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Combining the Rosen gradient projection method with the two-term Polak-Ribière-Polyak (PRP) conjugate gradient method,
we propose a two-term Polak-Ribière-Polyak (PRP) conjugate gradient projection method for solving linear equality constraints
optimization problems.The proposed method possesses some attractive properties: (1) search direction generated by the proposed
method is a feasible descent direction; consequently the generated iterates are feasible points; (2) the sequences of function
are decreasing. Under some mild conditions, we show that it is globally convergent with Armijio-type line search. Preliminary
numerical results show that the proposed method is promising.

1. Introduction

In this paper, we consider solving the following linear equality
constraints optimization problem:

min 𝑓 (𝑥)

s.t. 𝐴𝑥 = 𝑏,
(1)

where 𝑓(𝑥) : 𝑅𝑛 → 𝑅 is a smooth function and 𝐴 is a𝑚 × 𝑛
matrix of rank 𝑚(𝑚 ≤ 𝑛). In this paper, the feasible region
𝐷 and the feasible direction set 𝑆 are defined, respectively, as
follows:

𝐷 = {𝐴𝑥 = 𝑏} , 𝑆 = {𝐴𝑑 = 0} . (2)

Taking the negative gradient for a search direction (𝑑 =
−∇𝑓(𝑥

𝑘
)) is a natural way of solving unconstrained optimiza-

tion problems. However, this approach does not work for
constrained problems, since the gradientmay not be a feasible
direction. A basic technique to overcome this difficulty was
initiated by Rosen [1] in 1960. To obtain a feasible search
direction, Rosen projected the gradient into the feasible
region; that is,

𝑑 = −𝑃∇𝑓 (𝑥
𝑘
) , 𝑃 = 𝐼 − 𝐴𝑇(𝐴𝐴𝑇)

−1

𝐴. (3)

The convergence of Rosen’s gradient projection method can
be proved by Du; see [2–4].

In fact, Rosen’s gradient projection method is an exten-
sion of the steepest-descent method. It is well known that
the drawback of the steepest-descent method is easy to suffer
from zig-zagging specially when the graph of 𝑓(𝑥) has an
“elongated” form. To overcome the zig-zagging, we want to
use the conjugate gradient method to modify the projection
direction.

It is well known that nonlinear conjugate gradient meth-
ods such as the Polak-Ribière-Polyak (PRP) method [5, 6]
are very efficient for large-scale unconstrained optimization
problems due to their simplicity and low storage. However,
it does not necessarily satisfy the descent conditions 𝑔𝑇

𝑘
𝑑
𝑘
≤

−𝑐‖𝑔
𝑘
‖2, 𝑐 > 0.

Recently, Cheng [7] proposed a two-term modified PRP
method (called TMPRP), in which the direction 𝑑

𝑘
is given

by

𝑑
𝑘
=
{{
{{
{

−𝑔
𝑘
, if 𝑘 = 0,

−𝑔
𝑘
+ 𝛽PRP
𝑘
(𝐼 −

𝑔
𝑘
𝑔𝑇
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
)𝑑
𝑘−1
, if 𝑘 ≥ 1. (4)
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An attractive property of the TMPRP method is that the
direction generated by the method satisfies

𝑔𝑇
𝑘
𝑑
𝑘
= −
󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

, (5)

which is independent of any line search. The presented
numerical results show some potential advantage of the
TMPRP method in Cheng [7]. In fact, we can easily rewrite
the above direction 𝑑

𝑘
(4) as a three-term form:

𝑑
𝑘
=
{{
{{
{

−𝑔
𝑘
, if 𝑘 = 0,

−𝑔
𝑘
+ 𝛽PRP
𝑘
𝑑
𝑘−1
− 𝛽PRP
𝑘

𝑔𝑇
𝑘
𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
𝑔
𝑘
, if 𝑘 ≥ 1. (6)

In the past few years, researchers have paid increasing atten-
tion to the conjugate gradientmethods and their applications.
Among others, we mention here the following works, for
example, [8–29].

In the past few years, some researchers also paid attention
to equality constrained problems. Mart́ınez et al. [30] pro-
posed a spectral gradient method for linearly constrained
optimization by the following way to obtain the search
direction: 𝑑

𝑘
∈ 𝑅𝑛 is the unique solution of

min 1

2
𝑑𝑇𝐵
𝑘
𝑑 + ∇𝑓(𝑥)

𝑇𝑑

s.t. 𝐴𝑑 = 0.

(7)

In this algorithm, 𝐵
𝑘
can be computed by quasi-Newton

method in which the approximate Hessians satisfy a weak
secant equation. The spectral choice of steplength is embed-
ded into the Hessian approximation and the whole process is
combined with a nonmonotone line search strategy.

C. Li andD.H. Li [31] proposed a feasible Fletcher-Reeves
conjugate gradient method for solving linear equality con-
strained optimization problem with exact line search. Their
idea is to use original Fletcher-Reeves conjugate gradient
method to modify the Zoutendijk direction. The Zoutendijk
direction is the feasible steepest descent direction. It is a
solution of the following problem:

min ∇𝑓(𝑥)
𝑇𝑑

s.t. 𝐴𝑑 = 0, ‖𝑑‖ ≤ 1.
(8)

Li et al. [32] also extended the modified Fletcher-Reeves
conjugate gradient method in Zhang et al. [33] to solve linear
equality constraints optimization problems which combined
with the Zoutendijk feasible direction method. Under some
mild conditions, Li et al. [32] showed that the proposed
method with Armijo-type line search is globally convergent.

