensional fluid structure interaction.

5. Conclusion

Fluid structure interaction needs to be included in models
of blood flow as blood interacts mechanically with the vessel
wall. It is suggested that the linearly viscoelastic Koiter shell
model should be adopted to model the structure of the vessel
wall since it takes into account the elastic and viscoelastic
behavior with bending rigidity.

The main issue in the fluid structure interaction model
of blood flow model is on how to get rid of the added mass
effect so that the numerical solution will be stable and the
computational cost is low. The monolithic scheme has been
the most commonly used approach, but it is expensive in
terms of computational cost and memory requirement. To
get around this problem, various ways to improve on the
partitioned approach have been sought.

Classical partitioned approach considers a problem sep-
arately as fluid, structure, and interface. Problem arises
when the interface is solved separately. In the kinematically
coupled scheme, which is a loosely coupled partitioned-type
algorithm, an operator splitting is applied instead of the
problem being split into the fluid and structure subproblems.
Such splitting algorithm offers the flexibility of applying any
suitable numerical methods in solving each subproblem. As
the computational cost is measured according to the number
of iterations, the computational cost of the kinematically
coupled scheme is lower, with the results obtained being as
accurate as those obtained from the implicit schemes.
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