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A new finite difference scheme, the development of the finite difference heterogeneous multiscale method (FDHMM), is
constructed for simulating saturated water flow in random porous media. In the discretization framework of FDHMM, we follow
some ideas from the multiscale finite element method and construct basic microscopic elliptic models. Tests on a variety of
numerical experiments show that, in the case that only about a half of the information of the whole microstructure is used, the
constructed scheme gives better accuracy at a much lower computational time than FDHMM for the problem of aquifer response
to sudden change in reservoir level and gives comparable accuracy at a much lower computational time than FDHMM for the weak
drawdown problem.

1. Introduction

Natural porous media exhibit a significant spatial variability
in most attributes of hydrogeological interest. For instance,
it is quite typical for hydraulic conductivity to vary orders of
magnitude over distances [1].The groundwater flowproblems
in heterogeneous porous media can be accurately solved by
using conventional finite element method or finite differ-
ence method based on smaller scale, which leads to more
computational cost. Discrete schemes obtained in this way
are often by far too expensive to be solved directly. For
the sake of the accuracy and efficiency, several different but
related multiscale methods, such as the multiscale finite ele-
ment method (MsFEM) [2, 3], the heterogeneous multiscale
method (HMM) [4], and the numerical homogenization
method [5], for problems with oscillating coefficients have
been proposed to accommodate the fine-scale description
directly. Here, we should also mention the work of Babuška
in the 70s [6–8], which motivated these multiscale methods
in an extent.

Multiscale solution methods are currently under active
investigation for the simulation of subsurface flow in het-
erogeneous formations [9]. Ye et al. [10] applied MsFEM to

simulate two- and three-dimensional saturated flow prob-
lems. Chen and Hou [11] proposed a mixed multiscale
finite element method for elliptic problems with oscillating
coefficients; they demonstrated the efficiency and accuracy of
the proposed method for flow transport in a porous medium
with a random log-normal relative permeability. He and
Ren [12] presented the finite volume MsFEM for solving
saturated flow in heterogeneous porous media. E et al. [13]
took a systemic analysis of HMM for elliptic homogenization
problems, where the error between the numerical solution
of HMM and the solution of homogenized equation is
estimated, and how to construct better approximation of
the exact solution from the HMM solution is discussed.
Ming and Zhang [14] applied HMM to the linear parabolic
homogenization problem and discriminated different types
of microscopic models. Ming and Yue [15] discussed the
numerical performance of HMM including comparison with
othermethods. Yue andE [16] developedHMMfor linear and
nonlinear transport equations with multiscale velocity fields
in heterogeneous porous media and focused on the problem
where advection is dominant at the small scale.

Most of existing multiscale methods have been limited
to the finite element method [17–19]. There are also widely
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used finite difference flow and solute transport models in
both the groundwater and oil industries. To handlemultiscale
problems with finite difference methods, based on the frame-
work of HMM [4], Abdulle and E [20] proposed the finite
difference heterogeneous multiscale method (FDHMM) for
solving multiscale parabolic problems. This method includes
a “heterogeneous” discretization which cares about the fine
scale only on small representative region of the spatial
domain. FDHMM has two components: a macroscopic
scheme evolved on a coarse grid (the grid of interest) with
unknown data recovered from the solutions of the micro-
scopic model and a microscopic scheme, in which the orig-
inal equation is solved on a sparse (heterogeneous) spatial
domain.The similar idea can be found in [21]. Chen and Ren
[22] applied FDHMM to Richards’ equation; they found that
FDHMM could effectively simulate the transient unsaturated
flow in the specific soils. In the saturated flow case, we may
precompute the macroscopic flux at a preprocessing step to
save the computational time. In addition, Abdulle and E
[20] studied the multiscale parabolic equation without the
source sink term and considered the examples where the
coefficients change according to the smooth function. For
transient flow problem in heterogeneous porous media, the
coefficients generally change in a random form; thus there is
a need for more evaluation of the applicability of FDHMM.

Here, we propose a new scheme of FDHMM for simu-
lating not only the steady saturated flow problem but also
the transient saturated flow problem in geostatistical random
porous media. The constructed scheme employs an idea
presented by Ming and Zhang [14]; that is, the microscale
parabolic model can be reduced to the microscopic elliptic
model for the problem without oscillation propagation in
time. Motivated by the construction of the multiscale finite
element base functions [2, 3], in every control volume, we
divide the microscopic elliptic model into two basic micro-
scopic elliptic models and estimate the basic macroscopic
flux by the solutions of these two basic microscopic elliptic
models. The small scale information is then brought to the
large scale through the approximation of basic macroscopic
fluxes. These basic macroscopic fluxes are just calculated
once at the preprocessing step and will be used in the
subsequent computations. In general, governing coarse-grid
equation and coupling the approach of the new scheme
are the same as those of FDHMM by Abdulle and E. The
main difference between the two methods is the microscopic
scheme, in contrast to FDHMM by Abdulle and E, where
the numerical fluxes are computed on the fly using localized
andmore resolved computations whichmeans that FDHMM
by Abdulle and E needs the macroscopic and microscopic
evolution at every time step and the new scheme adopts the
idea of MsFEM of Hou et al., by numerically precomputing
a finite difference analogue of a multiscale shape function,
which provides a fixed expression for the numerical basic
flux in terms of the coarse variables. It means that the fine-
scale information is coupled into the coarse scale by this
finite difference analogue of a multiscale shape function. In
addition, the new scheme incorporates ideas from Ming and
Zhang [14] to transform the microscopic parabolic model to

a microscopic elliptic model, which allows MsFEM ideas to
be adopted in the computational scheme.

Our method is also analogous to the classical upscaling
method, where the upscaled hydraulic conductivities are
precomputed [23, 24]. Different from the classical upscaling
method, the present method only precomputes the basic
macroscopic fluxes.The estimation of themacroscopic fluxes,
which contain both microscopic information of the medium
property and useful information about the gradients of the
solutions of microscopic elliptic models, is coupled into the
course of solving the coarse equation, and it makes the
constructed scheme put more emphasis on the interaction
between the macro- and microscale behavior. On the other
hand, in the new scheme, the fine-scale global flow solution
is decomposed into a series of local microscopic problems;
the computations of these basic microscale problems can be
carried out sequentially; this obviously saves the computa-
tional time and thememory requirement, whichmay provide
the proposed method with a possibility to solve large flow
problems under restricted computational capabilities.

This paper is organized as follows. We firstly describe the
flow problem and introduce the principle and the algorithm
of the constructed scheme in detail. Numerical examples
to illustrate the performance of the constructed scheme
are arranged in Section 3. Some conclusions are given in
Section 4.

2. New Scheme of FDHMM

2.1. Flow Problem. The transient saturated flow through a
heterogeneous porous medium is governed by the parabolic
partial differential equation

𝑆
𝑠
(x)

𝜕𝜓 (x, 𝑡)

𝜕𝑡
= ∇ ⋅ [K (x) ∇𝜓 (x, 𝑡)] + 𝑅 (x, 𝑡) ,

in Ω × (0, 𝑇) ,

(1)

where 𝜓 is the hydraulic head, 𝑆
𝑠
is the specific storage

coefficient, K is the hydraulic conductivity tensor, 𝑅 is the
source sink term, x = (𝑥, 𝑦) is the spatial coordinate, 𝑡 is the
time variable, Ω is the study area, and 𝑇 is the time domain.

2.2. Principle and Algorithm. The discretization in this study
is the mesh-centered finite difference. To simplify the presen-
tation of the constructed scheme, we assume that the solution
domainΩ is a square and uniformly discretize it with a coarse
𝑁×𝑁mesh. Let theCartesian coordinates of this coarsemesh
be represented by (𝑥

𝑖
, 𝑦
𝑗
), 𝑖, 𝑗 = 1, . . . , 𝑁 + 1. 𝐻 = 𝑥

𝑖+1
− 𝑥
𝑖
=

𝑦
𝑗+1

− 𝑦
𝑗
denotes the coarse mesh size.

Notice that a macroscopic model is known to exist
according to the homogenization theory, and the idea of the
constructed scheme is to evolve a macroscopic model for the
flux form of (1),

𝑆
𝑠
(x)

𝜕Ψ (x, 𝑡)

𝜕𝑡
= −∇ ⋅ 𝐹 (x, 𝑡) + 𝑅 (x, 𝑡) , in Ω × (0, 𝑇) ,

(2)

on a coarse mesh, where Ψ is the macroscopic state variable
corresponding to 𝜓, that is, we have Ψ = 𝜓 at the coarse
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Figure 1: Illustration of the macroscopic and microscopic compu-
tational domains.

node (𝑖, 𝑗), and 𝐹 is the macroscopic flux. In fact, based on
the principle of the flux balance, we can also deduce (2).