In this paper, we will extend the two-term Polak-Ribière-
Polyak (PRP) conjugate gradient method in Cheng [7] to
solve linear equality constraints optimization problems (1),
which combines with the Rosen gradient projection method
in Rosen [1]. Under some mild conditions, we show that it is
globally convergent with Armijo-type line search.

The rest of this paper is organized as follows. In Section 2,
we firstly propose the algorithm and prove the the feasible

descent direction. In Section 3, we prove the global conver-
gence of the proposed method. In Section 4, we give some
improvement for the algorithm. In Section 5, we report some
numerical results to test the proposed method.

2. Algorithm and the Feasible
Descent Direction

In this section, we propose a two-term Polak-Ribière-Polyak
conjugate gradient projection method for solving the linear
equality constraints optimization problem (1). The proposed
method is a combination of the well-known Rose gradient
projection method and the two-term Polak-Ribière-Polyak
(PRP) conjugate gradient method in Cheng [7].

The iterative process of the proposed method is given by

𝑥
𝑘+1
= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, (9)

and the search direction 𝑑
𝑘
is defined by

𝑑
𝑘
=
{{
{{
{

−𝑃𝑔
𝑘
, if 𝑘 = 0,

−𝑃𝑔
𝑘
+ 𝛽PRP
𝑘
𝑑
𝑘−1
− 𝛽PRP
𝑘

𝑔𝑇
𝑘
𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝑃𝑔𝑘
󵄩󵄩󵄩󵄩
2
𝑃𝑔
𝑘
, if 𝑘 ≥ 1,

(10)

where

𝑃 = 𝐼 − 𝐴𝑇(𝐴𝐴𝑇)
−1

𝐴, 𝑔
𝑘
= ∇𝑓 (𝑥

𝑘
) ,

𝑦
𝑘−1
= 𝑔
𝑘
− 𝑔
𝑘−1
, 𝛽PRP

𝑘
=
(𝑃𝑔
𝑘
)
𝑇

𝑦
𝑘−1

󵄩󵄩󵄩󵄩𝑃𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
,

(11)

and 𝛼
𝑘
> 0 is a steplength obtained by a line search.

For convenience, we call the method (9) and (10) as
EMPRPmethod. Now we prove that the direction 𝑑

𝑘
defined

by (10) and (11) is a feasible descent direction of 𝑓 at 𝑥
𝑘
.

Theorem 1. Suppose that 𝑥
𝑘
∈ 𝐷, 𝑃 = 𝐼 −𝐴𝑇(𝐴𝐴𝑇)−1𝐴. 𝑑

𝑘
is

defined by (10). If 𝑑
𝑘
̸= 0, then 𝑑

𝑘
is a feasible descent direction

of 𝑓 at 𝑥
𝑘
.

Proof. From (9), (10), and the definition of 𝑃, we have

𝑔𝑇
𝑘
𝑑
𝑘
= 𝑔𝑇
𝑘
(−𝑃𝑔

𝑘
+ 𝛽PRP
𝑘
𝑑
𝑘−1
− 𝛽PRP
𝑘

𝑔𝑇
𝑘
𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝑃𝑔𝑘
󵄩󵄩󵄩󵄩
2
𝑃𝑔
𝑘
)

= −
󵄩󵄩󵄩󵄩𝑃𝑔𝑘

󵄩󵄩󵄩󵄩
2

+ 𝛽PRP
𝑘
𝑔𝑇
𝑘
𝑑
𝑘−1
− 𝛽PRP
𝑘

𝑔𝑇
𝑘
𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝑃𝑔𝑘
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑃𝑔𝑘
󵄩󵄩󵄩󵄩
2

= −
󵄩󵄩󵄩󵄩𝑃𝑔𝑘

󵄩󵄩󵄩󵄩
2

.

(12)

This implies that 𝑑
𝑘
provides a descent direction of 𝑓 at 𝑥

𝑘
.

In what follows, we show that 𝑑
𝑘
is a feasible descent

direction of 𝑓 at 𝑥
𝑘
. From (9), we have that

𝐴 (𝑃𝑔
𝑘
) = 𝐴 (𝐼 − 𝐴𝑇(𝐴𝐴𝑇)

−1

𝐴)𝑔
𝑘
= 0. (13)
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It follows from (10) and (13) that

𝐴𝑑
𝑘
= 𝐴(−𝑃𝑔

𝑘
+ 𝛽PRP
𝑘
𝑑
𝑘−1
− 𝛽PRP
𝑘

𝑔𝑇
𝑘
𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝑃𝑔𝑘
󵄩󵄩󵄩󵄩
2
𝑃𝑔
𝑘
)

= 𝛽PRP
𝑘
𝐴𝑑
𝑘−1
.

(14)

When 𝑘 = 0, we have

𝐴𝑑
0
= 𝐴𝑃𝑔

0
= 0. (15)

It is easy to get from (14) and (15) that, for all 𝑘, 𝐴𝑑
𝑘
= 0 is

satisfied. That is, 𝑑
𝑘
is feasible direction.

In the remainder of this paper, we always assume that
𝑓(𝑥) satisfies the following assumptions.

