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We establish several sharp inequalities for trigonometric functions and present their corresponding inequalities for bivariatemeans.

1. Introduction

A bivariate real value function𝑀 : (0,∞)× (0,∞) → (0,∞)

is said to be a mean if

min (𝑥, 𝑦) ≤ 𝑀(𝑥, 𝑦) ≤ max (𝑥, 𝑦) , (1)

for all 𝑥, 𝑦 > 0.𝑀 is said to be homogeneous if

𝑀(𝜆𝑥, 𝜆𝑦) = 𝜆𝑀(𝑥, 𝑦) , (2)

for any 𝜆, 𝑥, 𝑦 > 0.

Remark 1 (see [1]). Let𝑀(𝑥, 𝑦) be a homogeneous bivariate
mean of two positive real numbers 𝑥 and 𝑦. Then

𝑀(𝑥, 𝑦) = √𝑥𝑦𝑀(𝑒
𝑡
, 𝑒
−𝑡
) , (3)

where 𝑡 = (1/2) ln(𝑥/𝑦).

By this remark, almost all of the inequalities for homoge-
neous symmetric bivariate means can be transformed equiv-
alently into the corresponding inequalities for hyperbolic
functions and vice versa.More specifically, let 𝐿(𝑥, 𝑦), 𝐼(𝑥, 𝑦),
and 𝐴

𝑟
(𝑥, 𝑦) be the logarithmic, identric, and 𝑟th power

means of two distinct positive real numbers 𝑥 and 𝑦 given
by

𝐿 = 𝐿 (𝑥, 𝑦) =
𝑥 − 𝑦

ln𝑥 − ln𝑦
,

𝐼 = 𝐼 (𝑥, 𝑦) = 𝑒
−1
(
𝑥
𝑥

𝑦𝑦
)

1/(𝑥−𝑦)

,

𝐴
𝑟
= 𝐴
𝑟
(𝑥, 𝑦) = (

𝑥
𝑟
+ 𝑦
𝑟

2
)

1/𝑟

if 𝑟 ̸= 0, 𝐴
0
(𝑥, 𝑦) = 𝐺 = √𝑥𝑦,

(4)

respectively. Then, for 𝑥 > 𝑦 > 0, we have

𝐿 (𝑒
𝑡
, 𝑒
−𝑡
) =

sinh 𝑡
𝑡
, 𝐼 (𝑒

𝑡
, 𝑒
−𝑡
) = 𝑒
𝑡 coth 𝑡−1

,

𝐴
𝑝
(𝑒
𝑡
, 𝑒
−𝑡
) = cosh1/𝑝 (𝑝𝑡) , 𝐺 (𝑒

𝑡
, 𝑒
−𝑡
) = 1,

(5)

where 𝑡 = (1/2) ln(𝑥/𝑦) > 0. By Remark 1, we can derive
some inequalities for hyperbolic functions from certain
known inequalities for bivariatemeansmentionedpreviously.
For example,

𝐴
2/3
< 𝐼 < 𝐴 ln 2

⇒ (cosh 2𝑡
3
)

3/2

< 𝑒
𝑡 coth 𝑡−1

< (cosh (𝑡 ln 2))1/ ln 2
(6)

(see [2, 3]); consider

𝐴
2/3
< 𝐼 < √8𝑒

−1
𝐴
2/3

⇒ (cosh 2𝑡
3
)

3/2

< 𝑒
𝑡 coth 𝑡−1

< √8𝑒
−1
(cosh 2𝑡

3
)

3/2 (7)
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(see [4, 5]); consider that

𝐴
2/(3𝑝)

𝑝
𝐺
1−2/(3𝑝)

< 𝐼 < 𝐴
2/(3𝑞)

𝑞
𝐺
1−2/(3𝑞)

⇒ (cosh𝑝𝑡)2/(3𝑝
2
)

< 𝑒
𝑡 coth 𝑡−1

< (cosh 𝑞𝑡)2/(3𝑞
2
)

(8)

(see [1]) holds for 𝑡 > 0 if and only if 𝑝 ≥ 2/3 and 0 < 𝑞 ≤
𝑞
0
= √10/5; consider

√𝐴𝐺 < √𝐿𝐼 <
𝐿 + 𝐼

2
<
𝐴 + 𝐺

2

⇒ √cosh 𝑡 < √ sinh 𝑡
𝑡
𝑒𝑡 coth 𝑡−1

<
sinh 𝑡/𝑡 + 𝑒𝑡 coth 𝑡−1

2
<
cosh 𝑡 + 1

2

(9)

(see [6]); consider

1

3
<
𝐼 − 𝐿

𝐴 − 𝐺
<
2

𝑒
<
𝐼 + 𝐿

𝐴 + 𝐺
< 1

⇒
1

3
<
𝑒
𝑡 cosh 𝑡/ sinh 𝑡−1

− sinh 𝑡/𝑡
cosh 𝑡 − 1

<
2

𝑒

<
𝑒
𝑡 cosh 𝑡/ sinh 𝑡−1

+ sinh 𝑡/𝑡
1 + cosh 𝑡

< 1

(10)

(see [7], (3.9), and (3.10)); if 0 < 𝑝 ≤ 6/5, then the double
inequality

𝜆
𝑝
𝐴
𝑝
+ (1 − 𝜆

𝑝
)𝐺
𝑝
< 𝐼
𝑝
< 𝜇
𝑝
𝐴
𝑝
+ (1 − 𝜇

𝑝
)𝐺
𝑝

⇒ 𝜆
𝑝
cosh𝑝𝑡 + (1 − 𝜆

𝑝
)

< 𝑒
𝑝𝑡 coth 𝑡−𝑝

< 𝜇
𝑝
cosh𝑝𝑡 + (1 − 𝜇

𝑝
)

(11)

(see [8]) holds if and only if 𝜆
𝑝
≤ 2/3 and 𝜇

𝑝
≥ (2/𝑒)

𝑝; if
𝑝 ≥ 2, then inequality (11) holds if and only if 𝜆

𝑝
≤ (2/𝑒)

𝑝

and 𝜇
𝑝
≥ 2/3; consider that

(
2

3
𝐴
𝑝
+
1

3
𝐺
𝑝
)

1/𝑝

< 𝐼 < (
2

3
𝐴
𝑞
+
1

3
𝐺
𝑞
)

1/𝑞

⇒ (
2

3
cosh𝑝𝑡 + 1

3
)

1/𝑝

< 𝑒
𝑡 coth 𝑡−1

< (
2

3
cosh𝑞𝑡 + 1

3
)

1/𝑞

(12)

(see [9]) holds if and only if 𝑝 ≤ 6/5 and 𝑞 ≥ (log 3 −
log 2)/(1 − log 2).

Themain purpose of this paper is to find the sharp bounds
for the functions 𝑒𝑡 cot 𝑡−1(𝑡 ∈ (0, 𝜋/2)), which include the
corresponding trigonometric version of the inequalities listed
above. As applications, their corresponding inequalities for
bivariate means are presented.

2. Lemmas

Lemma 2 (see [10,Theorem 1.25], [11, Remark 1]). For −∞ <

𝑎 < 𝑏 < ∞, let 𝑓, 𝑔 : [𝑎, 𝑏] → R be continuous on [𝑎, 𝑏] and

differentiable on (𝑎, 𝑏); let 𝑔 ̸= 0 on (𝑎, 𝑏). If𝑓/𝑔 is increasing
(or decreasing) on (𝑎, 𝑏), then so are

𝑓 (𝑥) − 𝑓 (𝑎)

𝑔 (𝑥) − 𝑔 (𝑎)
,

𝑓 (𝑥) − 𝑓 (𝑏)

𝑔 (𝑥) − 𝑔 (𝑏)
. (13)

If 𝑓/𝑔 is one-to-one, then the monotonicity in the conclusion
is strict.

Lemma 3 (see [12]). Let 𝑎
𝑛
and 𝑏
𝑛
(𝑛 = 0, 1, 2, . . .) be real

numbers and let the power series 𝐴(𝑡) = ∑∞
𝑛=1
𝑎
𝑛
𝑡
𝑛 and 𝐵(𝑡) =

∑
∞

𝑛=1
𝑏
𝑛
𝑡
𝑛 be convergent for |𝑡| < 𝑅. If 𝑎

𝑛
, 𝑏
𝑛
> 0, for 𝑛 =

1, 2, . . ., and 𝑎
𝑛
/𝑏
𝑛
is (𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦) increasing (decreasing), for 𝑛 =

1, 2, . . ., then the function 𝐴(𝑡)/𝐵(𝑡) is also (strictly) increasing
(decreasing) on (0, 𝑅).

Lemma 4 (see [13, pages 227–229]). One has

1

sin 𝑡
=
1

𝑡
+

∞

∑

𝑛=1

2
2𝑛
− 2

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛−1
, 0 < |𝑡| < 𝜋, (14)

cot 𝑡 = 1
𝑡
−

∞

∑

𝑛=1

2
2𝑛

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛−1
, 0 < |𝑡| < 𝜋, (15)

tan 𝑡 =
∞

∑

𝑛=1

2
2𝑛
− 1

(2𝑛)!
2
2𝑛 𝐵2𝑛

 𝑡
2𝑛−1
, |𝑡| <

𝜋

2
, (16)

1

sin2𝑡
=
1

𝑡2
+

∞

∑

𝑛=1

(2𝑛 − 1) 2
2𝑛

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛−2
, 0 < |𝑡| < 𝜋, (17)

where 𝐵
𝑛
is the Bernoulli number.

Lemma 5. For every 𝑡 ∈ (0, 𝜋/2), 𝑝 ∈ (0, 1], the function 𝐹
𝑝

defined by

𝐹
𝑝
(𝑡) =

𝑡 cot 𝑡 − 1
ln (cos𝑝𝑡) (18)

is increasing if 𝑝 ∈ (0, 1/2] and decreasing if 𝑝 ∈ [√10/5, 1].
Consequently, for 𝑝 ∈ (0, 1/2], one has

2

3𝑝2
<
𝑡 cot 𝑡 − 1
ln (cos𝑝𝑡)

< −
1

ln (cos (𝜋𝑝/2))
. (19)

It is reversed if 𝑝 ∈ [√10/5, 1].

Proof. For 𝑡 ∈ (0, 𝜋/2), we define𝑓
1
(𝑡) = 𝑡 cot 𝑡−1 and𝑓

2
(𝑡) =

ln(cos𝑝𝑡), where 𝑝 ∈ (0, 1]. Note that 𝑓
1
(0
+
) = 𝑓
2
(0
+
) = 0,

and 𝐹
𝑝
(𝑡) can be written as

𝐹
𝑝
(𝑡) =

𝑓
1
(𝑡) − 𝑓

1
(0
+
)

𝑓
2
(𝑡) − 𝑓

2
(0
+
)
. (20)
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Differentiation and using (14) and (15) yield

𝑓


1
(𝑡)

𝑓


2
(𝑡)
=
𝑡/sin2𝑡 − cot 𝑡
𝑝 tan𝑝𝑡

= (𝑡(
1

𝑡2
+

∞

∑

𝑛=1

(2𝑛 − 1) 2
2𝑛

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛−2
)

−(
1

𝑡
−

∞

∑

𝑛=1

2
2𝑛

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛−1
))

× (

∞

∑

𝑛=1

2
2𝑛
− 1

(2𝑛)!
2
2𝑛
𝑝
2𝑛 𝐵2𝑛

 𝑡
2𝑛−1
)

−1

=

∑
∞

𝑛=1
(2
2𝑛
/ (2𝑛)!) 2𝑛

𝐵2𝑛
 𝑡
2𝑛−1

∑
∞

𝑛=1
((22𝑛 − 1) / (2𝑛)!) 2

2𝑛𝑝2𝑛
𝐵2𝑛

 𝑡
2𝑛−1

:=
∑
∞

𝑛=1
𝑎
𝑛
𝑡
2𝑛−1

∑
∞

𝑛=1
𝑏
𝑛
𝑡2𝑛−1

,

(21)

where

𝑎
𝑛
=
2
2𝑛

(2𝑛)!
2𝑛
𝐵2𝑛

 , 𝑏
𝑛
=
2
2𝑛
− 1

(2𝑛)!
2
2𝑛
𝑝
2𝑛 𝐵2𝑛

 .
(22)

Clearly, if the monotonicity of 𝑎
𝑛
/𝑏
𝑛
is proved, then by

Lemma 3 we can get the monotonicity of 𝑓
1
/𝑓


2
, and then the

monotonicity of the function𝐹
𝑝
easily follows fromLemma 2.