To solve (2), we firstly need to determine themacroscopic
flux 𝐹. In the absence of explicit knowledge of 𝐹, our problem
reduces to approximate the flux 𝐹; this will be done by locally
solving a set of microscopic models. In Figure 1, we center
a control volume at the midpoint of the line between any
two coarse nodes except for two exterior nodes. Thus, there
are four control volumes 𝐼

𝛿

𝑖±(1/2),𝑗
and 𝐼
𝛿

𝑖,𝑗±(1/2)
around every

interior node (𝑖, 𝑗) and these control volumes are centered at
the points (𝑖 ± (1/2), 𝑗) and (𝑖, 𝑗 ± (1/2)), respectively (see
Figure 2). We assume that the control volume 𝐼

𝛿

𝑖±(1/2),𝑗
is a

square of size 𝛿 and discretize it into a fine 𝑀 × 𝑀 mesh,
for which (𝜉

𝑘
, 𝜂
𝑙
) denotes the coordinate of node (𝑘, 𝑙), where

𝑘, 𝑙 = 1, . . . , 𝑀 + 1. 𝑎 = 𝜉
𝑘+1

− 𝜉
𝑘

= 𝜂
𝑙+1

− 𝜂
𝑙
denotes the fine

mesh size. For 𝜉
𝑘
and 𝜂
𝑙
, we have

𝜉
𝑘

=
𝐻 − 𝛿

2
+ (𝑘 − 1)

𝛿

𝑀
,

𝜂
𝑙
= 𝐻 −

𝛿

2
+ (𝑙 − 1)

𝛿

𝑀
, 𝑘, 𝑙 = 1, . . . , 𝑀 + 1.

(3)

Similarly, (𝜂
𝑙
, 𝜉
𝑘
) denotes the coordinate of the control vol-

ume 𝐼
𝛿

𝑖,𝑗±(1/2)
.

2.2.1. Basic Microscopic Elliptic Problems. To estimate the
macroscopic flux, we need to solve a set of local microscale
problems in the control volumes. Actually, the saturated
hydraulic conductivity tensor K(x) in this study is only a
function of the spatial position and does not oscillate in the
temporal direction, and we only need the spatial homoge-
nization of K(x) at the microscopic evolution. According to
the conclusion of [14], in every control volume 𝐼

𝛿, we can only
solve the following reduced elliptic equation:

∇ ⋅ [K (x) ∇𝜓 (x)] = 0, in 𝐼
𝛿

. (4)

In every control volume 𝐼
𝛿, similar to the construction

of the multiscale finite element base functions developed by

Hou and Wu [2] and Hou et al. [3], we will solve two basic
elliptic problems with the Dirichlet-Neumann boundary
condition in which the Dirichlet boundary condition is used
in one direction and no-flow boundary condition is used
in the other direction. For 𝐼

𝛿

𝑖+(1/2),𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑁), the

Dirichlet boundary condition is used in 𝑥-direction and no-
flow boundary condition is used in 𝑦-direction, and vice
versa for 𝐼

𝛿

𝑖,𝑗+(1/2)
(𝑖, 𝑗 = 1, 2, . . . , 𝑁).

Set the head of the basic elliptic problem with no
dimensional change. Let 𝜙

1 and 𝜙
2 be the solutions of these

two basic elliptic problems, respectively. In 𝐼
𝛿

𝑖+(1/2),𝑗
, as shown

in Figure 2, for the first basic elliptic problem, the head
on the left side is 1, and that on the right side is 0, and
vice versa for the second basic elliptic problem. Similarly,
in 𝐼
𝛿

𝑖,𝑗+(1/2)
, for the first basic elliptic problem, the head on

the bottom side is 1, and that on the top side is 0, and
vice versa for the second basic elliptic problem. The cell
problems are computed in parallel, and the number of the
processors is reduced [16, 25]. To solve the basic elliptic
problem, we considered employing the conventional finite
differencemethodwithmultigrid over a finemesh to solve the
original equation. For implementing themultigrid algorithm,
we use directly a numerical simulator MGD9V [26]. In fact,
according to the above two basic elliptic problems, we have
𝜙
1

+ 𝜙
2

= 1. Then, we only need to solve the first basic
elliptic problem and obtain the solution𝜙

2 of the second basic
elliptic problem in the course of computation according to
𝜙
2

= 1 − 𝜙
1.

2.2.2. Estimation of Basic Macroscopic Fluxes. After solving
the basic elliptic problems, we estimate basic macroscopic
fluxes based on the solutions of the basic elliptic problems. In
𝐼
𝛿

𝑖+(1/2),𝑗
, 𝐹
𝑥
𝛼
,𝛽

𝑖+(1/2),𝑗
(𝛼, 𝛽 = 1, 2) denote, respectively, the basic

macroscopic fluxes estimated by the solutions of two basic
elliptic problems; we have

𝐹
𝑥
𝛼
,1

𝑖+(1/2),𝑗
= −

1


𝐼
𝛿

𝑖+(1/2),𝑗



∫ ∫
𝐼
𝛿

𝑖+(1/2),𝑗

𝐾 (x)
𝜕𝜙
𝛼

𝜕𝑥
𝑑𝑥 𝑑𝑦

≈ −
𝑎
2

𝛿2

𝑀

∑

𝑘=1

𝑀

∑

𝑙=1

𝐾
𝑘+(1/2),𝑙

𝜙
𝛼

𝑘+1,𝑙
− 𝜙
𝛼

𝑘,𝑙

𝑎
,

𝐹
𝑥
𝛼
,2

𝑖+(1/2),𝑗
= −

1


𝐼
𝛿

𝑖+(1/2),𝑗



∫ ∫
𝐼
𝛿

𝑖+(1/2),𝑗

𝑦

𝐻
𝐾 (x)

𝜕𝜙
𝛼

𝜕𝑥
𝑑𝑥 𝑑𝑦

≈ −
𝑎
2

𝛿2

𝑀

∑

𝑘=1

𝑀

∑

𝑙=1

𝜂
𝑙

𝐻
𝐾
𝑘+(1/2),𝑙

𝜙
𝛼

𝑘+1,𝑙
− 𝜙
𝛼

𝑘,𝑙

𝑎
, 𝛼 = 1, 2,

(5)

where 𝐾
𝑘+(1/2),𝑙

is the geometric mean of 𝐾
𝑘,𝑙

and 𝐾
𝑘+1,𝑙

.
Similarly, in 𝐼

𝛿

𝑖,𝑗+(1/2)
,

𝐹
𝑦
𝛼
,1

𝑖,𝑗+(1/2)
= −

1


𝐼
𝛿

𝑖,𝑗+(1/2)



∫ ∫
𝐼
𝛿

𝑖,𝑗+(1/2)

𝐾 (x)
𝜕𝜙
𝛼

𝜕𝑦
𝑑𝑥 𝑑𝑦
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(i, j)

𝜙1 = 1 𝜙1 = 0

𝜙2 = 0 𝜙2 = 1

y

x0

I𝜎

i,j+
1

2

I𝜎

i−
1

2
,j

I𝜎

i+
1

2
,j

I𝜎

i,j−
1

2

𝜕𝜙1

𝜕y
= 0

𝜕𝜙1

𝜕y
= 0

𝜕𝜙2

𝜕y
= 0

𝜕𝜙2

𝜕y
= 0

∇·[K(x)∇𝜙1(x)] = 0

∇·[K(x)∇𝜙2(x)] = 0

Figure 2: The control volumes at the coarse node (𝑖, 𝑗) and two basic microscopic elliptic models for the control volume 𝐼
𝛿

𝑖+(1/2),𝑗
.

≈ −
𝑎
2

𝛿2

𝑀

∑

𝑘=1

𝑀

∑

𝑙=1

𝐾
𝑘,𝑙+(1/2)

𝜙
𝛼

𝑘,𝑙+1
− 𝜙
𝛼

𝑘,𝑙

𝑎
,

𝐹
𝑦
𝛼
,2

𝑖,𝑗+(1/2)
= −

1


𝐼
𝛿

𝑖,𝑗+(1/2)



∫ ∫
𝐼
𝛿

𝑖,𝑗+(1/2)

𝑥

𝐻
𝐾 (x)

𝜕𝜙
𝛼

𝜕𝑦
𝑑𝑥 𝑑𝑦

≈ −
𝑎
2

𝛿2

𝑀

∑

𝑘=1

𝑀

∑

𝑙=1

𝜂
𝑘

𝐻
𝐾
𝑘,𝑙+(1/2)

𝜙
𝛼

𝑘,𝑙+1
− 𝜙
𝛼

𝑘,𝑙

𝑎
, 𝛼 = 1, 2,

(6)

where 𝐾
𝑘,𝑙+(1/2)

is the geometric mean of 𝐾
𝑘,𝑙
and 𝐾

𝑘,𝑙+1
.