Assumption A. (i) The level set

Ω = {𝑥 ∈ 𝑅𝑛 | 𝑓 (𝑥) ≤ 𝑓 (𝑥
0
)} (16)

is bounded.
(ii) Function 𝑓 : 𝑅𝑛 → 𝑅 is continuously differentiable

and bounded frombelow. Its gradient is Lipschitz continuous,
on an open ball N containing Ω; that is, there is a constant
𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈N. (17)

Since𝑓(𝑥
𝑘
) is decreasing, it is clear that the sequence {𝑥

𝑘
}

generated by Algorithm 2 is contained in Ω. In addition, we
get from Assumption A that there is a constant 𝛾 > 0, such
that

󵄩󵄩󵄩󵄩𝑔 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝛾, ∀𝑥 ∈ Ω. (18)

Since the matrix 𝑃 is a projection matrix, it is reasonable to
assume that there is a constant 𝐶 > 0, such that

󵄩󵄩󵄩󵄩𝑃𝑔 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝐶, ∀𝑥 ∈ Ω. (19)

We state the steps of the algorithm as follows.

Algorithm 2 (EMPRPmethod with Armijio-type line search).
Step 0. Choose an initial point 𝑥

0
∈ 𝐷, 𝜀 > 0. Let 𝑘 := 0.

Step 1. Compute 𝑑
𝑘
by (10), where 𝛽

𝑘
is computed by (11).

Step 2. If ‖𝑃𝑔
𝑘
‖ ≤ 𝜀 stop, else go to Step 3.

Step 3. Given 𝛿 ∈ (0, 1/2), 𝜌 ∈ (0, 1). Determine a stepsize
𝛼
𝑘
= max(𝜌𝑗 | 𝑗 = 0, 1, 2, . . .) satisfying

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) ≤ 𝑓 (𝑥

𝑘
) − 𝛿𝛼2

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

. (20)

Step 4. Let 𝑥
𝑘+1
= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, and 𝑘 := 𝑘 + 1. Go to Step 1.

3. Global Convergence

In what follows, we establish the global convergence theorem
of the EMPRP method for general nonlinear objective func-
tions. We firstly give some important lemmas of the EMPRP
method.

Lemma 3. Suppose that 𝑥
𝑘
∈ 𝐷, 𝑃 = 𝐼 − 𝐴𝑇(𝐴𝐴𝑇)−1𝐴. 𝑑

𝑘

is defined by (10) and (11). Then we have (𝑃𝑔
𝑘
)𝑇𝑑
𝑘
= 𝑔𝑇
𝑘
𝑑
𝑘
,

(𝑃𝑔
𝑘+1
)𝑇𝑑
𝑘
= 𝑔𝑇
𝑘+1
𝑑
𝑘
, (𝑃𝑔
𝑘
)𝑇𝑑
𝑘
= 𝑔𝑇
𝑘
𝑑
𝑘
= −‖𝑃𝑔

𝑘
‖2.

Proof. By the definition of 𝑑
𝑘
, we have

(𝑃𝑔
𝑘
)
𝑇

𝑑
𝑘
= 𝑔𝑇
𝑘
(𝐼 − 𝐴𝑇(𝐴𝐴𝑇)

−1

𝐴)𝑑
𝑘

= 𝑔𝑇
𝑘
𝑑
𝑘
− 𝑔𝑇
𝑘
(𝐴𝑇(𝐴𝐴𝑇)

−1

)𝐴𝑑
𝑘
= 𝑔𝑇
𝑘
𝑑
𝑘
.

(21)

It follows from (12) and (21) that

(𝑃𝑔
𝑘
)
𝑇

𝑑
𝑘
= 𝑔𝑇
𝑘
𝑑
𝑘
= −
󵄩󵄩󵄩󵄩𝑃𝑔𝑘

󵄩󵄩󵄩󵄩
2

. (22)

On the other hand, we also have

(𝑃𝑔
𝑘+1
)
𝑇

𝑑
𝑘
= 𝑔𝑇
𝑘+1
(𝐼 − 𝐴𝑇(𝐴𝐴𝑇)

−1

𝐴)𝑑
𝑘

= 𝑔𝑇
𝑘+1
𝑑
𝑘
− 𝑔𝑇
𝑘+1
(𝐴𝑇(𝐴𝐴𝑇)

−1

)𝐴𝑑
𝑘
= 𝑔𝑇
𝑘+1
𝑑
𝑘
.

(23)

Lemma4. Suppose that Assumption A holds. {𝑥
𝑘
} is generated

by Algorithm 2. If there exists a constant 𝜀 > 0 such that
󵄩󵄩󵄩󵄩𝑃𝑔𝑘

󵄩󵄩󵄩󵄩 ≥ 𝜀, ∀𝑘; (24)

then there exists a constant𝑀 > 0 such that
󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤ 𝑀, ∀𝑘. (25)

Proof. It follows from (20) that the function value sequence
{𝑓(𝑥
𝑘
)} is decreasing. We also have from (20) that

∞

∑
𝑖=1

− 𝛿𝛼2
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

< +∞, (26)

as 𝑓 is bounded from below. In particular, we have

lim
𝑘→∞

𝛼
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 = 0. (27)

By the definition of 𝑑
𝑘
, we get from (17), (19), and (24) that

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑃𝑔𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑃𝑔𝑘
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑃𝑔𝑘−1

󵄩󵄩󵄩󵄩
2

+

󵄩󵄩󵄩󵄩𝑃𝑔𝑘
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑃𝑔𝑘−1

󵄩󵄩󵄩󵄩
2

⋅

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑃𝑔𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑃𝑔𝑘

󵄩󵄩󵄩󵄩
2

≤ 𝐶 +
𝐶𝐿𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

𝜀2
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩 +
𝛾𝐿𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

𝜀2
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩

≤ 𝐶 + (
𝐶𝐿

𝜀2
+
𝛾𝐿

𝜀2
)𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

.