For this purpose, since 𝑎
𝑛
, 𝑏
𝑛
> 0, for 𝑛 ∈ N, we only need to

show that 𝑏
𝑛
/𝑎
𝑛
is decreasing if 𝑝 ∈ (0, 1/2] and increasing if

𝑝 ∈ [√10/5, 1]. Indeed, an elementary computation yields

𝑏
𝑛+1

a
𝑛+1

−
𝑏
𝑛

𝑎
𝑛

=
1

2𝑛 + 2
𝑝
2𝑛+2

(2
2𝑛+2

− 1) −
1

2𝑛
𝑝
2𝑛
(2
2𝑛
− 1)

=
4
𝑛+1
− 1

2𝑛 + 2
𝑝
2𝑛
(𝑝
2
−
𝑛 + 1

𝑛

4
𝑛
− 1

4𝑛+1 − 1
) .

(23)

It is easy to obtain that, for n ∈ N,

𝑏
𝑛+1

𝑎
𝑛+1

−
𝑏
𝑛

𝑎
𝑛

{{{

{{{

{

≥ 0 if 𝑝2 > max
𝑛∈N

(
𝑛 + 1

𝑛

4
𝑛
− 1

4𝑛+1 − 1
) =

2

5
,

≤ 0 if 𝑝2 ≤ min
𝑛∈N

(
𝑛 + 1

𝑛

4
𝑛
− 1

4𝑛+1 − 1
) =

1

4
,

(24)

which proves the monotonicity of 𝑎
𝑛
/𝑏
𝑛
.

Making use of the monotonicity of 𝐹
𝑝
and the facts that

𝐹
𝑝
(0
+
) =

2

3𝑝2
, 𝐹

𝑝
(
𝜋

2

−

) = −
1

ln (cos (𝜋𝑝/2))
, (25)

we get inequality (19) and its reverse immediately.

Lemma 6. For every 𝑡 ∈ (0, 𝜋/2), 𝑝 ∈ (0, 1], the function 𝐺
𝑝

defined by

𝐺
𝑝
(𝑡) =

ln (sin 𝑡/𝑡) + 𝑡 cot𝑡 − 1
ln cos𝑝𝑡 (26)

is increasing if 𝑝 ∈ (0, 1/2] and decreasing if 𝑝 ∈ [1/√3, 1].
Consequently, for 𝑝 ∈ (0, 1/2], one has

1

𝑝2
<
ln (sinh 𝑡/𝑡) + 𝑡 cot 𝑡 − 1

ln (cos𝑝𝑡)
<

ln 2 − ln𝜋 − 1
ln (cos (𝜋𝑝/2))

. (27)

It is reversed if 𝑝 ∈ [1/√3, 1].

Proof. We define 𝑔
1
(𝑡) = ln(sin 𝑡/𝑡) + 𝑡 cot 𝑡 − 1 and 𝑔

2
(𝑡) =

ln(cos𝑝𝑡), where 𝑝 ∈ (0, 1]. Note that 𝑔
1
(0
+
) = 𝑔
2
(0
+
) = 0,

and 𝐺
𝑝
(𝑡) can be written as

𝐺
𝑝
(𝑡) =

𝑔
1
(𝑡) − 𝑔

1
(0
+
)

𝑔
2
(𝑡) − 𝑔

2
(0
+
)
. (28)

Differentiating and using (14) and (15) yield

𝑔


1
(𝑡)

𝑔


2
(𝑡)
=

2 (cos 𝑡/ sin 𝑡) − 1/𝑡 − 𝑡 (1/sin2𝑡)
−𝑝 tan (𝑝𝑡)

= (2(
1

𝑡
−

∞

∑

𝑛=1

2
2𝑛

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛−1
) −

1

𝑡

−𝑡 (
1

𝑡2
+

∞

∑

𝑛=1

(2𝑛 − 1) 2
2𝑛

(2𝑛)!

𝐵2𝑛
 t
2𝑛−2
))

× (−𝑝

∞

∑

𝑛=1

2
2𝑛
− 1

(2𝑛)!
2
2𝑛 𝐵2𝑛

 𝑝
2𝑛−1
𝑡
2𝑛−1
)

−1

=

∑
∞

𝑛=1
(2
2𝑛
/ (2𝑛)!) (2𝑛 + 1)

𝐵2𝑛
 𝑡
2𝑛−1

∑
∞

𝑛=1
((22𝑛 − 1) / (2𝑛)!) 2

2𝑛𝑝2𝑛
𝐵2𝑛

 𝑡
2𝑛−1

:=
∑
∞

𝑛=1
𝑐
𝑛
𝑡
2𝑛−1

∑
∞

𝑛=1
𝑑
𝑛
𝑡2𝑛−1

,

(29)

where

𝑐
𝑛
=
2
2𝑛

(2𝑛)!
(2𝑛 + 1)

𝐵2𝑛
 , 𝑑

𝑛
=
2
2𝑛
− 1

(2𝑛)!
2
2𝑛
𝑝
2𝑛 𝐵2𝑛

 .

(30)

Similarly, we only need to show that 𝑑
𝑛
/𝑐
𝑛
is decreasing if

𝑝 ∈ (0, 1/2] and increasing if 𝑝 ∈ [1/√3, 1]. In fact, simple
computation leads to

𝑑
𝑛+1

𝑐
𝑛+1

−
𝑑
𝑛

𝑐
𝑛

= 𝑝
2𝑛+2 4
𝑛+1
− 1

2𝑛 + 3
− 𝑝
2𝑛 4
𝑛
− 1

2𝑛 + 1

=
4
𝑛+1
− 1

2𝑛 + 3
𝑝
2𝑛
(𝑝
2
−
2𝑛 + 3

2𝑛 + 1

4
𝑛
− 1

4𝑛+1 − 1
) .

(31)

It is easy to obtain that, for 𝑛 ∈ N,

𝑑
𝑛+1

𝑐
𝑛+1

−
𝑑
𝑛

𝑐
𝑛

{{{

{{{

{

≥ 0 if 𝑝2 ≥ max
𝑛∈N

(
2𝑛 + 3

2𝑛 + 1

4
𝑛
− 1

4𝑛+1 − 1
) =

1

3
,

≤ 0 if 𝑝2 ≤ min
𝑛∈N

(
2𝑛 + 3

2𝑛 + 1

4
𝑛
− 1

4𝑛+1 − 1
) =

1

4
,

(32)

which proves the monotonicity of 𝑐
𝑛
/𝑑
𝑛
.
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Making use of the monotonicity of 𝐹
𝑝
and the facts that

𝐹
𝑝
(0
+
) =

1

𝑝2
, 𝐹

𝑝
(
𝜋

2

−

) =
ln 2 − ln𝜋 − 1
ln (cos (𝜋𝑝/2)) (33)

we get inequality (27) and its reverse immediately.

Lemma 7 (see [14, 15]). For 𝑡 ∈ [0, 𝜋/2] and 𝑝 ∈ [0, 1), let
𝑈
𝑝
(𝑡), 𝑉
𝑝
(𝑡),𝑊

𝑝
(𝑡), and 𝑅

𝑝
(𝑡) be defined by

𝑈
𝑝
(𝑡) = (cos𝑝𝑡)1/𝑝 if 𝑝 ̸= 0, 𝑈

0
(𝑡) = 1, (34)

𝑉
𝑝
(𝑡) = (cos𝑝𝑡)1/𝑝

2

if 𝑝 ̸= 0, 𝑉
0
(𝑡) = 𝑒

−𝑡
2
/2
, (35)

𝑊
𝑝
(𝑡) = (cos𝑝𝑡)1/ ln(cos(𝜋𝑝/2)) if 𝑝 ̸= 0,𝑊

0
(𝑡) = 𝑒

4𝑡
2
/𝜋
2

,

(36)

𝑅
𝑝
(𝑡) = (

cos𝑝𝑡
cos (𝜋𝑝/2)

)

1/𝑝
2

if 𝑝 ̸= 0, 𝑅
0
(𝑡) = 𝑒

(𝜋
2
−4𝑡
2
)/8
.

(37)

Then, 𝑈
𝑝
(𝑡), 𝑉
𝑝
(𝑡), and 𝑊

𝑝
(𝑡) are decreasing with respect to

𝑝 ∈ [0, 1), while 𝑅
𝑝
(𝑡) is increasing with respect to 𝑝 on [0, 1).

Proof. It was proved in [14, 15] that the functions 𝑈
𝑝
(𝑡) and

𝑉
𝑝
(𝑡) are decreasing with respect to 𝑝 ∈ [0, 1). Now, we prove

that𝑊
𝑝
(𝑡) has the same property. Logarithmic differentiation

gives that, for 𝑝 ∈ (0, 1),

cos (𝑝𝜋/2)
sin (𝑝𝜋/2)

ln2 (cos
𝑝𝜋

2
) ×

𝜕 ln𝑊
𝑝
(𝑡)

𝜕𝑝

=
𝜋

2
ln (cos𝑝𝑡) − 𝑡

sin𝑝𝑡
cos𝑝𝑡

cos (𝑝𝜋/2)
sin (𝑝𝜋/2)

ln(cos
𝑝𝜋

2
)

:= 𝜙
1
(𝑝) ,

2cos2𝑝𝑡 sin2 (𝑝𝜋/2)
𝑡 ln (cos (𝑝𝜋/2))

𝜙


1
(𝑝) =

𝜋

2
sin 2𝑝𝑡 − 𝑡 sin𝜋𝑝

:= 𝜙
2
(𝑝) ,

𝜙


2
(𝑝) = 𝜋𝑡 (cos 2𝑝𝑡 − cos𝑝𝜋) ≥ 0 for 𝑡 ∈ [0, 𝜋

2
] .

(38)

Clearly, 𝜙
2
(𝑝) > 0 for 𝑡 ∈ [0, 𝜋/2] and 𝑝 ∈ (0, 1), which yields

𝜙
2
(𝑝) > 𝜙

2
(0) = 0, and so 𝜙

1
(𝑝) ≤ 0. This gives 𝜙

1
(𝑝) <

𝜙
1
(0) = 0 and 𝜕 ln𝑊

𝑝
(𝑡)/𝜕𝑝 < 0.

Similarly, we get

𝜕 ln𝑊
𝑝
(𝑡)

𝜕𝑝
=
4

3𝑝3
ln(cos

𝑝𝜋

2
) −

4

3𝑝3
ln (cos𝑝𝑡)

−
2𝑡

3𝑝2
tan𝑝𝑡 + 𝜋

3𝑝2
tan

𝑝𝜋

2
,

𝜕
2 ln𝑊

𝑝
(𝑡)

𝜕𝑡𝜕𝑝
= −

2

3

2𝑝𝑡 − sin 2𝑝𝑡
𝑝2cos2𝑝𝑡

< 0

for 𝑡 ∈ [0, 𝜋
2
] , 𝑝 ∈ (0, 1) ,

(39)

which implies that 𝜕 ln𝑊
𝑝
(𝑡)/𝜕𝑝 is decreasing with respect to

𝑡 on [0, 𝜋/2]. Therefore,

𝜕 ln𝑊
𝑝
(𝑡)

𝜕𝑝
>

𝜕 ln𝑊
𝑝
(𝑡)

𝜕𝑝

𝑡=𝜋/2

= 0, (40)

which proves the desired result.

3. Main Results

3.1. The First Sharp Bounds for 𝑒𝑡 cot 𝑡−1. In this subsection, we
present the sharp bounds for 𝑒𝑡 cot 𝑡−1 in terms of (cos𝑝𝑡)1/𝑝,
which give the trigonometric versions of inequalities (6) and
(7).

Theorem 8. For 𝑡 ∈ (0, 𝜋/2), the two-side inequality

(cos 2𝑡
3
)

3/2

< 𝑒
𝑡 cot 𝑡−1

< (cos𝑝
1
𝑡)
1/𝑝
1 (41)

holds with the best possible constants 2/3 and 𝑝
1
= 0.6505 . . .,

where 𝑝
1
is the unique root of the equation

1 +
1

𝑝
ln(cos

𝑝𝜋

2
) = 0 (42)

on (0, 1). Moreover, one has

(cos 2𝑡
3
)

3/2

< 𝑒
𝑡 cot 𝑡−1

< (cos 2𝑡
3
)

1/ ln 2
<
2√2

𝑒
(cos 2𝑡

3
)

3/2

,

(43)

(cos𝑝
1
𝑡)
2/(3𝑝

2

1
)

< 𝑒
𝑡 cot 𝑡−1

< (cos𝑝
1
𝑡)
1/𝑝
1

, (44)

where the exponents 3/2, 1/ ln 2 and coefficients 1, 2√2/𝑒 in
(43) are the best possible constants and so is 𝑝

1
≈ 0.6505536 in

(44).