2.2.3. Estimation of Macroscopic Fluxes. Based on the esti-
mation of the basic macroscopic fluxes, we will estimate
macroscopic fluxes. Let Ψ

𝑛

𝑖,𝑗
be a coarse numerical solution

of (2) at time 𝑡
𝑛, to estimate the macroscopic flux 𝐹

𝑛 at time
𝑡
𝑛; we will deal with it below.

We first solve a microscopic elliptic problem with the
Dirichlet-Neumann boundary condition at every control
volume 𝐼

𝛿. Head at the Dirichlet boundary of the control
volume is calculated by bilinear interpolating functions.

For the control volume 𝐼
𝛿

𝑖+(1/2),𝑗
, heads at the left and right

sides are

𝜓
𝑛,left,𝑙
𝑖+(1/2),𝑗

= 𝑔
1

(𝜂
𝑙
) + 𝜉
1

𝑔
2

(𝜂
𝑙
) − 𝑔
1

(𝜂
𝑙
)

𝐻
,

𝜓
𝑛,right,𝑙
𝑖+(1/2),𝑗

= 𝑔
1

(𝜂
𝑙
) + 𝜉
𝑀+1

𝑔
2

(𝜂
𝑙
) − 𝑔
1

(𝜂
𝑙
)

𝐻
,

(7)

respectively, where

𝑔
1

(𝜂
𝑙
) =

{{

{{

{

𝜂
𝑙

𝐻
Ψ
𝑖,𝑗

+ (1 −
𝜂
𝑙

𝐻
) Ψ
𝑖,𝑗−1

, 1 ≤ 𝑙 ≤
𝑀

2
,

(2 −
𝜂
𝑙

𝐻
) Ψ
𝑖,𝑗

+ (
𝜂
𝑙

𝐻
− 1) Ψ

𝑖,𝑗+1
,

𝑀

2
< 𝑙 ≤ 𝑀,

𝑔
2

(𝜂
𝑙
)

=

{{

{{

{

𝜂
𝑙

𝐻
Ψ
𝑖+1,𝑗

+ (1 −
𝜂
𝑙

𝐻
) Ψ
𝑖+1,𝑗−1

, 1 ≤ 𝑙 ≤
𝑀

2
,

(2 −
𝜂
𝑙

𝐻
) Ψ
𝑖+1,𝑗

+ (
𝜂
𝑙

𝐻
− 1) Ψ

𝑖+1,𝑗+1
,

𝑀

2
< 𝑙 ≤ 𝑀.

(8)

Thus, 𝜓𝑛,𝑙, the solution of the microscopic elliptic problem in
𝐼
𝛿

𝑖+(1/2),𝑗
, is obtained over the control volume 𝐼

𝛿

𝑖+(1/2),𝑗
via the

linear combination of 𝜙
1 and 𝜙

2, which are the solutions of
two corresponding basic elliptic problems, respectively, and
then we have

𝜓
𝑛,𝑙

= 𝜓
𝑛,left,𝑙
𝑖+(1/2),𝑗

𝜙
1

+ 𝜓
𝑛,right,𝑙
𝑖+(1/2),𝑗

𝜙
2

, 𝑙 = 1, . . . , 𝑀 + 1. (9)

Similarly, in 𝐼
𝛿

𝑖,𝑗+(1/2)
, heads at the bottom and top sides are

𝜓
𝑛,bottom,𝑙
𝑖,𝑗+(1/2)

= 𝑔
3

(𝜂
𝑙
) + 𝜉
1

𝑔
4

(𝜂
𝑙
) − 𝑔
3

(𝜂
𝑙
)

𝐻
,

𝜓
𝑛,top,𝑙
𝑖,𝑗+(1/2)

= 𝑔
3

(𝜂
𝑙
) + 𝜉
𝑀+1

𝑔
4

(𝜂
𝑙
) − 𝑔
3

(𝜂
𝑙
)

𝐻
,

(10)
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respectively, where

𝑔
3

(𝜂
𝑙
) =

{{

{{

{

𝜂
𝑙

𝐻
Ψ
𝑖,𝑗

+ (1 −
𝜂
𝑙

𝐻
) Ψ
𝑖−1,𝑗

, 1 ≤ 𝑙 ≤
𝑀

2
,

(2 −
𝜂
𝑙

𝐻
) Ψ
𝑖,𝑗

+ (
𝜂
𝑙

𝐻
− 1) Ψ

𝑖+1,𝑗
,

𝑀

2
< 𝑙 ≤ 𝑀,

𝑔
4

(𝜂
𝑙
)

=

{{

{{

{

𝜂
𝑙

𝐻
Ψ
𝑖,𝑗+1

+ (1 −
𝜂
𝑙

𝐻
) Ψ
𝑖−1,𝑗+1

, 1 ≤ 𝑙 ≤
𝑀

2
,

(2 −
𝜂
𝑙

𝐻
) Ψ
𝑖,𝑗+1

+ (
𝜂
𝑙

𝐻
− 1) Ψ

𝑖+1,𝑗+1
,

𝑀

2
< 𝑙 ≤ 𝑀.

(11)

The solution of the microscopic elliptic problem in this
control volume is

𝜓
𝑛,𝑙

= 𝜓
𝑛,bottom,𝑙
𝑖,𝑗+(1/2)

𝜙
1

+ 𝜓
𝑛,top,𝑙
𝑖,𝑗+(1/2)

𝜙
2

, 𝑙 = 1, . . . , 𝑀 + 1. (12)

Like the assumption in [27], we assume that the situation
investigated in this study is for locally isotropic conductivity
and also assume the hydraulic conductivity tensor with prin-
cipal axes oriented in the direction of the principal statistical
anisotropy axes of the local parameters. It means that the
conductivity tensor for a locally heterogeneous medium is

K = (
𝐾 (x) 0

0 𝐾 (x)
) . (13)

By applying the above assumption, we derive the macro-
scopic flux 𝐹

𝑛,

𝐹
𝑛

= −
1

𝐼
𝛿


∫ ∫
𝐼
𝛿

K (x) ∇𝜓 (x, 𝑡
𝑛

) 𝑑x

= −
1

𝐼
𝛿


∫ ∫
𝐼
𝛿

(
𝐾 (x) 0

0 𝐾 (x)
) (

𝜕𝜓
𝑛

𝜕𝑥

𝜕𝜓
𝑛

𝜕𝑦

) 𝑑𝑥 𝑑𝑦

= −
1

𝐼
𝛿


∫ ∫
𝐼
𝛿

(

𝐾 (x)
𝜕𝜓
𝑛

𝜕𝑥

𝐾 (x)
𝜕𝜓
𝑛

𝜕𝑦

) 𝑑𝑥 𝑑𝑦 = (
𝐹
𝑛,𝑥

𝐹
𝑛,𝑦) ,

(14)

where 𝐹
𝑛,𝑥 and 𝐹

𝑛,𝑦 are estimated macroscopic fluxes in 𝑥-
direction and 𝑦-direction at time 𝑡

𝑛, respectively. For the
control volume 𝐼

𝛿

𝑖+(1/2),𝑗
, together with (3), (5), (7), (9), and

(14), we have

𝐹
𝑛,𝑥

𝑖+(1/2),𝑗
= −

1


𝐼
𝛿

𝑖+(1/2),𝑗



∫ ∫
𝐼
𝛿

𝑖+(1/2),𝑗

𝐾 (x)
𝜕𝜓
𝑛

𝜕𝑥
𝑑𝑥 𝑑𝑦

≈ −
𝑎
2

𝛿2

𝑀

∑

𝑘=1

𝑀

∑

𝑙=1

𝐾
𝑘+(1/2),𝑙

𝜓
𝑛,𝑙

𝑘+1,𝑙
− 𝜓
𝑛,𝑙

𝑘,𝑙

𝑎

= −
𝑎
2

𝛿2

𝑀

∑

𝑘=1

𝑀

∑

𝑙=1

𝐾
𝑘+(1/2),𝑙

(𝜓
𝑛,left,𝑙
𝑖+(1/2),𝑗

𝜙
1

𝑘+1,𝑙
− 𝜙
1

𝑘,𝑙

𝑎

+𝜓
𝑛,right,𝑙
𝑖+(1/2),𝑗

𝜙
2

𝑘+1,𝑙
− 𝜙
2

𝑘,𝑙

𝑎
)

≈ [
𝐻 − 𝛿

4𝐻
(2Ψ
𝑛

𝑖+1,𝑗
+ Ψ
𝑛

𝑖+1,𝑗−1
− Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 + 𝛿

4𝐻
(2Ψ
𝑛

𝑖,𝑗
+ Ψ
𝑛

𝑖,𝑗−1
− Ψ
𝑛

𝑖,𝑗+1
)] 𝐹
𝑥
1
,1

𝑖+(1/2),𝑗

+ [
𝐻 − 𝛿

4𝐻
(−Ψ
𝑛

𝑖+1,𝑗−1
+ Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 + 𝛿

4𝐻
(−Ψ
𝑛

𝑖,𝑗−1
+ Ψ
𝑛

𝑖,𝑗+1
)] 𝐹
𝑥
1
,2

𝑖+(1/2),𝑗

+ [
𝐻 + 𝛿

4𝐻
(2Ψ
𝑛

𝑖+1,𝑗
+ Ψ
𝑛

𝑖+1,𝑗−1
− Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 − 𝛿

4𝐻
(2Ψ
𝑛

𝑖,𝑗
+ Ψ
𝑛

𝑖,𝑗−1
− Ψ
𝑛

𝑖,𝑗+1
)] 𝐹
𝑥
2
,1

𝑖+(1/2),𝑗

+ [
𝐻 + 𝛿

4𝐻
(−Ψ
𝑛

𝑖+1,𝑗−1
+ Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 − 𝛿

4𝐻
(−Ψ
𝑛

𝑖,𝑗−1
+ Ψ
𝑛

𝑖,𝑗+1
)] 𝐹
𝑥
2
,2

𝑖+(1/2),𝑗
.