(28)

Since 𝛼
𝑘−1
𝑑
𝑘−1

→ 0, as 𝑘 →∝, there exist a constant
𝑟 ∈ (0, 1) and an integer 𝑘

0
, such that the following inequality

holds for all 𝑘 ≥ 𝑘
0
:

(
𝐶𝐿

𝜀2
+
𝛾𝐿

𝜀2
)𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩 ≤ 𝑟. (29)
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Hence, we have, for any 𝑘 > 𝑘
0
,

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤ 𝐶 + 𝑟

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩 ≤ 𝐶 (1 + 𝑟 + 𝑟

2 + ⋅ ⋅ ⋅ + 𝑟𝑘−𝑘0−1)

+ 𝑟𝑘−𝑘0
󵄩󵄩󵄩󵄩󵄩𝑑𝑘0

󵄩󵄩󵄩󵄩󵄩 ≤
𝐶

1 − 𝑟
+
󵄩󵄩󵄩󵄩󵄩𝑑𝑘0

󵄩󵄩󵄩󵄩󵄩 .
(30)

Letting𝑀 = max{‖𝑑
1
‖, ‖𝑑
1
‖, . . . , ‖𝑑

𝑘0
‖, 𝐶/(1 − 𝑟) + ‖𝑑

𝑘0
‖}, we

can get (25).

We now establish the global convergence theorem of the
EMPRP method for general nonlinear objective functions.

Theorem 5. Suppose that Assumption A holds. {𝑥
𝑘
} is gener-

ated by Algorithm 2. Then we have

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑃𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (31)

Proof. Suppose that lim inf
𝑘→∞

‖𝑃𝑔
𝑘
‖ ̸= 0 for all 𝑘. Then

there exists a constant 𝜀 > 0 such that
󵄩󵄩󵄩󵄩𝑃𝑔𝑘

󵄩󵄩󵄩󵄩 > 𝜀, ∀𝑘 ≥ 0. (32)

We now prove (31) by considering the following two cases.

Case (i). lim inf
𝑘→∞

𝛼
𝑘
> 0. We get from (22) and (27) that

lim inf
𝑘→∞

‖𝑃𝑔
𝑘
‖ = 0. This contradicts assumption (32).

Case (ii). lim inf
𝑘→∞

𝛼
𝑘
= 0. That is, there is an infinite index

set 𝐾 such that
lim
𝑘∈𝐾,𝑘→∞

𝛼
𝑘
= 0. (33)

When 𝑘 ∈ 𝐾 is sufficiently large, by the line search condition,
𝜌−1𝛼
𝑘
does not satisfy inequality (20). This means

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝑓 (𝑥

𝑘
) > −𝛿𝜌−2𝛼2

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

. (34)

By themean-value theorem and inequality (17), there is a 𝑡
𝑘
∈

(0, 1) such that 𝑥
𝑘
+ 𝑡
𝑘
𝜌−1𝛼
𝑘
𝑑
𝑘
∈ 𝑁 and

𝑓 (𝑥
𝑘
+ 𝜌−1𝛼

𝑘
𝑑
𝑘
) − 𝑓 (𝑥

𝑘
)

= 𝜌−1𝛼
𝑘
𝑔(𝑥
𝑘
+ 𝑡
𝑘
𝜌−1𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘

= 𝜌−1𝛼
𝑘
𝑔𝑇
𝑘
𝑑
𝑘
+ 𝜌−1𝛼

𝑘
(𝑔 (𝑥
𝑘
+ 𝑡
𝑘
𝜌−1𝛼
𝑘
𝑑
𝑘
) − 𝑔
𝑘
)
𝑇

𝑑
𝑘

≤ 𝜌−1𝛼
𝑘
𝑔𝑇
𝑘
𝑑
𝑘
+ 𝜌−1𝛼

𝑘

󵄩󵄩󵄩󵄩󵄩𝑔 (𝑥𝑘 + 𝑡𝑘𝜌
−1𝛼
𝑘
𝑑
𝑘
) − 𝑔
𝑘

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

≤ 𝜌−1𝛼
𝑘
𝑔𝑇
𝑘
𝑑
𝑘
+ 𝐿𝜌−2𝛼2

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

.

(35)

Substituting the last inequality into (34), for all 𝑘 ∈ 𝐾
sufficiently large, we have from (12) that

󵄩󵄩󵄩󵄩𝑃𝑔𝑘
󵄩󵄩󵄩󵄩
2

= −𝑔𝑇
𝑘
𝑑
𝑘
≤ 𝜌−1 (𝐿 + 𝛿) 𝛼

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

. (36)

Since {𝑑
𝑘
} is bounded and lim

𝑘→∞
𝛼
𝑘
= 0, the last inequality

implies

lim
𝑘∈𝐾,𝑘→∞

󵄩󵄩󵄩󵄩𝑃𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (37)

This also yields a contradiction. The proof is then complete.