Proof. (i) We first prove that the left inequality in (41) for
𝑡 ∈ (0, 𝜋/2) and 2/3 is the best possible constant. Letting
𝑝 = 2/3 ∈ [√10/5, 1] in (19), thenwe get the first inequality in
(41) and the second inequality in (43). If there exists 𝑝 < 2/3
such that 𝑒𝑡 cot 𝑡−1 > (cos𝑝𝑡)1/𝑝 for 𝑡 ∈ (0, 𝜋/2), then

lim
𝑡→0
+

𝑡 cot 𝑡 − 1 − (1/𝑝) ln (cos𝑝𝑡)
𝑡2

≥ 0. (45)



Abstract and Applied Analysis 5

Using power series expansion gives

𝑡 cot 𝑡 − 1 − 1
𝑝
ln (cos𝑝𝑡) = 𝑡2 (1

2
𝑝 −

1

3
) + 𝑜 (𝑡

2
) . (46)

Therefore,

lim
𝑡→0
+

𝑡 cot 𝑡 − 1 − (1/𝑝) ln (cos𝑝𝑡)
𝑡2

=
1

2
(𝑝 −

2

3
) ≥ 0, (47)

which derives a contradiction. Hence, 2/3 is the best possible
constant.

(ii) From Lemma 7, we clearly see that the function 𝑝 →
1 + (1/𝑝) ln(cos(𝑝𝜋/2)) is decreasing on (0, 1). Note that

lim
𝑝→0

+

(1 +
1

𝑝
ln(cos

𝑝𝜋

2
)) = 1,

lim
𝑝→1

−

(1 +
1

𝑝
ln(cos

𝑝𝜋

2
)) = −∞.

(48)

Therefore, (42) has a unique root 𝑝
1
∈ (0, 1). Numerical

calculation gives 𝑝
1
≈ 0.6505536. Letting 𝑝 = 𝑝

1
∈

[√10/5, 1] in Lemma 5 yields

−
1

ln (cos (𝜋𝑝
1
/2))

<
𝑡 cot 𝑡 − 1
ln (cos𝑝

1
𝑡)
<
2

3𝑝
2

1

. (49)

The above inequalities can be rewritten as
2

3𝑝
2

1

ln (cos𝑝
1
𝑡) < 𝑡 cot 𝑡 − 1

< −
1

ln (cos (𝜋𝑝
1
/2))

ln (cos𝑝
1
𝑡)

=
1

𝑝
1

ln (cos𝑝
1
𝑡) ,

(50)

where the equality is due to the fact that 𝑝
1
is the unique

root of (42).Therefore, we get the right inequality in (41) and
the first inequality in (44). We clearly see that 𝑝

1
is the best

possible constant.
(iii) The third inequality in (43) easily follows from

1

ln 2
ln(cos 2𝑡

3
) − ln 2

√2

𝑒
−
3

2
ln(cos 2𝑡

3
) < 0, (51)

which holds due to ln(cos(2𝑡/3)) > ln(cos(𝜋/3)) = − ln 2 and
1/ ln 2 < 3/2. From

lim
𝑡→0
+

𝑒
𝑡 cot 𝑡−1

(cos (2𝑡/3))3/2
= 1, lim

𝑡→𝜋/2
−

𝑒
𝑡 cot 𝑡−1

(cos (2𝑡/3))3/2
=
2√2

𝑒

(52)

we clearly see that the coefficients 1 and 2√2/𝑒 are the best
possible constants.

This completes the proof.

Recently, Yang [16] proved that the inequalities

(cos𝑝𝑡)1/𝑝 < sin 𝑡
𝑡
< (cos 𝑞𝑡)1/𝑞 (53)

hold for 𝑡 ∈ (0, 𝜋/2) if and only if 𝑝 ∈ [𝑝
0
, 1) and 𝑞 ∈ (0, 1/3],

where 𝑝
0
≈ 0.3473. Making use of Theorem 8 and Lemma 7,

we have the following.

Corollary 9. For 𝑡 ∈ (0, 𝜋/2), the chain of inequalities

cos 𝑡 < ⋅ ⋅ ⋅ < (cos 2𝑡
3
)

3/2

< 𝑒
𝑡 cot 𝑡−1

< (cos𝑝
1
𝑡)
1/𝑝
1

< ⋅ ⋅ ⋅ < (cos𝑝
0
𝑡)
1/𝑝
0

<
sin 𝑡
𝑡
< (cos 𝑡

3
)

3

⋅ ⋅ ⋅ < 1

(54)

hold with the best possible constants 2/3, 𝑝
1
≈ 0.6505, 𝑝

0
≈

0.3473, and 1/3.

3.2. The Second Sharp Bounds for 𝑒𝑡 cot 𝑡−1. In this sub-
section, we give the sharp bounds for 𝑒𝑡 cot 𝑡−1 in terms
of (cos𝑝𝑡)2/(3𝑝

2
), which give the trigonometric versions of

inequalities (8).

Theorem 10. For 𝑡 ∈ (0, 𝜋/2), the two-side inequality

(cos 2𝑡

√10

)

5/3

< 𝑒
𝑡 cot 𝑡−1

< (cos𝑝
2
𝑡)
2/(3𝑝

2

2
) (55)

holds with the best possible constants 2/√10 and 𝑝
2
≈

0.6210901, where 𝑝
2
is the unique solution of the equation

𝐻
𝑝
(
𝜋
−

2
) = −1 −

2

3𝑝2
ln(cos

𝑝𝜋

2
) = 0 (56)

on (1/2, 1). Moreover, the inequalities

(cos𝑝𝑡)2/(3𝑝
2
)

< 𝑒
𝑡 cot 𝑡−1

< (cos𝑝𝑡)𝛼𝑝 < 𝛽
𝑝
(cos𝑝𝑡)2/(3𝑝

2
)

(57)

hold for 𝑝 ∈ [√10/5, 1], where the exponents

2

(3𝑝2)
, 𝛼
𝑝
= −

1

ln (cos (𝜋𝑝/2)) (58)

and the coefficients

1, 𝛽
𝑝
= 𝑒
−1
(cos

𝑝𝜋

2
)

−2/(3𝑝
2
)

(59)

are the best possible constants. Also, the first member in (57) is
decreasing with respect to𝑝 on (0, 1), while the third and fourth
members are increasing with respect to 𝑝 on (0, 1). The reverse
inequality of (57) holds if 𝑝 ∈ (0, 1/2].

Proof. For 𝑡 ∈ (0, 𝜋/2) and 𝑝 ∈ (0, 1), we define

𝐻
𝑝
(𝑡) := 𝑡

cos 𝑡
sin 𝑡

− 1 −
2

3𝑝2
ln (cos𝑝𝑡) . (60)

To prove the desired results, we need two assertions.The first
one is

lim
𝑡→0
+

𝐻
𝑝
(𝑡)

𝑡4
=
1

18
(𝑝
2
−
2

5
) , (61)

which follows by expanding in power series

𝐻
𝑝
(𝑡) =

1

90
(5𝑝
2
− 2) 𝑡
4
+ 𝑜 (𝑡
4
) . (62)
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The second one states that the equation 𝐻
𝑝
(𝜋/2
−
) = 0, that

is, (56), has a unique solution 𝑝
2
≈ 0.6210901 such that

𝐻
𝑝
(𝜋/2
−
) < 0 for 𝑝 ∈ (0, 𝑝

2
) and 𝐻

𝑝
(𝜋/2
−
) > 0 for

𝑝 ∈ (𝑝
2
, 1). Indeed, Lemma 7 implies that 𝑝 → 𝐻

𝑝
(𝜋/2
−
)

is increasing on (0, 1), which together with the facts that

𝐻
1/2
(
𝜋

2

−

) =
4

3
ln 2 − 1 < 0, 𝐻

1
(
𝜋

2

−

) = ∞ (63)

indicates the second assertion. By using mathematical soft-
ware, we find 𝑝

2
≈ 0.6210901.

(i) Now, we prove that the first inequality in (55) holds
with the best constant 2/√10. Letting 𝑝 = 2/√10 in Lemma 5
yields the first inequality in (55). Due to the decreasing
property of 𝑝 → (cos𝑝𝑡)2/(3𝑝

2
) on (0, 1) given by Lemma 7,

we assume that there is a 𝑝 ∈ (0, 1) with 𝑝 < 2/√10 such
that the left inequality in (55) holds for 𝑡 ∈ (0, 𝜋/2); then we
have lim

𝑡→0
+𝑡
−4
𝐻
𝑝
(𝑡) ≥ 0, which together with the relation

(61) leads to (𝑝2 − 2/5) ≥ 0. It is clearly impossible. Hence,
2/√10 is the best constant.

(ii) We next show that the second inequality in (55)
holds with the best constant 𝑝

2
. Let us introduce an auxiliary

function ℎ
𝑝
2

defined on (0, 𝜋/2) by

ℎ
𝑝
2
(𝑡) =

𝐻


𝑝
2

(𝑡)

𝑡3
. (64)

Expanding in power series gives

𝐻


𝑝
2

(𝑡) =
cos 𝑡
sin 𝑡

−
𝑡

sin2𝑡
+
2

3𝑝
2

sin𝑝
2
𝑡

cos𝑝
2
𝑡

= (
1

𝑡
−

∞

∑

𝑛=1

2
2𝑛

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛−1
)

− 𝑡(
1

𝑡2
+

∞

∑

𝑛=1

(2𝑛 − 1) 2
2𝑛

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛−2
)

+
2

3𝑝
2

∞

∑

𝑛=1

2
2𝑛
− 1

(2𝑛)!
2
2𝑛
𝑝
2𝑛−1

2

𝐵2𝑛
 𝑡
2𝑛−1

:=

∞

∑

𝑛=2

𝑟
𝑛

3 (2𝑛)!
2
2𝑛+1 𝐵2𝑛

 𝑡
2𝑛−1
,

(65)

where

𝑟
𝑛
= ((2
2𝑛
− 1) 𝑝

2𝑛−2

2
− 3𝑛) . (66)

Therefore, we have

ℎ
𝑝
2
(𝑡) =

𝐻


𝑝
2

(𝑡)

𝑡3
=

∞

∑

𝑛=2

2
2𝑛+1 𝐵2𝑛



3 (2𝑛)!
𝑟
𝑛
𝑡
2𝑛−4
. (67)

Differentiation again yields

ℎ


𝑝
2

(𝑡) =

∞

∑

𝑛=3

(2𝑛 − 4) 2
2𝑛+1 𝐵2𝑛



3 (2𝑛)!
𝑟
𝑛
𝑡
2𝑛−5
. (68)

We claim that ℎ
𝑝
2

(𝑡) > 0 for 𝑡 ∈ (0, 𝜋/2). It suffices to show
that 𝑟
𝑛
> 0 for 𝑛 ≥ 3. In fact, 𝑟

3
= 63(𝑝

4

2
− 1/7) > 0, and 𝑟

𝑛

satisfies the recursive relation

𝑟
𝑛+1

22𝑛+2 − 1
− 𝑝
2

2

𝑟
𝑛

22𝑛 − 1
=

3𝑛

22𝑛 − 1
(𝑝
2

2
−
𝑛 + 1

𝑛

2
2𝑛
− 1

22𝑛+2 − 1
)

:=
3𝑛

22𝑛 − 1
(𝑝
2

2
− 𝑟


𝑛
) .

(69)

A direct check leads to

𝑟


𝑛
− 𝑟


𝑛+1
=

16 × 2
4𝑛
− (9𝑛
2
+ 18𝑛 + 17) × 2

2𝑛
+ 1

𝑛 (16 × 22𝑛 − 1) (4 × 22𝑛 − 1) (𝑛 + 1)

:=
𝑟


𝑛

𝑛 (16 × 22𝑛 − 1) (4 × 22𝑛 − 1) (𝑛 + 1)
> 0,

(70)

due to 𝑟
3
= 55809 and 𝑟

𝑛
satisfies the recursive relation

𝑟


𝑛+1
− 16𝑟


𝑛
= 12 (12𝑛 + 9𝑛

2
+ 8) × 2

2𝑛
− 15 > 0 for 𝑛 ≥ 3.