(15)

Similarly, for 𝐼
𝛿

𝑖,𝑗+(1/2)
, we have

𝐹
𝑛,𝑦

𝑖,𝑗+(1/2)
≈ [

𝐻 − 𝛿

4𝐻
(2Ψ
𝑛

𝑖,𝑗+1
+ Ψ
𝑛

𝑖−1,𝑗+1
− Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 + 𝛿

4𝐻
(2Ψ
𝑛

𝑖,𝑗
+ Ψ
𝑛

𝑖−1,𝑗
− Ψ
𝑛

𝑖+1,𝑗
)] 𝐹
𝑦
1
,1

𝑖,𝑗+(1/2)

+ [
𝐻 − 𝛿

4𝐻
(−Ψ
𝑛

𝑖−1,𝑗+1
+ Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 + 𝛿

4𝐻
(−Ψ
𝑛

𝑖−1,𝑗
+ Ψ
𝑛

𝑖+1,𝑗
)] 𝐹
𝑦
1
,2

𝑖,𝑗+(1/2)

+ [
𝐻 + 𝛿

4𝐻
(2Ψ
𝑛

𝑖,𝑗+1
+ Ψ
𝑛

𝑖−1,𝑗+1
− Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 − 𝛿

4𝐻
(2Ψ
𝑛

𝑖,𝑗
+ Ψ
𝑛

𝑖−1,𝑗
− Ψ
𝑛

𝑖+1,𝑗
)] 𝐹
𝑦
2
,1

𝑖,𝑗+(1/2)

+ [
𝐻 + 𝛿

4𝐻
(−Ψ
𝑛

𝑖−1,𝑗+1
+ Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 − 𝛿

4𝐻
(−Ψ
𝑛

𝑖−1,𝑗
+ Ψ
𝑛

𝑖+1,𝑗
)] 𝐹
𝑦
2
,2

𝑖,𝑗+(1/2)
.

(16)

2.2.4.Macroscopic Evolution. LetΔ𝑡 be a time step size, where
Δ𝑡 = 𝑡

𝑛+1

−𝑡
𝑛.Themacroscopic evolution on the coarse mesh

is now done via the approximation of (2), and here we use
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the Crank-Nicolsonmethod to construct the fully discretized
version of (2),
𝑆
𝑠𝑖,𝑗

Δ𝑡
(Ψ
𝑛+1

𝑖,𝑗
− Ψ
𝑛

𝑖,𝑗
)

= −
1

2𝐻
(𝐹
𝑛+1,𝑥

𝑖+(1/2),𝑗
− 𝐹
𝑛+1,𝑥

𝑖−(1/2),𝑗
+ 𝐹
𝑛+1,𝑦

𝑖,𝑗+(1/2)
− 𝐹
𝑛+1,𝑦

𝑖,𝑗−(1/2)
)

−
1

2𝐻
(𝐹
𝑛,𝑥

𝑖+(1/2),𝑗
− 𝐹
𝑛,𝑥

𝑖−(1/2),𝑗
+ 𝐹
𝑛,𝑦

𝑖,𝑗+(1/2)
− 𝐹
𝑛,𝑦

𝑖,𝑗−(1/2)
) + 𝑅
𝑛

𝑖,𝑗
.

(17)
Combining (15), (16), and (17) yields

𝑆
𝑠𝑖,𝑗

Δ𝑡
(Ψ
𝑛+1

𝑖,𝑗
− Ψ
𝑛

𝑖,𝑗
)

= (𝑐
1
Ψ
𝑛+1

𝑖−1,𝑗−1
+ 𝑐
2
Ψ
𝑛+1

𝑖,𝑗−1
+ 𝑐
3
Ψ
𝑛+1

𝑖+1,𝑗−1

+ 𝑐
4
Ψ
𝑛+1

𝑖−1,𝑗
+ 𝑐
5
Ψ
𝑛+1

𝑖,𝑗
+ 𝑐
6
Ψ
𝑛+1

𝑖+1,𝑗

+𝑐
7
Ψ
𝑛+1

𝑖−1,𝑗+1
+ 𝑐
8
Ψ
𝑛+1

𝑖,𝑗+1
+ 𝑐
9
Ψ
𝑛+1

𝑖+1,𝑗+1
)

+ (𝑐
1
Ψ
𝑛

𝑖−1,𝑗−1
+ 𝑐
2
Ψ
𝑛

𝑖,𝑗−1
+ 𝑐
3
Ψ
𝑛

𝑖+1,𝑗−1
+ 𝑐
4
Ψ
𝑛

𝑖−1,𝑗

+ 𝑐
5
Ψ
𝑛

𝑖,𝑗
+ 𝑐
6
Ψ
𝑛

𝑖+1,𝑗
+ 𝑐
7
Ψ
𝑛

𝑖−1,𝑗+1

+𝑐
8
Ψ
𝑛

𝑖,𝑗+1
+ 𝑐
9
Ψ
𝑛

𝑖+1,𝑗+1
) + 𝑅
𝑛

𝑖,𝑗
,

(18)

where

𝑐
1

= −
1

8𝐻2

× [(𝐻 + 𝛿) (−𝐹
𝑥
1
,1

𝑖−(1/2),𝑗
+ 𝐹
𝑥
1
,2

𝑖−(1/2),𝑗
− 𝐹
𝑦
1
,1

𝑖,𝑗−(1/2)
+ 𝐹
𝑦
1
,2

𝑖,𝑗−(1/2)
)

+ (𝐻 − 𝛿) (−𝐹
𝑥
2
,1

𝑖−(1/2),𝑗
+ 𝐹
𝑥
2
,2

𝑖−(1/2),𝑗
− 𝐹
𝑦
2
,1

𝑖,𝑗−(1/2)

+𝐹
𝑦
2
,2

𝑖,𝑗−(1/2)
)] ,

𝑐
2

= −
1

8𝐻2
[(𝐻 + 𝛿) (𝐹

𝑥
1
,1

𝑖+(1/2),𝑗
− 𝐹
𝑥
1
,2

𝑖+(1/2),𝑗
− 𝐹
𝑥
2
,1

𝑖−(1/2),𝑗

+𝐹
𝑥
2
,2

𝑖−(1/2),𝑗
− 2𝐹
𝑦
1
,1

𝑖,𝑗−(1/2)
)

+ (𝐻 − 𝛿) (𝐹
𝑥
2
,1

𝑖+(1/2),𝑗
− 𝐹
𝑥
2
,2

𝑖+(1/2),𝑗
− 𝐹
𝑥
1
,1

𝑖−(1/2),𝑗

+𝐹
𝑥
1
,2

𝑖−(1/2),𝑗
− 2𝐹
𝑦
2
,1

𝑖,𝑗−(1/2)
)] ,

𝑐
3

= −
1

8𝐻2
[(𝐻 + 𝛿) (𝐹

𝑥
2
,1

𝑖+(1/2),𝑗
− 𝐹
𝑥
2
,2

𝑖+(1/2),𝑗

+𝐹
𝑦
1
,1

𝑖,𝑗−(1/2)
− 𝐹
𝑦
1
,2

𝑖,𝑗−(1/2)
)