4. Improvement for Algorithm 2

In this section, we propose techniques for improving the
efficiency of Algorithm 2 in practical computation which is
about computing projections and the stepsize of the Armijo-
type line search.

4.1. Computing Projection. In this paper, as in Gould et al.
[34], instead of computing a basis for null space of matrix
𝐴, we choose to work directly with the matrix of constraint
gradients, computing projections by normal equations. As the
computation of the projection is a key step in the proposed
method, following Gould et al. [34], this projection can be
computed in an alternative way.

Let

𝑔+ = −𝑃𝑔, 𝑃 = 𝐼 − 𝐴𝑇(𝐴𝐴𝑇)
−1

𝐴. (38)

We can express this as

𝑔+ = −𝑔 + 𝐴𝑇V, (39)

where V is the solution of

𝐴𝐴𝑇V = 𝐴𝑔. (40)

Noting that (40) is the normal equation. Since 𝐴 is a 𝑚 × 𝑛
matrix of rank𝑚(𝑚 ≤ 𝑛), 𝐴𝐴𝑇 is symmetric positive definite
matrix.We use the Doolittle (called LU) factorization of𝐴𝐴𝑇
to solve (40).

For the matrix 𝐴 is constant, the factorization of 𝐴𝐴𝑇
needs to be carried out only once at the beginning of the
iterative process. Using a Doolittle factorization of𝐴𝐴𝑇, (40)
can be computed in the following form:

𝐿 (𝑈𝑇V) = 𝐴𝑔 ⇐⇒ {
𝐿𝑦 = 𝐴𝑔

𝑈𝑇V = 𝑦,
(41)

where 𝐿, 𝑈 is the Doolittle factor of 𝐴𝐴𝑇.

4.2. Computing Stepsize. The drawback of the Armijo line
search is how to choose the initial stepsize 𝛼

𝑘
. If 𝛼
𝑘
is too

large then the procedure needs to call much more function
evaluations. If 𝛼

𝑘
is too small then the efficiency of related

algorithm will be decreased. Therefore, we should choose an
adequate initial stepsize 𝛼

𝑘
at each iteration. In what follows,

we propose a way to generate the initial stepsize.
We first estimate the stepsize determined by the exact line

search. Support at the moment that 𝑓 is twice continuously
differentiable. We denote by 𝐺(𝑥) the Hessian of 𝑓 at 𝑥 and
abbreviate 𝐺(𝑥

𝑘
) as 𝐺

𝑘
. Notice that the exact line search

stepsize 𝛼
𝑘
satisfies

−𝑔𝑇
𝑘
𝑑
𝑘
= (𝑔 (𝑥

𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝑔
𝑘
)
𝑇

𝑑
𝑘
≈ 𝛼
𝑘
𝑑𝑇
𝑘
𝐺
𝑘
𝑑
𝑘
. (42)

This shows that scalar 𝛿
𝑘
≜ −𝑔𝑇
𝑘
𝑑
𝑘
/𝑑𝑇
𝑘
𝐺
𝑘
𝑑
𝑘
is an estimation

to 𝛼
𝑘
. To avoid the computation of the second derivative, we

further estimate 𝛼
𝑘
by letting

𝛾
𝑘
=

−𝜖
𝑘
𝑔𝑇
𝑘
𝑑
𝑘

𝑑𝑇
𝑘
(𝑔 (𝑥
𝑘
+ 𝜖
𝑘
𝑑
𝑘
) − 𝑔
𝑘
)
, (43)
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where positive sequence satisfies {𝜖
𝑘
} → 0 as 𝑘 → ∞.

Let the initial stepsize of the Armijo line search be an
approximation to

𝛿
𝑘
≜
−𝑔𝑇
𝑘
𝑑
𝑘

𝑑𝑇
𝑘
𝐺
𝑘
𝑑
𝑘

≈
−𝜖
𝑘
𝑔𝑇
𝑘
𝑑
𝑘

𝑑𝑇
𝑘
(𝑔 (𝑥
𝑘
+ 𝜖
𝑘
𝑑
𝑘
) − 𝑔
𝑘
)
≜ 𝛾
𝑘
. (44)

It is not difficult to see that if 𝜖
𝑘
and ‖𝑑

𝑘
‖ are sufficiently small,

then 𝛿
𝑘
and 𝛾
𝑘
are good estimation to 𝛼

𝑘
.

So to improve the efficiency of EMPRP method in
practical computation, we utilize the following line search
process.

Line Search Process. If inequality,

𝑓 (𝑥
𝑘
+
󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨 𝑑𝑘) ≤ 𝑓 (𝑥𝑘) + 𝛿

󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨
2󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2

, (45)

holds, then we let 𝛼
𝑘
= |𝛾
𝑘
|. Otherwise we let 𝛼

𝑘
be the largest

scalar in the set {|𝛾
𝑘
|𝜌𝑖, 𝑖 = 0, 1, . . .} such that inequality (45)

is satisfied.