(71)

Hence, 𝑟
𝑛
is decreasing for 𝑛 ≥ 3, and so

1

4
= lim
𝑛→∞

𝑛 + 1

𝑛

2
2𝑛
− 1

22𝑛+2 − 1
< 𝑟


𝑛
< [

𝑛 + 1

𝑛

2
2𝑛
− 1

22𝑛+2 − 1
]

𝑛=3

=
28

85
,

(72)

which yields 𝑝2
2
− 𝑟


𝑛
> 𝑝
2

2
− 28/85 > 0. From the recursive

relation (69), we get 𝑟
𝑛
> 0 for 𝑛 ≥ 3, which proves that

ℎ


𝑝
2

(𝑡) > 0 for 𝑡 ∈ (0, 𝜋/2). Note that

ℎ
𝑝
2

(0
+
) = lim
𝑡→0
+

ℎ
𝑝
2
(𝑡) =

2

9
(𝑝
2

2
−
2

5
) < 0. (73)

We also assert that ℎ
𝑝
2

(𝜋/2
−
) > 0. If not, that is, ℎ

𝑝
2

(𝜋/2
−
) ≤

0, then there must be 𝐻
𝑝
2

(𝑡) < 0 for 𝑡 ∈ (0, 𝜋/2), which
yields 𝐻

𝑝
2

(𝑡) < 𝐻
𝑝
2

(0
+
) = 0 and 𝐻

𝑝
2

(𝑡) > 𝐻
𝑝
2

(𝜋/2
−
) = 0

due to 𝑝
2
being the solution of the equation 𝐻

𝑝
(𝜋/2
−
) = 0.

This is obviously a contradiction. It follows that there is a
𝑡
1
∈ (0, 𝜋/2) such that ℎ

𝑝
2

(𝑡) < 0 for 𝑡 ∈ (0, 𝑡
1
) and ℎ

𝑝
2

(𝑡) > 0

for 𝑡 ∈ (𝑡
1
, 𝜋/2), which also implies that𝐻

𝑝
2

is decreasing on
(0, 𝑡
1
) and increasing on (𝑡

1
, 𝜋/2). Therefore,

𝐻
𝑝
2
(𝑡) < 𝐻

𝑝
2

(0
+
) = 0 for 𝑡 ∈ (0, 𝑡

1
) ,

𝐻
𝑝
2
(𝑡) < 𝐻

𝑝
2

(
𝜋
−

2
) = 0 for 𝑡 ∈ (𝑡

1
,
𝜋

2
) ;

(74)

that is,𝐻
𝑝
2

(𝑡) < 0 for 𝑡 ∈ (0, 𝜋/2).
It remains to prove that 𝑝

2
is the best possible constant.

If there is a 𝑝
2
∈ (0, 1) with 𝑝

2
> 𝑝
2
such that the right

inequality in (55) holds for 𝑡 ∈ (0, 𝜋/2), then, by the second
assertion proved previously, we have 𝐻

𝑝


2

(𝜋/2
−
) > 0, which

yields a contradiction.
(iii) The first and second inequalities in (57) and their

reverse ones are clearly the direct consequences of Lemma 5.
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It remains to prove the third one. We have to determine the
sign of𝐷

𝑝
(𝑡) defined by

𝐷
𝑝
(𝑡) := 𝛼

𝑝
ln (cos𝑝𝑡) − ln𝛽

𝑝
−
2

3𝑝2
ln (cos𝑝𝑡) (75)

for 𝑡 ∈ (0, 𝜋/2) and 𝑝 ∈ (0, 1). Arranging leads to

𝐷
𝑝
(𝑡) = −

ln (cos𝑝𝑡)
ln (cos (𝜋𝑝/2))

+ 1 +
2

3𝑝2
ln (cos (𝜋𝑝/2))

−
2

3𝑝2
ln (cos𝑝𝑡)

= −(1 +
2

3𝑝2
ln (cos (𝜋𝑝/2)))

×
ln (cos𝑝𝑡) − ln ln (cos (𝜋𝑝/2))

ln (cos (𝜋𝑝/2))

= 𝐻
𝑝
(
𝜋
−

2
)
ln (cos𝑝𝑡) − ln ln (cos (𝜋𝑝/2))

ln (cos (𝜋𝑝/2))
.

(76)

As shown previously, 𝐻
𝑝
(𝜋/2
−
) < 0 for 𝑝 ∈ (0, 𝑝

2
)

and 𝐻
𝑝
(𝜋/2
−
) > 0 for 𝑝 ∈ (𝑝

2
, 1), which together with

ln(cos𝑝𝑡) > ln ln(cos(𝜋𝑝/2)) and ln(cos(𝜋𝑝/2)) < 0 gives
the desired result.

Lemma 7 reveals that the monotonicity of the first,
second, and third members in (57) with respect to 𝑝 on (0, 1)
due to

(cos𝑝𝑡)2/(3𝑝
2
)

= 𝑉
𝑝
(𝑡)
2/3
, (cos𝑝𝑡)𝛼𝑝 = 𝑊

𝑝
(𝑡)
−1
,

𝛽
𝑝
(cos𝑝𝑡)2/(3𝑝

2
)

= 𝑒
−1
𝑅
𝑝
(𝑡)
2/3
.

(77)

Finally, we show that 𝛽
𝑝
is the best possible constant. It easily

follows that

lim
𝑡→0
+

𝑒
𝑡 cot 𝑡−1

(cos𝑝𝑡)2/(3𝑝
2
)
= 1,

lim
𝑡→𝜋/2

−

𝑒
𝑡 cot 𝑡−1

(cos𝑝𝑡)2/(3𝑝
2
)
=

𝑒
−1

(cos (𝜋𝑝/2))2/(3𝑝
2
)
= 𝛽
𝑝
.

(78)

Thus, we complete the proof.

Remark 11. Letting 𝑡 = 𝑥/2 and 𝑝
2
= 2𝑝
3
in Theorem 10 and

then taking squares, we deduce that the two-side inequality

cos10/3 𝑥
√10

< 𝑒
𝑥 cot(𝑥/2)−2

< (cos𝑝
3
𝑥)
1/(3𝑝

2

3
)

(79)

holds for 𝑥 ∈ (0, 𝜋), where 𝑝
3
= 𝑝
2
/2 ≈ 0.31055.

From the proof of Theorem 10, we clearly see that the
constant 1/√10 in (79) is the best possible constant, but 𝑝

3
=

𝑝
2
/2 is not.

In [15,Theorems 1, 2, and 3], Yang proved that the chain
of inequalities

(cos𝑝∗
0
𝑡)
1/(3𝑝

∗2

0
)

<
sin 𝑡
𝑡
< (cos 𝑡

√5
)

5/3

< ⋅ ⋅ ⋅ < 𝑒
−𝑡
2
/6
<
2 + cos 𝑡
3

(80)

holds for 𝑡 ∈ (0, 𝜋/2) with the best constants 1/√5 and
𝑝
∗

0
≈ 0.45346. The monotonicity of the function 𝑝 →

(cos𝑝𝑡)1/(3𝑝
2
) on (0, 1) given in Lemma 7 and Remark 11 lead

to the following.

Corollary 12. For 𝑡 ∈ (0, 𝜋/2), the chain of inequalities

(cos 𝑡)1/3 < ⋅ ⋅ ⋅ < cos5/6 2𝑡
√10

< √𝑒𝑡 cot 𝑡−1 < (cos𝑝
2
𝑡)
1/(3𝑝

2

2
)

< ⋅ ⋅ ⋅ < (cos𝑝∗
0
𝑡)
1/(3𝑝

∗2

0
)

<
sin 𝑡
𝑡
< cos5/3 𝑡

√5

< ⋅ ⋅ ⋅ < cos10/3 𝑡
√10

< 𝑒
𝑡 cot (𝑡/2)−2

< (cos𝑝
3
𝑡)
1/(3𝑝

2

3
)

< ⋅ ⋅ ⋅ < 𝑒
−𝑡
2
/6
<
2 + cos 𝑡
3

(81)

holds with the best possible constants 2/√10 ≈ 0.63246, 𝑝
2
≈

0.6210901, 𝑝∗
0
≈ 0.45346, 1/√5 ≈ 0.44721 and 1/√10 ≈

0.31623, and 𝑝
3
≈ 0.31055.

Using certain known inequalities and the corollary above,
we can obtain the following novel inequalities chain for
trigonometric functions.

Corollary 13. For 𝑡 ∈ (0, 𝜋/2), one has

(cos 𝑡)1/3 < ( sin 𝑡
𝑡

cos 𝑡)
1/4

< (
1

2

sin 𝑡
𝑡
+
1

2
cos 𝑡)

1/2

< √
2

3
cos 𝑡 + 1

3

< (cos 2𝑡
3
)

3/4

< √𝑒𝑡 cot 𝑡−1 < (cos 𝑡
2
)

4/3

<
sin 𝑡
𝑡

<
2 cos (𝑡/2) + cos2 (𝑡/2)

3
< (

2

3
cos 𝑡

2
+
1

3
)

2

< (cos 𝑡
3
)

3

< 𝑒
𝑡 cot (𝑡/2)−2

< (cos 𝑡
4
)

16/3

< (cos 𝑡
6
)

12

< 𝑒
−𝑡
2
/6
<
2

3
+
1

3
cos 𝑡 < 𝑒

𝑡 cot 𝑡−1
+ 1

2
.

(82)

Proof. The first, second, and third inequalities in (82) are due
to Neuman [17, Theorem 1].
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The fourth one in (82) is equivalent to

𝑙 (𝑡) := (
2

3
cos 𝑡 + 1

3
) (cos 2𝑡

3
)

−3/2

< 1, (83)

which holds due to

𝑙

(𝑡) = −

2

3
(cos 2𝑡

3
)

−5/2

(sin 𝑡
3
) (1 − cos 𝑡

3
) < 0 (84)

for 𝑡 ∈ (0, 𝜋/2).
The eighth one is derived from Neuman and Sándor [18,

(2.5)].
The ninth one easily follows from

2 cos (𝑡/2) + cos2 (𝑡/2)
3

− (
2

3
cos 𝑡

2
+
1

3
)

2

= −
1

9
(cos 𝑡

2
− 1)

2

< 0.

(85)

The tenth, eleventh, and twelfth ones can be obtained by [19,
( 3.9)].

Except the last one, other ones are obviously deduced
from Corollary 12.

The last one is equivalent to

𝑒
𝑡 cot 𝑡−1

>
2

3
cos 𝑡 + 1

3
, (86)

which follows from the inequality connecting the fourth and
sixth members in (82) proved previously.

Thus, the proof is complete.

Remark 14. Sándor [20, page 81, Lemma 2.2] proved that the
inequality

ln 𝑡

sin 𝑡
<
sin 𝑡 − 𝑡 cos 𝑡
2 sin 𝑡

(87)

holds for 𝑡 ∈ (0, 𝜋/2). Clearly, the sixth and seventh
inequalities in (82), that is, for 𝑡 ∈ (0, 𝜋/2),

√𝑒𝑡 cot 𝑡−1 < (cos 𝑡
2
)

4/3

<
sin 𝑡
𝑡
, (88)

are a refinement of Sándor’s inequality.

Remark 15. Using the decreasing property of the function 𝑙
defined by (83) proved in Corollary 13, we also get 1 = 𝑙(0+) >
𝑙(𝑡) > 𝑙(𝜋/2

−
) = 2√2/3 for 𝑡 ∈ (0, 𝜋/2), which can be

rewritten as

2

3
cos 𝑡 + 1

3
< (cos 2𝑡

3
)

3/2

<
2

2√2

cos 𝑡 + 1

2√2

. (89)

This in conjunction with (43) gives

2 cos 𝑡 + 1
3

< (cos 2𝑡
3
)

3/2

< 𝑒
𝑡 cot 𝑡−1

< (cos 2𝑡
3
)

1/ ln 2

<
2√2

𝑒
(cos 2𝑡

3
)

3/2

<
2 cos 𝑡 + 1

𝑒
.

(90)

From

lim
𝑡→0
+

𝑒
𝑡 cot 𝑡−1

2 cos 𝑡 + 1
=
1

3
, lim

𝑡→𝜋/2
−

𝑒
𝑡 cot 𝑡−1

2 cos 𝑡 + 1
=
1

𝑒
, (91)

we conclude that 1/3 and 1/𝑒 are also the best possible
constants.

Further, we conjecture that

2 cos 𝑡 + 1
3

< (cos 2𝑡
3
)

3/2

< 𝑒
𝑡 cot 𝑡−1

< (cos 2𝑡
3
)

1/ ln 2
< (

2 cos 𝑡 + 1
3

)

1/ ln 3
(92)

hold for 𝑡 ∈ (0, 𝜋/2), where all exponents are optimal.

Taking 𝑝 = 1/2, 1/3, and 0+ in (57), we get the following.