+ (𝐻 − 𝛿) (𝐹
𝑥
1
,1

𝑖+(1/2),𝑗
− 𝐹
𝑥
1
,2

𝑖+(1/2),𝑗

+𝐹
𝑦
2
,1

𝑖,𝑗−(1/2)
− 𝐹
𝑦
2
,2

𝑖,𝑗−(1/2)
)] ,

𝑐
4

= −
1

8𝐻2
[(𝐻 + 𝛿) (𝐹

𝑦
1
,1

𝑖,𝑗+(1/2)
− 𝐹
𝑦
1
,2

𝑖,𝑗+(1/2)
− 2𝐹
𝑥
1
,1

𝑖−(1/2),𝑗

−𝐹
𝑦
1
,1

𝑖,𝑗−(1/2)
+ 𝐹
𝑦
2
,2

𝑖,𝑗−(1/2)
)

+ (𝐻 − 𝛿) (𝐹
𝑦
2
,1

𝑖,𝑗+(1/2)
− 𝐹
𝑦
2
,2

𝑖,𝑗+(1/2)

−2𝐹
𝑥
2
,1

𝑖−(1/2),𝑗
+ 𝐹
𝑦
1
,2

𝑖,𝑗−(1/2)
)] ,

𝑐
5

= −
1

8𝐻2
[(𝐻 + 𝛿) (2𝐹

𝑥
1
,1

𝑖+(1/2),𝑗
+ 2𝐹
𝑦
1
,1

𝑖,𝑗+(1/2)

−2𝐹
𝑥
2
,1

𝑖−(1/2),𝑗
− 2𝐹
𝑦
2
,1

𝑖,𝑗−(1/2)
)

+ (𝐻 − 𝛿) (2𝐹
𝑥
2
,1

𝑖+(1/2),𝑗
+ 2𝐹
𝑦
2
,1

𝑖,𝑗+(1/2)

− 2𝐹
𝑥
1
,1

𝑖−(1/2),𝑗
− 2𝐹
𝑦
1
,1

𝑖,𝑗−(1/2)
)] ,

𝑐
6

= −
1

8𝐻2
[(𝐻 + 𝛿) (2𝐹

𝑥
2
,1

𝑖+(1/2),𝑗
− 𝐹
𝑦
1
,1

𝑖,𝑗+(1/2)
+ 𝐹
𝑦
1
,2

𝑖,𝑗+(1/2)

+𝐹
𝑦
2
,1

𝑖,𝑗−(1/2)
− 𝐹
𝑦
2
,2

𝑖,𝑗−(1/2)
)

+ (𝐻 − 𝛿) (2𝐹
𝑥
1
,1

𝑖+(1/2),𝑗
− 𝐹
𝑦
2
,1

𝑖,𝑗+(1/2)

+𝐹
𝑦
2
,2

𝑖,𝑗+(1/2)
− 𝐹
𝑦
1
,2

𝑖,𝑗−(1/2)
)] ,

𝑐
7

= −
1

8𝐻2
[(𝐻 + 𝛿) (𝐹

𝑦
2
,1

𝑖,𝑗+(1/2)
− 𝐹
𝑦
2
,2

𝑖,𝑗+(1/2)

+𝐹
𝑥
1
,1

𝑖−(1/2),𝑗
− 𝐹
𝑥
1
,2

𝑖−(1/2),𝑗
)

+ (𝐻 − 𝛿) (𝐹
𝑦
1
,1

𝑖,𝑗+(1/2)
− 𝐹
𝑦
1
,2

𝑖,𝑗+(1/2)

+𝐹
𝑥
2
,1

𝑖−(1/2),𝑗
− 𝐹
𝑥
2
,2

𝑖−(1/2),𝑗
)] ,

𝑐
8

= −
1

8𝐻2
[(𝐻 + 𝛿) (−𝐹

𝑥
1
,1

𝑖+(1/2),𝑗
+ 𝐹
𝑥
1
,2

𝑖+(1/2),𝑗
+ 2𝐹
𝑦
2
,1

𝑖,𝑗+(1/2)

+𝐹
𝑥
2
,1

𝑖−(1/2),𝑗
− 𝐹
𝑥
2
,2

𝑖−(1/2),𝑗
)

+ (𝐻 − 𝛿) (−𝐹
𝑥
2
,1

𝑖+(1/2),𝑗
+ 𝐹
𝑥
2
,2

𝑖+(1/2),𝑗
+ 2𝐹
𝑦
1
,1

𝑖,𝑗+(1/2)

+𝐹
𝑥
1
,1

𝑖+(1/2),𝑗
− 𝐹
𝑥
1
,2

𝑖−(1/2),𝑗
)] ,

𝑐
9

= −
1

8𝐻2
[(𝐻 + 𝛿) (−𝐹

𝑥
2
,1

𝑖+(1/2),𝑗
+ 𝐹
𝑥
2
,2

𝑖+(1/2),𝑗

+𝐹
𝑦
2
,1

𝑖,𝑗+(1/2)
+ 𝐹
𝑦
2
,2

𝑖,𝑗+(1/2)
)

+ (𝐻 − 𝛿) (−𝐹
𝑥
1
,1

𝑖+(1/2),𝑗
+ 𝐹
𝑥
1
,2

𝑖+(1/2),𝑗

−𝐹
𝑦
1
,1

𝑖,𝑗+(1/2)
+ 𝐹
𝑦
1
,2

𝑖,𝑗+(1/2)
)] .

(19)
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Interpolate heads at boundaries of local 
microscopic elliptic problems (9) and (12)

Solve local basic microscopic elliptic problems (4)

Estimate basic macroscopic fluxes (5-6)

Estimate macroscopic fluxes (16-17)

Solve the macroscopic model (18)

Yes 

No Convergent?

Give Ψn

Obtain Ψn+1

Figure 3: Flow chart of the new scheme at a time step.

Then, we solve the following equation at the coarse mesh
by using MGD9V [26]:

− 𝑐
1
Ψ
𝑛+1

𝑖−1,𝑗−1
− 𝑐
2
Ψ
𝑛+1

𝑖,𝑗−1
− 𝑐
3
Ψ
𝑛+1

𝑖+1,𝑗−1
− 𝑐
4
Ψ
𝑛+1

𝑖−1,𝑗

+ (
𝑆
𝑠𝑖,𝑗

Δ𝑡
− 𝑐
5
) Ψ
𝑛+1

𝑖,𝑗
− 𝑐
6
Ψ
𝑛+1

𝑖+1,𝑗
− 𝑐
7
Ψ
𝑛+1

𝑖−1,𝑗+1

− 𝑐
8
Ψ
𝑛+1

𝑖,𝑗+1
− 𝑐
9
Ψ
𝑛+1

𝑖+1,𝑗+1

= 𝑐
1
Ψ
𝑛

𝑖−1,𝑗−1
+ 𝑐
2
Ψ
𝑛

𝑖,𝑗−1
+ 𝑐
3
Ψ
𝑛

𝑖+1,𝑗−1
+ 𝑐
4
Ψ
𝑛

𝑖−1,𝑗

+ (
𝑆
𝑠𝑖,𝑗

Δ𝑡
+ 𝑐
5
) Ψ
𝑛

𝑖,𝑗
+ 𝑐
6
Ψ
𝑛

𝑖+1,𝑗
+ 𝑐
7
Ψ
𝑛

𝑖−1,𝑗+1
+ 𝑐
8
Ψ
𝑛

𝑖,𝑗+1

+ 𝑐
9
Ψ
𝑛

𝑖+1,𝑗+1
+ 𝑅
𝑛

𝑖,𝑗
.

(20)

Thus, the algorithm is completed.The solution procedure
at a time step is illustrated in Figure 3. We also give a sum-
marywhich only includes the relevant discrete equations nec-
essary to implement the proposed method. Firstly, the basic
elliptic problems (4) are solved. Then, basic macroscopic
fluxes (5) and (6) are estimated, and the coefficients (19) are
calculated. The above steps are finished at the preprocessing
step. Finally, the macroscopic discrete equations (20) are
evolved.

The algorithm described above is easy to extend to
the steady flow problem in heterogeneous porous media.
Under the condition of the steady flow, the left-hand side

of (1) equals zero. Correspondingly, the left-hand side of
macroscopic (2) equals zero. The remainder will similarly be
completed; then we have

𝑐
1
Ψ
𝑖−1,𝑗−1

+ 𝑐
2
Ψ
𝑖,𝑗−1

+ 𝑐
3
Ψ
𝑖+1,𝑗−1

+ 𝑐
4
Ψ
𝑖−1,𝑗

+ 𝑐
5
Ψ
𝑖,𝑗

+ 𝑐
6
Ψ
𝑖+1,𝑗

+ 𝑐
7
Ψ
𝑖−1,𝑗+1

+ 𝑐
8
Ψ
𝑖,𝑗+1

+ 𝑐
9
Ψ
𝑖+1,𝑗+1

= −
1

2
𝑅
𝑖,𝑗

.