5. Numerical Experiments

This section reports some numerical experiments. Firstly, we
test the EMPRP method and compare it with the Rose gradi-
ent projection method in [1] on low dimensional problems.
Secondly, we test the EMPRP method and compare it with
the spectral gradient method in Mart́ınez et al. [30] and the
feasible Fletcher-Reeves conjugate gradientmethod in Li et al.
[32] on large dimensional problems. In the line search
process, we set 𝜖

𝑘
= 10−6, 𝜌 = 0.3, 𝛿 = 0.02.

The methods in the tables have the following meanings.

(i) “EMPRP” stands for the EMPRP method with the
Armijio-type line search (20).

(ii) “ROSE” stands for Rose gradient projection method
in [1] with the Armijio-type line search (20). That is,
in Algorithm 2, the direction 𝑑

𝑘
= −𝑃𝑔

𝑘
.

(iii) “SPG” stands for the spectral gradient method with
the nonmonotone line search in Mart́ınez et al. [30],
where𝑀 = 10, 𝑃 = 2.

(iv) “FFR” stands for the feasible modified Fletcher-
Reeves conjugate gradient method with the Armijio-
type line search in Li et al. [32].

We stop the iteration if the condition ‖𝑃𝑔
𝑘
‖ ≤ 𝜀 is

satisfied, where 𝜀 = 10−5. If the iteration number exceeds
105, we also stop the iteration. Then we call it failure. All of
the algorithms are coded in Matlab 7.0 and run on a personal
computer with a 2.0GHZ CPU processor.

5.1. Numerical Comparison of EMPRP and ROSE. We test the
performance of EMPRP and ROSEmethods on the following
test problems with given initial points. The results are listed
in Table 1. 𝑛 stands for the dimension of tested problem
and 𝑛

𝑐
stands for the number of constraints. We will report

the following results: the CPU time Time (in seconds), the
number of iterations Iter, the number of gradient evaluations
Geval, and the number of function evaluations Feval.

Problem 1 (HS28 [35]). The function HS28 in [35] is defined
as follows:

𝑓 (𝑥) = (𝑥
1
+ 𝑥
2
)
2

+ (𝑥
2
+ 𝑥
3
)
2

,

s.t. 𝑥
1
+ 2𝑥
2
+ 3𝑥
3
− 1 = 0,

(46)

with the initial point 𝑥
0
= (−4, 1, 1). The optimal solution

𝑥∗ = (0.5, −0.5, 0.5) and optimal function value 𝑓(𝑥∗) = 0.

Problem 2 (HS48 [35]). The function HS48 in [35] is defined
as follows:

𝑓 (𝑥) = (𝑥
1
− 1)
2

+ (𝑥
2
− 𝑥
3
)
2

+ (𝑥
4
− 𝑥
5
)
2

,

s.t. 𝑥
1
+ 𝑥
2
+ 𝑥
3
+ 𝑥
4
+ 𝑥
5
− 5 = 0,

𝑥
3
+ 2 (𝑥

4
+ 𝑥
5
) + 3 = 0,

(47)

with the initial point 𝑥
0
= (3, 5, −3, 2, −2). The optimal

solution 𝑥∗ = (1, 1, 1, 1, 1) and optimal function value
𝑓(𝑥∗) = 0.

Problem 3 (HS49 [35]). The function HS49 in [35] is defined
as follows:
𝑓 (𝑥) = (𝑥

1
− 𝑥
2
)
2

+ (𝑥
3
− 1)
2

+ (𝑥
4
− 1)
4

+ (𝑥
5
− 1)
6

,

s.t. 𝑥
1
+ 𝑥
2
+ 𝑥
3
+ 4𝑥
4
− 7 = 0,

𝑥
3
+ 5𝑥
5
− 6 = 0,

(48)

with the initial point 𝑥
0
= (10, 7, 2, −3, 0.8). The optimal

solution 𝑥∗ = (1, 1, 1, 1, 1) and optimal function value
𝑓(𝑥∗) = 0.

Problem 4 (HS50 [35]). The function HS50 in [35] is defined
as follows:
𝑓 (𝑥) = (𝑥

1
− 𝑥
2
)
2

+ (𝑥
2
− 𝑥
3
)
2

+ (𝑥
3
− 𝑥
4
)
2

+ (𝑥
4
− 𝑥
5
)
2

,

s.t. 𝑥
1
+ 2𝑥
2
+ 3𝑥
3
− 6 = 0,

𝑥
2
+ 2𝑥
3
+ 3𝑥
4
− 6 = 0,

𝑥
3
+ 2𝑥
4
+ 3𝑥
5
− 6 = 0,

(49)

with the initial point 𝑥
0
= (35, −31, 11, 5, −5). The optimal

solution 𝑥∗ = (1, 1, 1, 1, 1) and optimal function value
𝑓(𝑥∗) = 0. Moreover, we extend the dimension of function
HS51 [35] to 10, 20with the initial point𝑥

0
= (35, −31, 11, . . .).

The optimal solution 𝑥∗ = (1, 1, . . . , 1) and optimal function
value 𝑓(𝑥∗) = 0.

Problem 5 (HS51 [35]). The function HS51 in [35] is defined
as follows:
𝑓 (𝑥) = (𝑥

1
− 𝑥
2
)
2

+ (𝑥
2
+ 𝑥
3
− 2)
2

+ (𝑥
4
− 1)
2

+ (𝑥
5
− 1)
2

,

s.t. 𝑥
1
+ 3𝑥
2
− 4 = 0,

𝑥
3
+ 𝑥
4
− 2𝑥
5
= 0,

𝑥
2
− 𝑥
5
= 0,

(50)
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Table 1: Test results for Problems 1–5 with given initial points.