Corollary 16. For 𝑡 ∈ (0, 𝜋/2), we have

𝑒
−4𝑡
2
/𝜋
2

< (cos 𝑡
3
)

2/(ln 4−ln 3)
< (cos 𝑡

2
)

2/ ln 2

< 𝑒
𝑡 cot 𝑡−1

< (cos 𝑡
2
)

8/3

< (cos 𝑡
3
)

6

< 𝑒
−𝑡
2
/3
,

(93)

𝑒
(𝜋
2
−12)/12

𝑒
−𝑡
2
/3
<
64

27𝑒
(cos 𝑡

3
)

6

<
2
3
√2

𝑒
(cos 𝑡

2
)

8/3

< 𝑒
𝑡 cot 𝑡−1

< (cos 𝑡
2
)

8/3

< (cos 𝑡
3
)

6

< 𝑒
−𝑡
2
/3
,

(94)

where 𝛼
1/2
= 2/ ln 2 ≈ 2.8854, 𝛼

1/3
= 2/(ln 4 − ln 3) ≈ 6.9521

and 𝛽
1/2
= 2

3
√2𝑒
−1
≈ 0.92700, 𝛽

1/3
= 64𝑒
−1
/27 ≈ 0.87201 are

the best possible constants.

Remark 17. The inequalities connecting the first, fourth, and
seventh members in (93) state that, for 𝑡 ∈ (0, 𝜋/2),

𝑒
−4𝑡
2
/𝜋
2

< 𝑒
𝑡 cot 𝑡−1

< 𝑒
−𝑡
2
/3
, (95)

which can be written as

1 −
4𝑡
2

𝜋2
<

𝑡

tan 𝑡
< 1 −

𝑡
2

3

(96)

or

3

3 − 𝑡2
<
tan 𝑡
𝑡
<

𝜋
2

𝜋2 − 4𝑡2
. (97)

It is easy to check that this double inequality is stronger than
the new Redheffer-type one for tan 𝑡 proved by Zhu and Sun
[21, Theorem 3]; that is, for 𝑡 ∈ (0, 𝜋/2),

(
𝜋
2
+ 4𝑡
2

𝜋2 − 4𝑡2
)

𝜋
2
/24

<
3

3 − 𝑡2
<
tan 𝑡
𝑡
<

𝜋
2

𝜋2 − 4𝑡2
<
𝜋
2
+ 4𝑡
2

𝜋2 − 4𝑡2
.

(98)
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Remark 18. Making use of the double inequalities

(cos 𝑡
2
)

4/3

<
sin 𝑡
𝑡
< (cos 𝑡

2
)

2(ln𝜋−ln 2)/ ln 2
,

(cos 𝑡
2
)

4/3

<
sin 𝑡
𝑡
<
2
5/3

𝜋
(cos 𝑡

2
)

4/3

,

(99)

for 𝑡 ∈ (0, 𝜋/2) proved in [22] and [15, Corollary 3],
respectively and taking into account (93) and (94), we easily
obtain

(
sin 𝑡
𝑡
)

1/ ln(𝜋/2)
< (cos 𝑡

2
)

2/ ln 2
< 𝑒
𝑡 cot 𝑡−1

< (cos 𝑡
2
)

8/3

< (
sin 𝑡
𝑡
)

2

,

(100)

𝜋
2

4𝑒
(
sin 𝑡
𝑡
)

2

<
2
4/3

𝑒
(cos 𝑡

2
)

8/3

< 𝑒
𝑡 cot 𝑡−1

< (cos 𝑡
2
)

8/3

< (
sin 𝑡
𝑡
)

2

.

(101)

3.3. The Sharp Bounds for (sin 𝑡/𝑡)𝑒𝑡 cot 𝑡−1. In this subsection,
we establish sharp inequalities between (𝑡−1 sin 𝑡)𝑒𝑡 cot 𝑡−1 and
(cos𝑝𝑡)1/𝑝

2

and prove the trigonometric version of inequal-
ities (9) and (10). Employing Lemmas 6 and 7, we have the
following.

Theorem 19. For 𝑡 ∈ (0, 𝜋/2), the two-side inequality

cos3 𝑡
√3

<
sin 𝑡
𝑡
𝑒
𝑡 cot 𝑡−1

< (cos𝑝
4
𝑡)
1/𝑝
2

4 (102)

holds with the best possible constants 1/√3 and 𝑝
4

≈

0.5763247, where 𝑝
4
is the unique root of the equation

𝐽
𝑝
(
𝜋

2

−

) = ln 2
𝜋
− 1 −

1

𝑝2
ln(cos

𝑝𝜋

2
) = 0 (103)

on (1/2, 1). Moreover, the inequalities

(cos𝑝𝑡)1/𝑝
2

<
sin 𝑡
𝑡

exp (𝑡 cot 𝑡 − 1) < (cos𝑝𝑡)𝛾𝑝

< 𝛿
𝑝
(cos𝑝𝑡)1/𝑝

2

(104)

hold for 𝑝 ∈ [1/√3, 1], where the exponents

1

𝑝2
, 𝛾

𝑝
=

ln 2 − ln𝜋 − 1
ln (cos (𝜋𝑝/2)) (105)

and the coefficients

1, 𝛿
𝑝
=
2

𝜋𝑒
(cos

𝑝𝜋

2
)

−1/𝑝
2

(106)

are the best possible constants. Also, the first member in (104) is
decreasing with respect to𝑝 on (0, 1), while the third and fourth
members are increasing with respect to 𝑝 on (0, 1). The reverse
of (104) holds if 𝑝 ∈ (0, 1/2].

Proof. For 𝑡 ∈ (0, 𝜋/2) and 𝑝 ∈ (0, 1), we define

𝐽
𝑝
(𝑡) := ln sin 𝑡

𝑡
+ (𝑡

cos 𝑡
sin 𝑡

− 1) −
1

𝑝2
ln (cos𝑝𝑡) . (107)

To prove the desired results, we need two assertions.The first
is the limit relation

lim
𝑡→0
+

𝐽
𝑝
(𝑡)

𝑡4
=
1

12
(𝑝
2
−
1

3
) , (108)

which follows by expanding in power series

𝐽
𝑝
(𝑡) =

1

36
(3𝑝
2
− 1) 𝑡

4
+ 𝑜 (𝑡
4
) . (109)

The second one states that the equation 𝐽
𝑝
(𝜋/2
−
) = 0, that

is, (103), has a unique solution 𝑝
4
≈ 0.5763247 such that

𝐽
𝑝
(𝜋/2) < 0 for 𝑝 ∈ (0, 𝑝

4
) and 𝐽

𝑝
(𝜋/2
−
) > 0 for 𝑝 ∈ (𝑝

4
, 1).

In fact, Lemma 7 implies that 𝑝 → 𝐽
𝑝
(𝜋/2
−
) is increasing on

(0, 1), which in conjunction with the facts that

𝐽
1/2
(
𝜋

2
) = 3 ln 2 − ln𝜋 − 1 < 0, 𝐽

1
(
𝜋

2
) = ∞ (110)

indicates the second one. By usingmathematical software, we
find 𝑝

2
≈ 0.5763247.

(i) Now we show that the first inequality in (102) holds
for 𝑡 ∈ (0, 𝜋/2) with the best constants 1/√3. In fact, the
first inequality in (102) follows by Lemma 6. On the other
hand, due to the decreasing property of 𝑝−2 ln(cos𝑝𝑡) with
respect to 𝑝 on (0, 1), if there is a smaller 𝑝∗ ∈ (0, 1) with
𝑝
∗
< 1/√3 such that the first inequality in (102) holds for

𝑡 ∈ (0, 𝜋/2), then there must be lim
𝑡→0
+𝑡
−4
𝐽
𝑝
∗(𝑡) ≥ 0,

which by the relation (108) gives 𝑝∗ ≥ 1/√3. This yields a
contradiction. Consequently, the constants 1/√3 is optimal.

(ii) We next prove that the second inequality in (102)
holds for 𝑡 ∈ (0, 𝜋/2), where 𝑝

4
is the best possible constant.

We introduce an auxiliary function 𝑗
𝑝
4

defined on (0, 𝜋/2) by

𝑗
𝑝
4
(𝑡) =

𝐽


𝑝
4

(𝑡)

𝑡3
. (111)

Expanding in power series leads to

𝐽


𝑝
4

(𝑡) = 2
cos 𝑡
sin 𝑡

−
𝑡

sin2𝑡
+
1

𝑝
4

sin𝑝
4
𝑡

cos𝑝
4
𝑡
−
1

𝑡

= 2(
1

𝑡
−

∞

∑

𝑛=1

2
2𝑛

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛−1
)

− 𝑡(
1

𝑡2
+

∞

∑

𝑛=1

(2𝑛 − 1) 2
2𝑛

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛−2
)

+
1

𝑝
4

∞

∑

𝑛=1

2
2𝑛
− 1

(2𝑛)!
2
2𝑛
𝑝
2𝑛−1

4

𝐵2𝑛
 𝑡
2𝑛−1

−
1

𝑡

=

∞

∑

𝑛=2

(2
2𝑛
− 1) 𝑝

2𝑛−2

4
− (2𝑛 + 1)

(2𝑛)!
2
2𝑛 𝐵2𝑛

 𝑡
2𝑛−1

:=

∞

∑

𝑛=2

2
2𝑛 𝐵2𝑛



(2𝑛)!
𝑠
𝑛
𝑡
2𝑛−1
,

(112)
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where

𝑠
𝑛
= (2
2𝑛
− 1) 𝑝

2𝑛−2

4
− (2𝑛 + 1) . (113)

Therefore, we have

𝑗
𝑝
4
(𝑡) =

𝐽


𝑝
4

(𝑡)

𝑡3
=

∞

∑

𝑛=2

2
2𝑛 𝐵2𝑛



(2𝑛)!
𝑠
𝑛
𝑡
2𝑛−4
. (114)

Differentiation again yields

𝑗


𝑝
4

(𝑡) =

∞

∑

𝑛=3

(2𝑛 − 4) 2
2𝑛 𝐵2𝑛



(2𝑛)!
𝑠
𝑛
𝑡
2𝑛−5
,

(

𝑗


𝑝
4

(𝑡)

𝑡
)



=

∞

∑

𝑛=4

(2𝑛 − 4) (2𝑛 − 6) 2
2𝑛 𝐵2𝑛



(2𝑛)!
𝑠
𝑛
𝑡
2𝑛−7
.

(115)

We assert that (𝑡−1𝑗
𝑝
4

(𝑡))


> 0 for 𝑡 ∈ (0, 𝜋/2). It suffices to
show that 𝑠

𝑛
> 0 for 𝑛 ≥ 4. In fact, 𝑠

4
= 3(85𝑝

6

4
− 3) > 0, and

𝑠
𝑛
satisfies the recursive relation

𝑠
𝑛+1

22𝑛+2 − 1
− 𝑝
2

4

𝑠
𝑛

22𝑛 − 1
=
2𝑛 + 1

22𝑛 − 1
(𝑝
2

4
−
2𝑛 + 3

2𝑛 + 1

2
2𝑛
− 1

22𝑛+2 − 1
)

:=
2𝑛 + 1

22𝑛 − 1
(𝑝
2

4
− 𝑠


𝑛
) .

(116)

A direct check gives [64 × 24𝑛 − (36𝑛2 + 108𝑛 + 113)22𝑛+4]
𝑛=4

= 3907332,

𝑠


𝑛
− 𝑠


𝑛+1

=

64 × 2
4𝑛
− (36𝑛

2
+ 108𝑛 + 113) 2

2𝑛
+ 4

(2𝑛 + 3) (2𝑛 + 1) (16 × 2
2𝑛 − 1) (4 × 22𝑛 − 1)

:=
𝑠


𝑛

(2𝑛 + 3) (2𝑛 + 1) (16 × 2
2𝑛 − 1) (4 × 22𝑛 − 1)

> 0

(117)

due to 𝑠
4
= 3907332 and 𝑠

𝑛
satisfies the recursive relation

𝑠


𝑛+1
− 16𝑠


𝑛
= 12 (36𝑛

2
+ 84𝑛 + 65) 2

2𝑛
− 60 > 0 for 𝑛 ≥ 4.

(118)

Hence, 𝑠
𝑛
is decreasing for 𝑛 ≥ 4, and so

1

4
= lim
𝑛→∞

𝑛 + 1

𝑛

2
2𝑛
− 1

22𝑛+2 − 1
< 𝑠


𝑛

< [
2𝑛 + 3

2𝑛 + 1

2
2𝑛
− 1

22𝑛+2 − 1
]

𝑛=4

=
85

279
,

(119)

which yields 𝑝2
4
− 𝑠


𝑛
> 𝑝
2

4
− 85/279 > 0. From the recursive

relation (116), we get 𝑠
𝑛
> 0 for 𝑛 ≥ 4, which proves that

(𝑡
−1
𝑗


𝑝
4

(𝑡))


> 0 for 𝑡 ∈ (0, 𝜋/2). Therefore, we get

sgn lim
𝑡→0
+

(𝑡
−1
𝑗


𝑝
4

(𝑡))

= sgn 𝑠
3
= sgn (7 (3𝑝2

4
− 1) (3𝑝

2

4
+ 1)) < 0.