(21)
Although FDHMM proposed by Abdulle and E [20] works
for the transient problem, it is also easy to extend to the
steady problem.The given coarse- and fine-grid equations of
FDHMM are elliptic equations in the steady condition. The
iteration scheme of FDHMM is similar to that of the new
scheme, and the solutions of both methods are the same.

The locally hydraulic conductivity (13) is assumed to
be isotropic, but the macroscopic conductivity may be
anisotropic or a full tensor because the final macroscopic
scheme (18) is a nine-spot one. The algorithm may also be
extended to general quadrilateral mesh; themethod is similar
to [28].

3. Evaluation of Numerical Accuracy

All porous media in nature are heterogeneous. The hetero-
geneity in this study comes from the hydraulic conductivity.
As the standard deviation of logarithmic hydraulic conduc-
tivity increases, the heterogeneity increases.The randomcon-
ductivity field is generated by the Turning Bandmethod [29],
in which the hydraulic conductivity is assumed to be locally
isotropic. In this study, we used four saturated groundwater
flow examples, including two steady flow examples and two
transient flow examples, to show the main advantages of the
constructed scheme. Also, influences of different factors are
examined, such as conductivity fields with high variability as
well as different correlation structures, the flow rate of the
pumping well, and the size of the local microscale model, on
the accuracy of the constructed scheme.

3.1. Implementation. The algorithm has been implemented
in a FORTRAN code. Because it is difficult to construct
interesting multiscale problem with an exact solution, people
often compare the coarse scale solution obtained by the mul-
tiscale method with a computed reference solution obtained
on the fine scale. We have employed the conventional finite
difference method with multigrid over a fine mesh to solve
the original equation and refer to this solution as the “exact”
solution.

As a measure of the error, we take the relative 𝐿
2
norm

and the relative maximum norm

eer
2

= [

[

∑
𝑁


𝑖=1
(Ψ
𝑖
− Ψ (x

𝑖
))
2

∑
𝑁


𝑖=1
(Ψ (x
𝑖
))
2

]

]

1/2

,

eer
∞

=
max
𝑖=1,...,𝑁



Ψ𝑖 − Ψ (x
𝑖
)


max
𝑖=1,...,𝑁



Ψ (x
𝑖
)


,

(22)

respectively, where 𝑁
 is the total number of nodes on the

coarsemesh,Ψ
𝑖
denotes the coarse solution at the coarse node
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Figure 4: A realization of the random saturated conductivity fields of different standard deviations under 𝜆
𝑥

= 𝜆
𝑦

= 100m: (a) 𝜎ln𝐾 = 0.5,
(b) 𝜎ln𝐾 = 1.0, (c) 𝜎ln𝐾 = 1.5, and (d) 𝜎ln𝐾 = 2.0.

x
𝑖
, and Ψ(x

𝑖
) denotes the “exact” solution projected on the

coarse mesh; that is, Ψ(x
𝑖
) = 𝜓(x

𝑖
) at the coarse node. Here,

𝜓(x) is the “exact” solution.
In all test examples, the study domain Ω is a rectangle

covering 1 km × 1 km with the point (0, 0) as the origin. A
uniform finite difference mesh is constructed by dividing Ω

into an𝑁×𝑁mesh.Thefinemesh is a 256×256mesh, and the
“exact” solution and the random hydraulic conductivity field
are obtained on this mesh.The coarse mesh is a 16 × 16 mesh
and the coarse solution is obtained by using the multiscale
method on this mesh.

3.2. Steady Flow Problems with Isotropic and Anisotropic
Microstructure. We impose the Dirichlet-Neumann bound-
ary condition for the test steady flow problem. The left and
right sides of boundary are Dirichlet boundaries. Head on
the left is 20m, and that on the right side is 10m. The
top and bottom sides are impermeable boundaries. To start
the computation using the new scheme, we need to choose

the size of the control volume 𝛿. In this study, 𝛿 is chosen to
be equal to a half of the coarse mesh size, which means that
we only use about 50% of the total data at the small scale; that
is, 𝛿 = (1/2)𝐻. Every control volume 𝐼

𝛿 is uniformly divided
into an 8 × 8 mesh such that its mesh size equals the size of
the fine mesh.

Four conductivity fields with isotropic correlation
microstructure are first applied. Correlation lengths of these
conductivity fields are 𝜆

𝑥
= 𝜆
𝑦

= 10m, 𝜆
𝑥

= 𝜆
𝑦

= 20m,
𝜆
𝑥

= 𝜆
𝑦

= 40m, and 𝜆
𝑥

= 𝜆
𝑦

= 100m, respectively. We
assume that the geometric mean of hydraulic conductivity
is 𝐾 = 0.006m/min. Under 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0, where
𝜎ln𝐾 is the standard deviation of logarithmic hydraulic
conductivity, these four conductivity fields vary by about
one, three, five, and six orders of magnitude, respectively.
A realization of the random conductivity fields with
𝜆
𝑥

= 𝜆
𝑦

= 100m and 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0 is plotted
in Figure 4. Figure 5 plots the errors of the solutions of
the constructed scheme for different correlation lengths at
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Figure 5: Relative (a)𝐿
2
and (b)maximumerrors between the fine-scalemodel and the new scheme for the steady flowproblemwith isotropic

correlation microstructure.

𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0. It illustrates that the larger standard
deviation of logarithmic hydraulic conductivity leads to
the less accurate results. Furthermore, at the case with
𝜆
𝑥

= 𝜆
𝑦

= 10m and 𝜎ln𝐾 = 2.5, in which the conductivity
field varies by about nine orders of magnitude, the new
scheme is even not convergent, although it works for other
correlation scales for the same logarithmic conductivity
variance. The reason may be that conductivities of highly
heterogeneous systems are highly discontinuous, which
makes the direct application of the algorithm infeasible. It
may also indicate that the standard deviation of logarithmic
hydraulic conductivity plays an important role in the
accuracy of the new scheme. At the same time, when
𝜎ln𝐾 = 0.5, the results obtained under different correlation
lengths have about the same accuracy and the correlation
length of conductivity field shows no significant effect on the
accuracy of the new scheme. It is noted that the correlation
length is even larger than the size of the control volume in the
case with 𝜆

𝑥
= 𝜆
𝑦

= 100m. The heads in section 𝑦 = 500m
obtained from the fine-scale model on the fine mesh and the
constructed scheme on the coarse mesh for the case with
𝜆
𝑥

= 𝜆
𝑦

= 100m and 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0 are depicted in
Figure 6, and we observe that the solution obtained by the
constructed scheme on a coarse mesh is able to approximate
the exact solution. The above discussion indicates that the
new scheme gives a reasonable accuracy for the test steady
flow examples with isotropic correlation microstructure.

Convergence should be a necessary condition for the
new scheme as a good numerical method. Here, we only
consider the conductivity field with 𝜆

𝑥
= 𝜆
𝑦

= 100m. Fixing
𝛿 = (1/2)𝐻, Figure 7 plotted the relative errors for coarse
meshes with 4 × 4, 8 × 8, 16 × 16, and 32 × 32 elements
under four cases that𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0, respectively.The
errors monotonically decrease as the total number of coarse

elements increases and tend to zero, which means that the
new scheme solution converges as the coarse grid is refined.

Next, we turn to consider three conductivity fields with
anisotropic correlation microstructure. Fixing 𝑦-direction
correlation length 𝜆

𝑦
= 10m, 𝑥-direction correlation lengths

of these conductivity fields are 𝜆
𝑥

= 20m, 𝜆
𝑥

= 40m, and
𝜆
𝑥

= 100m, respectively. Assume that 𝐾 = 0.006m/min.
Under 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0, these three conductivity fields
vary by over one, three, five, and seven orders of magni-
tude, respectively. The results of the constructed scheme for
different correlation lengths at 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0 are
depicted in Figure 8. As in the previous example, the stan-
dard deviation of logarithmic hydraulic conductivity shows
significant effect on the accuracy of the new scheme. The
errors obviously increase with 𝜎ln𝐾 increasing. Compared to
the standard deviation, the correlation length of conductivity
field has relatively little influence on the accuracy of the
new scheme. The maximum error in Figure 8 is attained at
the case with 𝜆

𝑥
= 100, 𝜆

𝑦
= 10m, and 𝜎ln𝐾 = 2.0,

and the relative 𝐿
2
and maximum errors of the solution of

the constructed scheme are 2.28% and 5.88%, respectively.
Similar to the isotropic case, the new scheme also gives a
reasonable accuracy for the test steady flow examples with
anisotropic correlation microstructure.