Name 𝑛 𝑛
𝑐

EMPRP ROSE
Time Iter Geval Feval Time Iter Geval Feval

HS28 3 1 0.0156 20 22 21 0.0468 71 72 143
HS48 5 2 0.0156 26 28 27 0.0468 65 66 122
HS49 5 2 0.0156 29 30 30 0.0780 193 194 336
HS50 5 3 0.0156 22 23 23 0.0624 76 77 139
HS51 5 3 0.0156 15 16 16 0.0624 80 81 148
HS52 5 3 0.0156 30 31 31 0.0312 70 71 141
HS50E1 10 8 0.0156 16 17 17 0.0312 63 64 127
HS50E2 20 18 0.0156 15 16 16 0.0936 63 64 127

Table 2: Test results for Problem 6 with given initial points.

𝑘 𝑛 𝑛
𝑐

EMPRP FFR SPCG
Time Iter Time Iter Time Iter

50 99 49 0.0568 73 0.0660 80 0.0256 70
100 199 99 0.1048 103 0.1060 120 0.0756 90
200 399 199 0.0868 108 0.2660 123 0.0904 97
300 599 299 0.2252 121 0.4260 126 0.7504 123
400 799 399 0.3142 121 0.5150 126 0.9804 153
500 999 499 0.4045 138 0.7030 146 1.4320 176
1000 1999 999 2.6043 138 2.1560 146 3.3468 198
2000 3999 1999 8.2608 138 6.8280 146 9.1266 216
3000 5999 2999 22.4075 138 15.1720 146 28.2177 276
4000 7999 3999 40.1268 138 35.0460 146 56.0604 324
5000 9999 4999 105.6252 138 85.0460 146 128.1504 476

with the initial point 𝑥
0
= (2.5, 0.5, 2, −1, 0.5). The optimal

solution 𝑥∗ = (1, 1, 1, 1, 1) and optimal function value
𝑓(𝑥∗) = 0.

From Table 1, we can see that the EMPRP method
performs better than the Rosen gradient projection method
in [1], which implies that the EMPRP method can improve
the computational efficiency of the Rosen gradient projection
method for solving linear equality constrained optimization
problems.

5.2. Numerical Comparison of EMPRP, FFR, and SPCG. In
this subsection, we test the EMPRP method and compare it
with the spectral gradient method (called SPCG) inMart́ınez
et al. [30] and the feasible Fletcher-Reeves conjugate gradient
method (called FFR) in Li et al. [32] on the following large
dimensional problems with given initial points. The results
are listed inTables 2, 3, 4, 5, and 6.Wewill report the following
results: the CPU time Time (in seconds), the number of
iterations Iter.

Problem 6. Given a positive integer 𝑘, the function is defined
as follows:

𝑓 (𝑥) =
1

2

𝑘−2

∑
𝑖=1

(𝑥
𝑘+𝑖+1

− 𝑥
𝑘+𝑖
)
2

,

s.t. 𝑥
𝑘+𝑖
− 𝑥
𝑖+1
+ 𝑥
𝑖
= 𝑖, 𝑖 = 1, . . . , 𝑘 − 1,

(51)

with the initial point 𝑥
0
= (1, 2, . . . , 𝑘, 2, 3, . . . , 𝑘). The

optimization function value 𝑓(𝑥∗) = 0. This problem comes
fromMart́ınez et al. [30].

Problem 7. Given a positive integer 𝑛, the function is defined
as follows:

𝑓 (𝑥) =
𝑛

∑
𝑖=1

cos(2𝜋𝑥
𝑖
∗ sin( 𝜋

20
)) ,

s.t. 𝑥
𝑖
− 𝑥
𝑖+1
= 0.4 𝑖 = 1, . . . , 𝑛 − 1,

(52)

with the initial point 𝑥
0
= (1, 0.6, 0.2, . . . , 1 − 0.4𝑛−1). This

problem comes from Asaadi [36] and is called MAD6.

Problem 8. Given a positive integer 𝑘, the function is defined
as follows:

𝑓 (𝑥) =
1

2

𝑘−2

∑
𝑖=1

(𝑥
𝑘+𝑖+1

− 𝑥
𝑘+𝑖
)
4

,

s.t. 𝑥
𝑘+𝑖
− 𝑥
𝑖+1
+ 𝑥
𝑖
= 𝑖, 𝑖 = 1, . . . , 𝑘 − 1,

(53)

with the initial point 𝑥
0
= (1, 2, . . . , 𝑘, 2, 3, . . . , 𝑘). The

optimization function value 𝑓(𝑥∗) = 0.
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Table 3: Test results for Problem 7 with given initial points.

𝑛 𝑛
𝑐

EMPRP FFR SPCG
Time Iter Time Iter Time Iter

200 99 0.1468 83 0.1679 94 0.1286 79
400 199 0.2608 94 0.2860 103 0.2266 90
600 299 0.6252 121 0.8422 132 0.7504 133
800 399 1.4075 123 1.6510 138 1.4177 149
1000 499 3.280 141 2.7190 146 2.8790 168
2000 999 8.4045 189 4.6202 202 5.1280 190
3000 1499 12.0042 219 9.7030 248 10.7864 260
4000 1999 17.2608 254 13.4255 288 19.1266 316
5000 2499 20.6252 321 19.0940 330 29.1504 383

Table 4: Test results for Problem 8 with given initial points.