(120)

Next, we divide the proof into two cases.

Case 1 ((𝑡−1𝑗
𝑝
4

(𝑡))|
𝑡=𝜋/2

− < 0). In this case, we clearly see that
𝑡
−1
𝑗


𝑝
4

(𝑡) < 0 for 𝑡 ∈ (0, 𝜋/2) and 𝑗
𝑝
4

(𝑡) < 0 for 𝑡 ∈ (0, 𝜋/2).
Hence, 𝑗

𝑝
4

(𝑡) < 𝑗
𝑝
4

(0
+
) = (3𝑝

2

4
− 1)/9 < 0, and so 𝐽

𝑝
4

(𝑡) < 0

for 𝑡 ∈ (0, 𝜋/2), which reveals that 𝐽
𝑝
4

(𝑡) < 𝐽
𝑝
4

(0
+
) = 0 and

𝐽
𝑝
4

(𝑡) > 𝐽
𝑝
4

(𝜋/2
−
) = 0 for 𝑡 ∈ (0, 𝜋/2), where 𝐽

𝑝
4

(𝜋/2
−
) = 0

due to 𝑝
4
being the unique root of (103). This is impossible.

Case 2 ((𝑡−1𝑗
𝑝
4

(𝑡))|
𝑡=𝜋/2

− > 0). In this case, we see that there
is a 𝑡
2
∈ (0, 𝜋/2) such that 𝑡−1𝑗

𝑝
4

(𝑡) < 0 for 𝑡 ∈ (0, 𝑡
2
)

and 𝑡−1𝑗
𝑝
4

(𝑡) > 0 for 𝑡 ∈ (𝑡
2
, 𝜋/2). This indicates that 𝑗

𝑝
4

is decreasing on (0, 𝑡
2
) and increasing on (𝑡

2
, 𝜋/2). Thus, we

have 𝑗
𝑝
4

(𝑡) < 𝑗
𝑝
4

(0
+
) = (3𝑝

2

4
− 1)/9 < 0 for 𝑡 ∈ (0, 𝑡

2
).

If 𝑗
𝑝
4

(𝜋/2
−
) < 0, then 𝑗

𝑝
4

(𝑡) < 0 for 𝑡 ∈ (0, 𝜋/2). Similar
to Case 1, this also yields a contradiction.

If 𝑗
𝑝
4

(𝜋/2
−
) > 0, then there is a 𝑡

3
∈ (𝑡
2
, 𝜋/2) such

that 𝑗
𝑝
4

(𝜋/2
−
) < 0 for 𝑡 ∈ (0, 𝑡

3
) and 𝑗

𝑝
4

(𝜋/2
−
) > 0 for

𝑡 ∈ (𝑡
3
, 𝜋/2), which together with (111) shows that 𝐽

𝑝
4

is
decreasing on (0, 𝑡

3
) and increasing on (𝑡

3
, 𝜋/2). Therefore,

𝐽
𝑝
4
(𝑡) < 𝐽

𝑝
4

(0
+
) = 0 for 𝑡 ∈ (0, 𝑡

3
) ,

𝐽
𝑝
4
(𝑡) < 𝐽

𝑝
4

(
𝜋

2−
) = 0 for 𝑡 ∈ (𝑡

3
,
𝜋

2
) ;

(121)

that is, 𝐽
𝑝
4

(𝑡) < 0 for 𝑡 ∈ (0, 𝜋/2).
On the other hand, if there is a 𝑝∗ ∈ (0, 1) with 𝑝∗ > 𝑝

4

such that the second inequality in (55) holds for 𝑡 ∈ (0, 𝜋/2),
then by the second assertion proved previously, we have
𝐽
𝑝
∗(𝜋/2

−
) > 0, which leads to a contradiction. This proves

that the constant 𝑝
4
is the best possible constant.

(iii) The first and second inequalities in (57) and their
reverse ones are clearly the direct consequences of Lemma 6.
It remains to prove the third one. We have to determine the
sign of 𝐸

𝑝
(𝑡) defined by

𝐸
𝑝
(𝑡) := 𝛾

𝑝
ln (cos𝑝𝑡) − ln 𝛿

𝑝
−
1

𝑝2
ln (cos𝑝𝑡) (122)

for 𝑡 ∈ (0, 𝜋/2) and 𝑝 ∈ (0, 1). Simplifying leads to

𝐸
𝑝
(𝑡) =

ln 2 − ln𝜋 − 1
ln (cos (𝜋𝑝/2))

ln (cos𝑝𝑡) − ln 2

𝜋𝑒

+
1

𝑝2
ln(cos(

𝜋𝑝

2
)) −

1

𝑝2
ln (cos𝑝𝑡)

= (ln 2

𝜋𝑒
−
1

𝑝2
ln(cos(

𝜋𝑝

2
)))

ln (cos𝑝𝑡)
ln (cos (𝜋𝑝/2))

− ln 2

𝜋𝑒
+
1

𝑝2
ln(cos(

𝜋𝑝

2
))

= 𝐽
𝑝
(
𝜋
−

2
)
ln (cos𝑝𝑡) − ln ln (cos (𝜋𝑝/2))

ln (cos (𝜋𝑝/2))
.

(123)

As shown previously, 𝐽
𝑝
(𝜋/2
−
) < 0 for 𝑝 ∈ (0, 𝑝

4
) and

𝐽
𝑝
(𝜋/2
−
) > 0 for 𝑝 ∈ (𝑝

4
, 1), which in combination with



Abstract and Applied Analysis 11

ln(cos𝑝𝑡) > ln(cos(𝜋𝑝/2)) and ln(cos(𝜋𝑝/2)) < 0 gives the
desired result.

Lemma 7 reveals the monotonicity of the first, second,
and third members in (104) with respect to 𝑝 on (0, 1) due
to

(cos𝑝𝑡)1/𝑝
2

= 𝑉
𝑝
(𝑡) , (cos𝑝𝑡)𝛾𝑝 = 𝑊

𝑝
(𝑡)

ln(2/𝜋𝑒)
,

𝛿
𝑝
(cos𝑝𝑡)2/(3𝑝

2
)

=
2

𝜋𝑒
𝑅
𝑝
(𝑡) .

(124)

Finally, we prove that 𝛽
𝑝
is the best possible constant. It can

be deduced from

lim
𝑡→0
+

(sin 𝑡/𝑡) 𝑒𝑡 cot 𝑡−1

(cos𝑝𝑡)1/𝑝
2
= 1,

lim
𝑡→𝜋/2

−

(sin 𝑡/𝑡) 𝑒𝑡 cot 𝑡−1

(cos𝑝𝑡)1/𝑝
2
=
2

𝜋𝑒
(cos

𝑝𝜋

2
)

−1/𝑝
2

= 𝛿
𝑝
.

(125)

Thus, the proof is complete.

We note that (102) can be written as

cos t
√3

< (
sin 𝑡
𝑡
𝑒
𝑡 cot 𝑡−1

)

1/3

< (cos𝑝
4
𝑡)
1/(3𝑝

2

4
)

. (126)

Making use of the monotonicity of the function 𝑝 →

(cos𝑝𝑡)1/(3𝑝
2
) on (0, 1) given in Lemma 7 together with

Corollary 12 andTheorem 19, we obtain the following.

Corollary 20. For 𝑡 ∈ (0, 𝜋/2), the chain of inequalities

(cos 𝑡)1/3 < ⋅ ⋅ ⋅ < cos5/6 2𝑡
√10

< √𝑒𝑡 cot 𝑡−1

< (cos𝑝
2
𝑡)
1/(3𝑝

2

2
)

< ⋅ ⋅ ⋅

< cos 𝑡

√3

< (
sin 𝑡
𝑡
𝑒
𝑡 cot 𝑡−1

)

1/3

< (cos𝑝
4
𝑡)
1/(3𝑝

2

4
)

< ⋅ ⋅ ⋅

< (cos𝑝∗
0
𝑡)
1/(3𝑝

∗2

0
)

<
sin 𝑡
𝑡
< cos5/3 𝑡

√5

< ⋅ ⋅ ⋅ < cos10/3 𝑡
√10

< 𝑒
𝑡 cot (𝑡/2)−2

< (cos𝑝
3
𝑡)
1/(3𝑝

2

3
)

< ⋅ ⋅ ⋅ < 𝑒
−𝑡
2
/6
<
2 + cos 𝑡
3

(127)

holds, where 2/√10 ≈ 0.63246, 𝑝
2
≈ 0.6210901, 1/√3 ≈

0.57735, 𝑝
4
≈ 0.5763247, 𝑝∗

0
≈ 0.45346, 1/√5 ≈ 0.44721,

and 1/√10 ≈ 0.31623 are the best possible constants, and
𝑝
3
≈ 0.31055.

Remark 21. From the above corollary, we clearly see that

(cos 𝑡)1/3 < √𝑒𝑡 cot 𝑡−1 < ( sin 𝑡
𝑡
𝑒
𝑡 cot 𝑡−1

)

1/3

< (cos 𝑡
2
)

4/3

<
sin 𝑡
𝑡
< 𝑒
−𝑡
2
/6
<
2 + cos 𝑡
3

(128)

for 𝑡 ∈ (0, 𝜋/2). The relation connecting the first, third, and
fourth members in (128) can be written as

√cos 𝑡 < √ sin 𝑡
𝑡
𝑒𝑡 cot 𝑡−1 < cos2 𝑡

2
. (129)

Taking 𝑝 = 1/2, 0+ inTheorem 19, we have the following.

Corollary 22. For 𝑡 ∈ (0, 𝜋/2), the inequalities
8

𝜋𝑒
cos4 𝑡

2
< (cos 𝑡

2
)

𝛾
1/2

<
sin 𝑡
𝑡
𝑒
𝑡 cot 𝑡−1

< cos4 𝑡
2
, (130)

2

𝜋𝑒
𝑒
(𝜋
2
−4𝑡
2
)/8
< (

2

𝜋𝑒
)

4𝑡
2
/𝜋
2

<
sin 𝑡
𝑡
𝑒
𝑡 cot 𝑡−1

< 𝑒
−𝑡
2
/2 (131)

hold, where the exponents 𝛾
1/2
= 2(ln(𝜋𝑒/2))/ ln 2 ≈ 4.1884

and 4 and the coefficients 1 and 8/(𝜋𝑒) ≈ 0.93680 are the best
possible constants.

Theorem 23. For 𝑡 ∈ (0, 𝜋/2), we have

(𝑒 (𝜋 − 2) /𝜋) 𝑒
𝑡 cot 𝑡−1

+ sin 𝑡/𝑡
2

<
1 + cos 𝑡
2

<
sin 𝑡/𝑡 + 𝑒𝑡 cot 𝑡−1

2
,

(132)

1 <
sin 𝑡/𝑡 + 𝑒𝑡 cot 𝑡−1

1 + cos 𝑡
< 𝑒
−1
+
2

𝜋
, (133)

2

𝜋
− 𝑒
−1
<
sin 𝑡/𝑡 − 𝑒𝑡(cos 𝑡/ sin 𝑡)−1

1 − cos 𝑡
<
1

3
, (134)

where 𝑒(𝜋−2)/𝜋, 1, (𝑒−1+2/𝜋), 2/𝜋−𝑒−1, and 1/3 are the best
possible constants.

Proof. (i) We first prove (132). For this purpose, let us define

𝑘 (𝑡) = (𝑡 cot 𝑡 − 1) − ln(1 + cos 𝑡 − sin 𝑡
𝑡
) . (135)

Differentiating 𝑘(𝑡) gives

𝑘

(𝑡) =

𝑡 − sin 𝑡
𝑡 (𝑡 − sin 𝑡 + 𝑡 cos 𝑡)

𝑘
1
(𝑡) , (136)

where

𝑘
1
(𝑡) = −

cos 𝑡 + 1
sin2𝑡

𝑡
2
+

𝑡

sin 𝑡
+ 1. (137)

Using double angle formula and Lemma 4, we have

𝑘
1
(𝑡) = −

𝑡
2

2sin2 (𝑡/2)
+

𝑡

sin 𝑡
+ 1

= −
𝑡
2

2
(

1

(𝑡/2)
2
+

∞

∑

𝑛=1

(2𝑛 − 1) 2
2𝑛

(2𝑛)!

𝐵2𝑛
 (
𝑡

2
)

2𝑛−2

)

+ 𝑡(
1

𝑡
+

∞

∑

𝑛=1

2
2𝑛
− 2

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛−1
) + 1

=

∞

∑

𝑛=1

4
𝑛−1
− 𝑛

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛
> 0.