3.3. Aquifer Response to Sudden Change in Reservoir Level.
Wedesign this transient test example based on the example in
[30]. Consider the confined aquifer in the study area. Initial
head is equal to 20m everywhere in the aquifer. We wish
to simulate changes in head through time if, at 𝑡 = 0, we
suddenly drop the water level in the reservoir on four sides
of the study area from 20m to 10m. The specific storage
coefficient and the thickness of the aquifer are 2.0 × 10

−4m−1
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Figure 6: Exact solution and the coarse solution of the new scheme in section 𝑦 = 500m for the steady flow problem under isotropic
correlation microstructure with different standard deviations: (a) 𝜎ln𝐾 = 0.5, (b) 𝜎ln𝐾 = 1.0, (c) 𝜎ln𝐾 = 1.5, and (d) 𝜎ln𝐾 = 2.0.

and 10m, respectively. To generate the random hydraulic
conductivity field, we assume that 𝐾 is 0.003m/min, the
standard deviation of ln𝐾 is 1.5, and the correlation structure
of the conductivity is anisotropic with 𝜆

𝑥
= 40m and 𝜆

𝑦
=

10m. Conductivity 𝐾 in this random field varies by over five
orders of magnitude. Fix a time step size Δ𝑡 = 5min and the
study time 8000min.

At first, accuracies and efficiencies of the constructed
scheme and FDHMM are compared. Let the size of the
control volume 𝛿 = (1/2)𝐻, and the control volume 𝐼

𝛿

is uniformly divided into an 8 × 8 mesh. The computa-
tional results of different multiscale schemes at times =

500, 1000, 2000, 4000, 5000, 6000, and 8000min are plotted
in Figure 9. Figure 9 indicates that the new scheme seems to
be more accurate than FDHMM. After 𝑡 = 1000min, eer

2

and eer
∞

of the solution of the constructed scheme mono-
tonically decrease from 2.06% to 0.32% and from 7.37% to

0.95%, respectively, while those of FDHMM fluctuate in the
intervals 2.71%∼6.60% and 6.13%∼15.40%, respectively. The
reason leading to the difference between the results obtained
by the constructed scheme and obtained by FDHMMmay be
the different approaches of estimating the macroscopic flux.
Compared with FDHMM in which the approximation of the
macroscopic flux is determined before the coarse equation is
solved, for the constructed scheme, the computation of the
macroscopic flux is coupled into the course of solving the
coarse equation.Thus, a quasistationary state of the computed
macroscopic flux is approached in the global domain for the
constructed scheme and in the local domain for FDHMM,
and it maymake the constructed scheme give better accuracy
than FDHMM for this test problem. We plot the heads in the
whole study domain at times 𝑡 = 1000 and 5000min obtained
from the fine-scalemodel on the finemesh and twomultiscale
methods on the coarse mesh (Figure 10). We observe that
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Figure 7: Relative (a) 𝐿
2
and (b) maximum errors of the solution of the new scheme for coarse grids with 4 × 4, 8 × 8, 16 × 16, and 32 × 32

elements.
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Figure 8: Relative (a) 𝐿
2
and (b) maximum errors between the fine-scale model and the new scheme for the steady flow problem with

anisotropic correlation microstructure.

the heads obtained by the new scheme on a coarse mesh
can satisfyingly approximate the “exact” heads, and FDHMM
underestimates the heads at the coarse nodes.

The results were obtained on a computer running Win-
dows XP with 2.66GHz processor, 2 megabytes of cache,
and 512 megabytes of RAM. For this test example, mem-
ory requirements using the conventional finite difference
method, the constructed scheme, and FDHMM are about
27.7, 4.3, and 4.3 megabytes, respectively; CPU times using

the three methods are about 12.1min, 0.1min, and 7.2min,
respectively. Compared with the computational cost of the
conventional finite difference method, in our test example,
the present new can save about 84.5% memory and about
99.2% CPU time, and FDHMM can save about 84.5% mem-
ory and about 40.5% CPU time. We need to solve 4𝑁(𝑁 −

1) basic microscopic elliptic problems in the constructed
scheme. In fact, the computations of these basic microscale
problems can be carried out sequentially, and, at a time,
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Figure 9: Relative (a) 𝐿
2
and (b) maximum errors between exact and two coarse solutions for aquifer response to sudden change in reservoir

level.

we only need to solve two basic microscale problems (one
for 𝐼
𝛿

𝑖+(1/2),𝑗
and the other for 𝐼

𝛿

𝑖,𝑗+(1/2)
). When 𝛿 = (1/2)𝐻,

every basic microscale problem has (𝑀 + 1)
2 unknowns;

the degrees of freedom of these basic microscale problems
are 2(𝑀 + 1)

2. Added (𝑁 + 1)
2 degrees of freedom of the

macroscopic scheme, the total degrees of freedom of the new
scheme are 2(𝑀 + 1)

2

+ (𝑁 + 1)
2. Similarly, the total degrees

of freedom of FDHMM are also 2(𝑀 + 1)
2

+ (𝑁 + 1)
2,

and degrees of freedom of the full fine scheme are (2𝑁𝑀 +

1)
2. Thus, both the constructed scheme and FDHMM can

obviously save the memory requirement. The first saving in
computational time in two multiscale schemes is achieved
by reducing the computation of the fine mesh on the whole
domain. The fine-scale global flow solution is decomposed
into a series of local microscopic problems, and this greatly
saves the computational time. However, local microscopic
models of the new scheme only need to be solved once at the
preprocessing step, while those of FDHMMneed to be solved
at every time step.Thus, the constructed scheme needs much
less CPU time than FDHMM.

Next, we discuss the effects of different cell sizes on the
accuracy of the constructed scheme. In a coarse 16×16mesh,
the coarsemesh size𝐻 equals 1000/16m;we change the size of
the control volume and let 𝛿 = (1/2)𝐻, (3/4)𝐻, 𝐻, (5/4)𝐻 in
turn. To obtain the same size as the full fine mesh size, these
control volumes are uniformly divided into 8 × 8, 12 × 12,
16 × 16, and 20 × 20 meshes in turn. The results obtained by
the constructed scheme under different control volume sizes
at times = 500, 1000, 2000, 4000, 5000, 6000, and 8000min
are depicted in Figure 11. We observe that the cases with
𝛿 = (3/4)𝐻, 𝛿 = 𝐻, and 𝛿 = (5/4)𝐻 have about the same
accuracy, and the case with 𝛿 = (1/2)𝐻 has a less accuracy.
This is likely because, at three cases with 𝛿 = (3/4)𝐻, 𝛿 = 𝐻,

and 𝛿 = (5/4)𝐻, the main microstructural information is
efficiently captured by the control volume. It may indicate
that the control volume size shows no significant effect on the
accuracy of the constructed scheme when it is chosen to be
near the coarse mesh size.

3.4. Steady and Transient Flow Problems with Weak Well
Drawdown. In this section, we first consider the steady
flow problem with well drawdown in heterogeneous porous
media. Similar to the examples discussed in [10, 31], we
impose the following fixed head and no flux boundary condi-
tions for the test example: heads on the left and right sides are
10m and top and bottom sides are impermeable boundaries.
In addition, a pumping well with the constant flow rate 𝑄

is located at the point (500m, 500m), and we let 𝑄 =

0.12m3/min, 0.24m3/min, 0.36m3/min, and 0.48m3/min,
respectively. The aquifer is 10m thick. We also choose 𝛿 =

(1/2)𝐻 and uniformly divide every control volume 𝐼
𝛿 into an

8 × 8 mesh such that its mesh size equals the size of the fine
mesh.

Four conductivity fields with 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0 are
considered. Assume that the geometric mean of hydraulic
conductivity is 𝐾 = 0.018m/min and the anisotropic
correlation microstructure with 𝜆

𝑥
= 40, 𝜆

𝑦
= 10m. The

errors of the results obtained by the constructed scheme
under different well flow rates at 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0

are plotted in Figure 12. Different from the examples of
Section 3.2, the standard deviation of logarithmic hydraulic
conductivity shows no significant effect on the accuracy of
the new scheme. For example, given 𝑄 = 0.12m3/min, when
𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0, relative 𝐿

2
errors of the solution of

the new scheme are about 0.15%, 0.15%, 0.17%, and 0.20%,
respectively, and relative maximum errors of the solution
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Figure 10: Exact solution (top), the coarse solutions of the new scheme (middle), and FDHMM (bottom) at times 𝑡 = 1000min (left) and
5000min (right) for aquifer response to sudden change in reservoir level.

of the new scheme are 2.52%, 2.29%, 2.17%, and 2.00%,
respectively. The important factor affecting the accuracy of
the new scheme is the flow rate of the pumping well. The
larger the flow rate of pumping well is, the larger the resulting
errors are. Setting 𝜎ln𝐾 = 1.0, Figure 13 plots the heads in

section 𝑦 = 500m obtained from the fine-scale model on the
fine mesh and the constructed scheme on the coarse mesh
for the cases 𝑄 = 0.12, 0.24, 0.36, 0.48m3/min. There are
larger errors of the results of the constructed scheme near
point (500m, 500m), which are caused by the pumping well
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Figure 11: Relative (a) 𝐿
2
and (b) maximum errors between the fine-scale model and the new scheme under different cell sizes for aquifer

response to sudden change in reservoir level.
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Figure 12: Relative (a) 𝐿
2
and (b) maximum errors between the fine-scale model and the new scheme for the steady flow problem with well

drawdown.

at this point. This is likely because heads near the well vary
nonlinearly with distance to the well, which cannot be well
described by the constructed scheme. On the other hand, the
problem of the well singularity may be related to the chosen
scale. If we choose a coarse 32 × 32 mesh and 𝛿 = (1/2)𝐻

and resolve this well drawdown problem. When 𝜎ln𝐾 = 1.0,
in Figure 14, we replot the curves shown in Figure 13. We
observe that the accuracy of the new scheme was improved
markedly.