𝑘 𝑛 𝑛
𝑐

EMPRP FFR SPCG
Time Iter Time Iter Time Iter

50 99 49 0.0668 78 0.0750 83 0.0286 75
100 199 99 0.0988 113 0.1462 130 0.0826 106
200 399 199 0.1978 123 0.2960 133 0.1864 124
300 599 299 0.3436 128 0.5260 136 0.3504 156
400 799 399 0.4142 134 0.7143 136 0.5804 186
500 999 499 0.6039 152 0.9030 158 0.9331 228
1000 1999 999 2.9065 152 2.9570 158 3.1260 268
2000 3999 1999 8.3408 152 7.8280 158 8.2266 298
3000 5999 2999 19.6086 152 17.4350 158 19.8672 330
4000 7999 3999 46.3268 152 38.1460 158 56.1256 368
5000 9999 4999 75.3972 152 58.3867 158 125.7680 398

Table 5: Test results for Problem 9 with given initial points.

𝑘 𝑛 𝑛
𝑐

EMPRP FFR SPCG
Time Iter Time Iter Time Iter

50 99 49 0.0568 65 0.0640 70 0.0266 62
100 199 99 0.0868 109 0.1362 125 0.0726 103
200 399 199 0.2110 120 0.2862 128 0.2064 124
300 599 299 0.3250 127 0.5062 132 0.4524 160
400 799 399 0.4543 138 0.7456 139 0.6804 192
500 999 499 0.6246 156 0.9268 155 1.0876 258
1000 1999 999 3.9245 156 3.4268 162 3.4560 279
2000 3999 1999 9.3404 156 8.6240 162 8.6280 320
3000 5999 2999 20.6125 156 19.6548 162 20.8656 358
4000 7999 3999 48.2890 156 44.4330 162 57.7680 386
5000 9999 4999 95.4680 156 83.8650 162 128.8760 420

Problem 9. Given a positive integer 𝑘, the function is defined
as follows:

𝑓 (𝑥) =
𝑘−2

∑
𝑖=1

100(𝑥
𝑘+𝑖+1

− 𝑥
𝑘+𝑖
)
2

+ (1 − 𝑥
𝑘+𝑖
)
2

,

s.t. 𝑥
𝑘+𝑖
− 𝑥
𝑖+1
+ 𝑥
𝑖
= 𝑖, 𝑖 = 1, . . . , 𝑘 − 1,

(54)

with the initial point 𝑥
0
= (1, 2, . . . , 𝑘, 2, 3, . . . , 𝑘). The

optimization function value 𝑓(𝑥∗) = 0.

Problem 10. Given a positive integer 𝑛, the function is defined
as follows:

𝑓 (𝑥) =
𝑛

∑
𝑖=1

cos2 (2𝜋𝑥
𝑖
∗ sin( 𝜋

20
)) ,

s.t. 𝑥
𝑖
− 𝑥
𝑖+1
= 0.4 𝑖 = 1, . . . , 𝑛 − 1,

(55)

with the initial point 𝑥
0
= (1, 0.6, 0.2, . . . , 1 − 0.4 ∗ (𝑛 − 1)).
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Table 6: Test results for Problem 10 with given initial points.

𝑛 𝑛
𝑐

EMPRP FFR SPCG
Time Iter Time Iter Time Iter

200 99 0.1842 88 0.1984 98 0.1488 92
400 199 0.2908 104 0.3260 113 0.2348 100
600 299 0.8256 132 0.9422 142 0.9804 182
800 399 1.6078 136 1.7512 148 2.6177 259
1000 499 2.9801 148 2.8192 156 3.1790 268
2000 999 7.8045 199 5.1202 212 8.1288 320
3000 1499 12.8042 248 9.9035 256 14.7862 360
4000 1999 19.2432 304 14.4258 298 22.1268 386
5000 2499 29.6846 382 20.1932 378 32.1422 393

From Tables 2–6, we can see the EMPRPmethod and the
FFR method in [32] perform better than the SPCG method
in Mart́ınez et al. [30] for solving large-scale linear equality
constrained optimization problems, as the EMPRP method
and the FFRmethod all are first ordermethods. But the SPCG
method in Mart́ınez et al. [30] needs to compute 𝐵

𝑘
with

quasi-Newton method in which the approximate Hessians
satisfy a weak secant equation. However, as the EMPRP
method also needs to compute projection, the FFRmethod in
[32] performs better than the EMPRP method when the test
problem becomes large.

6. Conclusions

In this paper, we propose a new conjugate gradient projection
method for solving linear equality constrained optimization
problem (1), which combines the two-term modified Polak-
Ribière-Polyak (PRP) conjugate gradient method in Cheng
[7] with the Rosen projectionmethod.The proposed method
also can be regarded as an extension of the recently developed
two-term modified Polak-Ribière-Polyak (PRP) conjugate
gradient method in Cheng [7]. Under some mild conditions,
we show that it is globally convergent with the Armijio-type
line search.
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