(138)
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Hence, 𝑘(𝑡) > 0 for 𝑡 ∈ (0, 𝜋/2), and so

0 = lim
𝑡→0
+

𝑘 (𝑡) < 𝑘 (𝑡) < lim
𝑡→𝜋/2

−

𝑘 (𝑡) = ln 𝜋

𝑒 (𝜋 − 2)
, (139)

which implies the desired inequalities.
(ii) Now, we prove (133). Differentiation leads to

(
sin 𝑡/𝑡 + 𝑒𝑡 cot 𝑡−1

1 + cos 𝑡
)



= −
(cos 𝑡 + 1) (𝑡 − sin 𝑡)
(sin2𝑡) (cos 𝑡 + 1)2

𝑒
𝑡 cot 𝑡−1

+
(cos 𝑡 + 1) (𝑡 − sin 𝑡)
𝑡2(cos 𝑡 + 1)2

=
𝑡 − sin 𝑡

(sin2𝑡) (cos 𝑡 + 1)2
(
sin2𝑡
𝑡2

− 𝑒
𝑡 cot 𝑡−1

) > 0,

(140)

where the inequality holds for 𝑡 ∈ (0, 𝜋/2) due to (88).
Therefore,

1 = lim
𝑡→0
+

sin 𝑡/𝑡 + 𝑒𝑡 cot 𝑡−1

1 + cos 𝑡
<
sin 𝑡/𝑡 + 𝑒𝑡 cot 𝑡−1

1 + cos 𝑡

< lim
𝑡→𝜋/2

−

sin 𝑡/𝑡 + 𝑒𝑡 cot 𝑡−1

1 + cos 𝑡
= 𝑒
−1
+
2

𝜋
,

(141)

which deduces (133).
(iii) Similarly, we have

(
sin 𝑡/𝑡 − 𝑒𝑡(cos 𝑡/ sin 𝑡)−1

1 − cos 𝑡
)



= −
𝑡 + sin 𝑡

(1 − cos 𝑡) sin2𝑡
(
sin2𝑡
𝑡2

− 𝑒
𝑡 cot 𝑡−1

) < 0,

(142)

which gives

2

𝜋
− 𝑒
−1
= lim
𝑡→0
+

sin 𝑡/𝑡 − 𝑒𝑡(cos 𝑡/ sin 𝑡)−1

1 − cos 𝑡

<
sin 𝑡/𝑡 − 𝑒𝑡(cos 𝑡/ sin 𝑡)−1

1 − cos 𝑡

< lim
𝑡→𝜋/2

−

sin 𝑡/𝑡 − 𝑒𝑡(cos 𝑡/ sin 𝑡)−1

1 − cos 𝑡
=
1

3
.

(143)

Using inequalities (129) and (133), we get immediately the
trigonometric version of (9).

Corollary 24. For 𝑡 ∈ (0, 𝜋/2), we have

√cos 𝑡 < ( sin 𝑡
t
𝑒
𝑡 cot 𝑡−1

)

1/2

<
1 + cos 𝑡
2

<
sin 𝑡/𝑡 + 𝑒𝑡 cot 𝑡−1

2
< (𝑒
−1
+
2

𝜋
)
1 + cos 𝑡
2

.

(144)

3.4. The Third Sharp Bounds for 𝑒𝑡 cot 𝑡−1. The trigonometric
versions of (1.6) and (1.7) are contained in the following
theorem.

Theorem 25. Let 𝑡 ∈ (0, 𝜋/2). Then the following statements
are true:

(i) if 𝑝 ≥ 6/5, then the two-side inequality

𝛼 cos𝑝𝑡 + (1 − 𝛼) < 𝑒𝑝(𝑡 cot 𝑡−1) < 𝛽 cos𝑝𝑡 + (1 − 𝛽) (145)

holds if and only if 𝛼 ≥ 1 − 𝑒−𝑝 and 𝛽 ≤ 2/3;
(ii) if 0 < 𝑝 ≤ 1, then the double inequality (145) holds if

and only if 𝛼 ≥ 2/3 and 𝛽 ≤ 1 − 𝑒−𝑝;
(iii) if 𝑝 < 0, then the double inequality (145) holds if and

only if 𝛼 ≤ 0 and 𝛽 ≥ 2/3;
(iv) the double inequality

𝑀
𝑝
(cos 𝑡, 1; 2

3
) < 𝑒
𝑡 cot 𝑡−1

< 𝑀
𝑞
(cos 𝑡, 1; 2

3
) (146)

holds if and only if 𝑝 ≤ ln 3 and 𝑞 ≥ 6/5, where
𝑀
𝑝
(𝑥, 𝑦; 𝑤)(𝑤 ∈ (0, 1)) is the weighted power mean of order 𝑟

of 𝑥 and 𝑦 defined by

𝑀
𝑟
(𝑥, 𝑦; 𝑤) = (𝑤𝑥

𝑟
+ (1 − 𝑤) 𝑦

𝑟
)
1/𝑟

if 𝑟 ̸= 0, 𝑀
0
(𝑥, 𝑦; 𝑤) = 𝑥

𝑤
𝑦
1−𝑤
.

(147)

Proof. For 𝑡 ∈ (0, 𝜋/2) and 𝑝 ̸= 0, we define

𝑢 (𝑡) =
1 − 𝑒
𝑝(𝑡 cot 𝑡−1)

1 − cos𝑝𝑡
:=
𝑢
1
(𝑡)

𝑢
2
(𝑡)
. (148)

Since 𝑢
1
(0
+
) = 𝑢
2
(0
+
) = 0, 𝑢(𝑡) can be written as

𝑢 (𝑡) =
𝑢
1
(𝑡) − 𝑢

1
(0
+
)

𝑢
2
(𝑡) − 𝑢

2
(0
+
)
. (149)

Differentiation gives

𝑢


1
(𝑡)

𝑢


2
(𝑡)
=
𝑒
𝑝(𝑡 cot 𝑡−1)

(𝑡 − cos 𝑡 sin 𝑡) /sin2𝑡
cos𝑝−1𝑡 sin 𝑡

:= 𝑢
3
(𝑡) , (150)

𝑢


3
(𝑡) =

𝑒
𝑝(𝑡 cot 𝑡−1)

sin5𝑡 cos𝑝𝑡
(𝑝 × 𝑢

4
(𝑡) − 𝑢

5
(𝑡))

=
𝑒
𝑝(𝑡 cot 𝑡−1)

sin5𝑡 cos𝑝𝑡
𝑢
4
(𝑡) (𝑝 −

𝑢
5
(𝑡)

𝑢
4
(𝑡)
) ,

(151)

where

𝑢
4
(𝑡) = − 𝑡

2 cos 𝑡 + 2𝑡 cos2𝑡 sin 𝑡 + 𝑡 sin3𝑡 − cos 𝑡 sin2𝑡,

𝑢
5
(𝑡) = 𝑡 (3 cos2𝑡 sin 𝑡 + sin3𝑡) − 3 cos 𝑡 sin2𝑡.

(152)
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Clearly, if we prove that 𝑢
3
(𝑡) > 0 for 𝑝 ≥ 6/5 and 𝑢

3
(𝑡) < 0

for 𝑝 ≤ 1 with 𝑝 ̸= 0, then, by Lemma 2, we know that 𝑢 is
increasing if 𝑝 ≥ 6/5 and decreasing if 𝑝 ≤ 1 with 𝑝 ̸= 0, and

2

3
= lim
𝑡→0
+

𝑢 (𝑡) < 𝑢 (𝑡) =
1 − 𝑒
𝑝(𝑡 cot 𝑡−1)

1 − cos𝑝𝑡

< lim
𝑡→𝜋/2

−

𝑢 (𝑡) = 1 − 𝑒
−𝑝 for 𝑝 ≥ 6

5
,

1 − 𝑒
−𝑝
= lim
𝑡→𝜋/2

−

𝑢 (𝑡) < 𝑢 (𝑡) =
1 − 𝑒
𝑝(𝑡 cot 𝑡−1)

1 − cos𝑝𝑡

< lim
𝑡→0
+

𝑢 (𝑡) =
2

3
for 0 < 𝑝 ≤ 1,

0 = lim
𝑡→𝜋/2

−

𝑢 (𝑡) < 𝑢 (𝑡) =
1 − 𝑒
𝑝(𝑡 cot 𝑡−1)

1 − cos𝑝𝑡

< lim
𝑡→0
+

𝑢 (𝑡) =
2

3
for 𝑝 < 0,

(153)

which yield the first, second, and third results in this theorem.
Now, we show that 𝑢

3
(𝑡) > 0 if 𝑝 ≥ 6/5 and 𝑢

3
(𝑡) < 0 if

𝑝 ≤ 1 with 𝑝 ̸= 0. Simple computations lead to

𝑢
4
(𝑡) = (sin 𝑡 − 𝑡 cos 𝑡) (𝑡 − cos 𝑡 sin 𝑡) > 0 (154)

for 𝑡 ∈ (0, 𝜋/2). Using (15)–(17), we have

𝑢
5
(𝑡)

cos 𝑡 sin2𝑡
= 3𝑡

cos 𝑡
sin 𝑡

+ 𝑡
sin 𝑡
cos 𝑡

− 3

=

∞

∑

𝑛=1

4
𝑛
− 4

(2𝑛)!
2
2𝑛 𝐵2𝑛

 𝑡
2𝑛
,

𝑢
4
(𝑡)

cos 𝑡 sin2𝑡
= 2𝑡

cos 𝑡
sin 𝑡

− 𝑡
2 1

sin2𝑡
+ 𝑡

sin 𝑡
cos 𝑡

− 1

=

∞

∑

𝑛=1

(4
𝑛
− 2𝑛 − 2)

2
2𝑛

(2𝑛)!

𝐵2𝑛
 𝑡
2𝑛
,

𝑢
5
(𝑡)

𝑢
4
(𝑡)
=

∑
∞

𝑛=1
((4
𝑛
− 4) / (2𝑛)!) 2

2𝑛 𝐵2𝑛
 𝑡
2𝑛

∑
∞

𝑛=1
(4
𝑛 − 2𝑛 − 2) (2

2𝑛/ (2𝑛)!)
𝐵2𝑛

 𝑡
2𝑛

:=
∑
∞

𝑛=2
𝑎
𝑛
𝑡
2𝑛

∑
∞

𝑛=2
𝑏
𝑛
𝑡2𝑛
.

(155)

By Lemma 3, in order to prove the monotonicity of
𝑢
5
(𝑡)/𝑢
4
(𝑡), it suffices to get the monotonicity of 𝑎

𝑛
/𝑏
𝑛
. Note

that
𝑎
𝑛

𝑏
𝑛

=
4
𝑛
− 4

4𝑛 − 2𝑛 − 2
:= 𝑐 (𝑛) . (156)

Differentiating 𝑐(𝑥), we get

𝑐

(𝑥) = −2

4
𝑥
((𝑥 − 1) ln 4 − 1) + 4
(4
𝑥 − 2𝑥 − 2)

2
< 0 (157)

for 𝑥 ≥ 2. The function 𝑡 → 𝑢
5
(𝑡)/𝑢
4
(𝑡) is decreasing on

(0, 𝜋/2), and we conclude that

1 = lim
𝑡→𝜋/2

−

𝑢
5
(𝑡)

𝑢
4
(𝑡)
<
𝑢
5
(𝑡)

𝑢
4
(𝑡)
< lim
𝑡→0
+

𝑢
5
(𝑡)

𝑢
4
(𝑡)
=
6

5
. (158)

Thus, 𝑢
3
(𝑡) > 0 if 𝑝 ≥ 6/5 and 𝑢

3
(𝑡) < 0 if 𝑝 ≤ 1 with 𝑝 ̸= 0.

Finally, we prove the fourth result. The first part implies
that the right-hand side inequality in (146) holds if 𝑞 ≥ 6/5.
While the necessity can be obtained from the following limit
relation:

lim
𝑡→0
+

𝑡 cot 𝑡 − 1 − ln𝑀
𝑞
(cos 𝑡, 1; 2/3)

𝑡4
≤ 0, (159)

in fact, power series expansion leads to

𝑡 cot 𝑡 − 1 − ln𝑀
𝑞
(cos 𝑡, 1; 2

3
) = −

1

36
(𝑞 −

6

5
) 𝑡
4
+ 𝑜 (𝑡
4
) .

(160)

Now, we prove that the left-hand side inequality holds if
and only if 𝑝 ≤ ln 3. The necessity follows easily from

lim
𝑡→𝜋/2

−

(𝑡 cot 𝑡 − 1 − ln𝑀
𝑝
(cos 𝑡, 1; 2

3
))

=

{

{

{

−1 +
1

𝑝
ln 3 if 𝑝 > 0

∞ if 𝑝 ≤ 0
≥ 0.