Next, we consider the transient well drawdown problem
in heterogeneous porous media. Boundaries of the study area
are Dirichlet types. Heads on four sides are all 10m. Initial
pressure head is also 10m everywhere in the aquifer. The
specific storage coefficient is 2.0 × 10

−4m−1 and the aquifer
is 10m thick. There is a pumping well at the point (500m,
500m). The well has the constant flow rate of 0.24m3/min
and is pumped for 1600min in the problem. The time step
is 1min for every method. This test example is analogous to
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Figure 13: Exact solution and the coarse solution of the new scheme in section 𝑦 = 500m for the steady well drawdown problem under
different well flow rates: (a) 𝑄 = 0.12, (b) 𝑄 = 0.24, (c) 𝑄 = 0.36, and (d) 𝑄 = 0.48 (m3(min)−1).

the examples used in [10, 31]. The statistical parameters used
to describe random conductivity field are 𝐾 = 0.018m/min,
𝜎ln𝐾 = 1.0, 𝜆

𝑥
= 40m, and 𝜆

𝑦
= 10m. This random

conductivity field varies by over three orders of magnitude.
Similar to Section 3.3, we compare accuracies and effi-

ciencies of the constructed scheme and FDHMM.The control
volume 𝐼

𝛿 has a size of (1/2)𝐻 and is uniformly divided into
an 8 × 8 mesh. We plot the computational results of different
multiscale schemes at times = 100, 200, 400, 800, 1000, 1200,
and 1600min (Figure 15). The constructed scheme gives a lit-
tle more accuracy than FDHMM. Over the whole simulating
time, eer

2
and eer

∞
of the solution of the new scheme are less

than 0.26%and 4.15%, respectively, and those of FDHMMare
less than 0.38% and 5.44%, respectively. Figure 16 shows the
heads at times 𝑡 = 200 and 1000min in section 𝑦 = 500m
obtained from the fine-scale model on the fine mesh and

two multiscale methods on the coarse mesh. We observe that
the solutions obtained by both the constructed scheme and
FDHMM on a coarse mesh are able to satisfyingly approx-
imate the exact solution except of the well singularity. Near
the well singularity, the results obtained by both multiscale
methods are in rough agreement with those obtained by the
fine-scale model, and the heads are overestimated to be about
0.45m and 0.50m by the constructed scheme and FDHMM
at the well singularity, respectively, at 𝑡 = 200min. This
fact may imply that, although a quasibalance state of the
macroscopic flux is achieved in the global domain for the
constructed scheme versus in the local domain for FDHMM,
this advantage of the constructed scheme is not obvious for
the well drawdown problem.

Computational costs of the three methods in this test
example are similar to those in the test example discussed in
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Figure 14: Exact solution and the coarse solution of the new scheme at the coarse 32 × 32 mesh in section 𝑦 = 500m under different well
flow rates: (a) 𝑄 = 0.12, (b) 𝑄 = 0.24, (c) 𝑄 = 0.36, and (d) 𝑄 = 0.48 (m3(min)−1).

Section 3.3 and are omitted in this section.This is followed by
a discussion of effects of different cell sizes on the accuracy
of the constructed scheme. As described in Section 3.3, in a
coarse 16 × 16 mesh, the control volumes are chosen to have
sizes of 𝛿 = (1/2)𝐻, (3/4)𝐻, 𝐻, (5/4)𝐻 and are uniformly
divided into 8 × 8, 12 × 12, 16 × 16, and 20 × 20 meshes
in turn. Plotted in Figure 17 are the calculated results of the
constructed scheme under different control volume sizes at
times 𝑡 = 100, 200, 400, 800, 1000, 1200, and 1600min. It
indicates that four cases give a reasonable accuracy in eer

2

and eer
∞
. We observe that the results for 𝛿 = 𝐻 are the

best, the results for 𝛿 = (3/4)𝐻 are less accurate than those
for 𝛿 = 𝐻, the results for 𝛿 = (5/4)𝐻 are less accurate
than those for 𝛿 = (3/4)𝐻, and the results for 𝛿 = (1/2)𝐻

are the worst. The results obtained under three cases with
𝛿 = (3/4)𝐻, 𝐻, (5/4)𝐻 are very similar. Thus, the control
volume size may be chosen to be near the size of the coarse

mesh for the sake of the accuracy of the constructed scheme.
In addition, under the cases with 𝛿 = (1/2)𝐻 and 𝛿 =

(3/4)𝐻, we only use about 50% and 75% of the information
of the whole microstructure, respectively. This flexibility of
choosing the size of the control volume means that the
constructed scheme may be applied to the flow problem
for which the microstructure cannot be completely found
beforehand.

4. Conclusion

A new scheme of the finite difference heterogeneous multi-
scale method, which puts more emphasis on the interaction
between the macro- and microscale behaviors, has been pre-
sented for solving saturated water flow problems in random
porous media. The macroscopic iteration formulas of steady
and transient flow problems have been explicitly deduced. By
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Figure 15: Relative (a) 𝐿
2
and (b) maximum errors between exact and two coarse solutions for the transient flow problem with weak well

drawdown.
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Figure 16: Exact solution and two coarse solutions at times (a) 𝑡 = 200min and (b) 1000min in section 𝑦 = 500m for the transient flow
problem with weak well drawdown.

solving basic microscopic elliptic problems and estimating
basic macroscopic fluxes, it is subtly brought to the large
scale for microscale information of the medium property
and useful information about the gradients of the solutions
of basic microscopic elliptic models. For the transient flow
problem, different from that FDHMM needs the macro-
scopic and microscopic evolution at every time step, the
constructed scheme implements the microscopic evolution
at the preprocessing step and only needs the macroscopic
evolution at every time step, which offers substantial saving

in the computational cost. The constructed scheme saves
about 58.7% CPU time compared to FDHMM for aquifer
response to sudden change in reservoir level on the case
𝛿 = (1/2)𝐻. Different numerical examples, including two
steady flow problems and two transient flow problems subject
to Dirichlet-Neumann boundary type, are applied to test
the efficiency and accuracy of the constructed scheme. We
have considered seven correlation lengths and four standard
deviations of the hydraulic conductivity field for steady flow
problems with isotropic and anisotropic microstructure and
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Figure 17: Relative (a)𝐿
2
and (b)maximumerrors between the fine-scalemodel and the new scheme under different cell sizes for the transient

flow problem with weak well drawdown.

considered four flow rates of the pumping well and four
standard deviations of the hydraulic conductivity field for the
steady flow problem with well drawdown. In every transient
flow problem, we have also considered four sizes of the
control volume.Thenumerical experiments demonstrate that
the constructed scheme gives a better accuracy thanFDHMM
for aquifer response to sudden change in reservoir level
and gives a comparable accuracy to FDHMM for the weak
well drawdown problem. The numerical experiments also
indicate that the constructed scheme can efficiently capture
the macroscale behavior of the solution on a coarse mesh
for the steady and transient flow problems without well
drawdown, and the scheme can approximately handle the
weak well drawdown problem. The well singularity is related
to the chosen scale. We may refine the coarse mesh size to
improve the accuracy of the solution to the well drawdown
problem. The standard deviation of logarithmic hydraulic
conductivity field plays an important role in the accuracy of
the constructed scheme.The larger the standard deviation is,
the less accurate the results are.The spatial correlation length
of random conductivity field has relatively little influence
on the accuracy of the constructed scheme. To obtain a
reasonable accuracy, the size of the control volume may be
chosen to be near or to be equal to the coarse mesh size or
other suitable size if necessary.This flexibility of choosing the
size of the control volumemeans that the constructed scheme
can be not only applied to the flow problem for which the
microstructure is completely found butmay be also applied to
the flow problem for which the microstructure is only partly
found beforehand.

This study is limited to two-dimensional saturated flow
through heterogeneous porousmedia.We also plan to extend

this scheme to solve unsaturated water flow problems with
heterogeneity which would be more difficult to simulate.
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