(161)

Next, we deal with the sufficiency. We divide the proof into
two cases.
Case 1 (𝑝 ≤ 1). The sufficiency follows immediately from the
second and third results proved previously.
Case 2 (1 < 𝑝 ≤ ln 3). It was proved previously that the
function 𝑡 → 𝑢

5
(𝑡)/𝑢
4
(𝑡) is decreasing on (0, 𝜋/2), and so the

function 𝑡 → (𝑝 − 𝑢
5
(𝑡)/𝑢
4
(𝑡)) := 𝑢

6
(𝑡) is increasing on the

same interval. The monotonicity 𝑢
6
(𝑡) together with

𝑢
6
(0
+
) = 𝑝 −

6

5
< 0, 𝑢

6
(
𝜋
−

2
) = 𝑝 − 1 > 0 (162)

leads to the conclusion that there exists unique 𝑡
0
∈ (0, 𝜋/2)

such that 𝑢
6
(𝑡) < 0 for 𝑡 ∈ (0, 𝑡

0
) and 𝑢

6
(𝑡) > 0 for 𝑡 ∈

(𝑡
0
, 𝜋/2); then, from (151), we know that 𝑢

3
is decreasing on

(0, 𝑡
0
) and increasing on (t

0
, 𝜋/2). It follows from Lemma 2

that 𝑢 is decreasing on (0, 𝑡
0
), and so we have

𝑢 (𝑡
0
) ≤ 𝑢 (𝑡) =

1 − 𝑒
𝑝(𝑡 cot 𝑡−1)

1 − cos𝑝𝑡
< 𝑢 (0

+
) =

2

3
for 𝑡 ∈ (0, 𝑡

0
] ,

(163)

which can be rewritten as

𝑒
𝑝(𝑡 cot 𝑡−1)

>
2

3
cos𝑝𝑡 + 1

3
for 𝑡 ∈ (0, 𝑡

0
] . (164)

On the other hand, Lemma 2 also implies that

𝑡 →
𝑢
1
(𝑡) − 𝑢

1
(𝜋/2
−
)

𝑢
2
(𝑡) − 𝑢

2
(𝜋/2
−
)
=
𝑒
𝑝(𝑡 cot 𝑡−1)

− 𝑒
−𝑝

cos𝑝𝑡
:= V (𝑡) (165)

is increasing on (𝑡
0
, 𝜋/2). Therefore,

V (𝑡) =
𝑒
𝑝(𝑡 cot 𝑡−1)

− 𝑒
−𝑝

cos𝑝𝑡
>
𝑒
𝑝(𝑡
0
cot 𝑡
0
−1)
− 𝑒
−𝑝

cos𝑝𝑡
0

for 𝑡 ∈ (𝑡
0
,
𝜋

2
) ,

(166)
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which implies that

𝑒
𝑝(𝑡 cot 𝑡−1)

>
𝑒
𝑝(𝑡
0
cot 𝑡
0
−1)
− 𝑒
−𝑝

cos𝑝𝑡
0

cos𝑝𝑡 + 𝑒−𝑝 for 𝑡 ∈ (𝑡
0
,
𝜋

2
) .

(167)

Clearly, if we can prove that the right-hand side in (167) is
also greater than the right-hand side in (164), then the proof
is completed. Since 𝑡

0
satisfies (164), for 𝑡 ∈ (𝑡

0
, 𝜋/2), we have

𝑒
𝑝(𝑡 cot 𝑡−1)

>
𝑒
𝑝(𝑡
0
cot 𝑡
0
−1)
− 𝑒
−𝑝

cos𝑝𝑡
0

cos𝑝𝑡 + 𝑒−𝑝

>
((2/3) cos𝑝𝑡

0
+ 1/3) − 𝑒

−𝑝

cos𝑝𝑡
0

cos𝑝𝑡 + 𝑒−𝑝

=
2

3
cos𝑝𝑡 + 1

3
+ (𝑒
−𝑝
−
1

3
)
cos𝑝𝑡
0
− cos𝑝𝑡

cos𝑝𝑡
0

≥
2

3
cos𝑝𝑡 + 1

3
,

(168)

where the last inequality holds due to 𝑝 ∈ (1, ln 3] and 𝑡 ∈
(𝑡
0
, 𝜋/2).
Thus, the proof is finished.

4. Some Corresponding Inequalities for Means

TheSchwab-Borchardtmean of two numbers 𝑎 ≥ 0 and 𝑏 > 0
is defined by

SB = SB (𝑎, 𝑏) =

{{{{{{{

{{{{{{{

{

√𝑏2 − 𝑎2

arccos (𝑎/𝑏)
, 0 ≤ 𝑎 < 𝑏,

√𝑎2 − 𝑏2

arccosh (𝑎/𝑏)
, 𝑏 < 𝑎,

𝑎, 𝑎 = 𝑏,

(169)

(see [23, Theorem 8.4], [24, (2.3)], and [25, (1.1)]). It is
clear that SB(𝑎, 𝑏) is not symmetric in its variables and is a
homogeneous function of degree 1 in 𝑎 and 𝑏.More properties
of this mean can be found in [25–27]. Very recently, Yang [19,
Definitions 3.2, 4.2, and 5.2] defined three families of two-
parameter trigonometric means. For convenience, we recall
the definition of two-parameter sine mean as follows.

Definition 26. Let 𝑏 ≥ 𝑎 > 0 and 𝑝, 𝑞 ∈ [−2, 2] such that
0 ≤ 𝑝 + 𝑞 ≤ 3, and let 𝑆(𝑝, 𝑞, 𝑡) be defined by

𝑆 (𝑝, 𝑞, 𝑡) =

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

(
𝑞

𝑝

sin𝑝𝑡
sin 𝑞𝑡

)

1/(𝑝−𝑞)

if 𝑝𝑞 (𝑝 − 𝑞) ̸= 0,

(
sin𝑝𝑡
𝑝𝑡

)

1/𝑝

if 𝑞 = 0, 𝑝 ̸= 0,

(
sin 𝑞𝑡
𝑞𝑡

)

1/𝑞

if 𝑝 = 0, 𝑞 ̸= 0,

𝑒
𝑡 cot𝑝𝑡−1/𝑝 if 𝑝 = 𝑞 ̸= 0,

1 if 𝑝 = 𝑞 = 0.

(170)

Then S
𝑝,𝑞
(𝑎, 𝑏) defined by

S
𝑝,𝑞
(𝑎, 𝑏) = 𝑏 × 𝑆 (𝑝, 𝑞, arccos(𝑎

𝑏
))

if 𝑎 ̸= 𝑏, S
𝑝,𝑞
(𝑎, 𝑎) = 𝑎

(171)

is called a two-parameter sine mean of 𝑎 and 𝑏.

In particular, for 𝑏 ≥ 𝑎 > 0,

S
1,0
(𝑎, 𝑏) =

sin 𝑡
𝑡

𝑡=arccos(𝑎/𝑏)
=

√𝑏2 − 𝑎2

arccos (𝑎/𝑏)
= SB (𝑎, 𝑏) ,

S
1,1
(𝑎, 𝑏) = 𝑏𝑒

𝑡 cot 𝑡−1𝑡=arccos(𝑎/𝑏)

= 𝑏 exp( 𝑎

SB (𝑎, 𝑏)
− 1) := 𝑆𝑌 (𝑎, 𝑏)

(172)

are means of 𝑎 and 𝑏. Similarly, according to the definition of
two-parameter cosine mean (see [19, Definition 4.2]),

C
𝑝,0
(𝑎, 𝑏) = 𝑏 × 𝑈

𝑝
(arccos(𝑎

𝑏
)) (173)

is also a mean of 𝑎 and 𝑏, where 𝑈
𝑝
(𝑡) is defined by (34).

Further, we have the following.

Proposition 27. For 𝑏 ≥ 𝑎 > 0 and 𝛼 ∈ (0, 1], the function

𝐶
𝑝,𝛼
(𝑎, 𝑏) = 𝑏 × 𝑉

𝛼

𝑝
(arccos (𝑎

𝑏
))

if 𝑎 ̸= 𝑏, 𝐶
𝑝,𝛼
(𝑎, 𝑎) = 𝑎 if 𝑎 = 𝑏

(174)

is also a mean of 𝑎 and 𝑏, where 𝑉
𝑝
(𝑡) is defined by (35).

Proof. It suffices to prove that the double inequality

𝑎 < 𝐶
𝑝,𝛼
(𝑎, 𝑏) = 𝑏 × 𝑉

𝛼

𝑝
((arccos(𝑎

𝑏
))) < 𝑏 (175)

holds for 𝑏 > 𝑎 > 0, which is equivalent to

cos 𝑡 < 𝑉𝛼
𝑝
(𝑡) < 1, (176)

where 𝑡 = (arccos(𝑎/𝑏)) ∈ (0, 𝜋/2).
Using the decreasing property proved in Lemma 7, we see

that

cos 𝑡 < cos𝛼𝑡 < 𝑉𝛼
𝑝
(𝑡) < 𝑉

𝛼

0
(𝑡) = 𝑒

−𝛼𝑡
2
/2
< 1, (177)

which proves the assertion.

If we replace 𝑡 by arccos(𝑎/𝑏) and thenmultiply 𝑏 or 𝑏𝜆 for
suitable 𝜆 in each sides of the inequalities in previous section,
then we can get the corresponding inequalities for bivariate
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means. For example,Theorems 10, 19, and 25 can be rewritten
as follows.

Theorem 10. For 𝑏 ≥ 𝑎 > 0, the two-side inequality

𝑏(cos 2 arccos (𝑎/𝑏)
√10

)

5/3

< 𝑆𝑌 (𝑎, 𝑏)

< 𝑏(cos(𝑝
2
arccos(𝑎

𝑏
)))

2/(3𝑝
2

2
)

(178)

holds with the best possible constants 2/√10 and 𝑝
2
≈

0.6210901, where 𝑝
2
is the unique solution of (56) on (1/2, 1).

Theorem 19. For 𝑏 ≥ 𝑎 > 0, the two-side inequality

𝑏(cos arccos (𝑎/𝑏)
√3

)

3/2

< √𝑆𝐵 (𝑎, 𝑏) 𝑆𝑌 (𝑎, 𝑏)

< 𝑏(cos(𝑝
4
arccos(𝑎

𝑏
)))

1/(2𝑝
2

4
)

(179)

holds with the best constants 1/√3 and 𝑝
4
≈ 0.5763247, where

𝑝
4
is the unique root of (103) on (1/2, 1).

Theorem 25. Let 𝑏 ≥ 𝑎 > 0.Then the following statements are
true:

(i) if 𝑝 ≥ 6/5, then the two-side inequality

𝛼𝑎
𝑝
+ (1 − 𝛼) 𝑏

𝑝
< 𝑆𝑌(𝑎, 𝑏)

𝑝
< 𝛽𝑎
𝑝
+ (1 − 𝛽) 𝑏

𝑝 (180)

holds if and only if 𝛼 ≥ 1 − 𝑒−𝑝 and 𝛽 ≤ 2/3;

(ii) if 0 < 𝑝 ≤ 1, then the double inequality (180) holds if
and only if 𝛼 ≥ 2/3 and 𝛽 ≤ 1 − 𝑒−𝑝;

(iii) if 𝑝 < 0, then the double inequality (180) holds if and
only if 𝛼 ≤ 0 and 𝛽 ≥ 2/3;

(iv) the double inequality

(
2

3
𝑎
𝑝
+
1

3
𝑏
𝑝
)

1/𝑝

< 𝑆𝑌 (𝑎, 𝑏) < (
2

3
𝑎
𝑞
+
1

3
𝑏
𝑞
)

1/𝑞

(181)

holds if and only if 𝑝 ≤ 𝑙𝑛3 and 𝑞 ≥ 6/5, where the left hand
side in (181) is defined as 𝑎2/3𝑏1/3 if 𝑝 = 0.

Similar to 𝑆𝐵(𝑎, 𝑏), these bivariate means mentioned
previously are not symmetric in their variables and are
homogeneous of degree 1 in 𝑎 and 𝑏. But they can generate
more symmetric means by making certain substitutions;
for example, Neuman and Sándor [25, (1.1)] proved that
SB(𝐺, 𝐴) = 𝑃, SB(𝐴, 𝑄) = 𝑇, where 𝑄, 𝐴, 𝐺, 𝑃, and 𝑇 denote

the quadratic, arithmetic, geometric, first, and second Seiffert
means [28, 29] of 𝑎 and 𝑏 given by

𝑄 = 𝑄 (𝑎, 𝑏) = √
𝑎
2
+ 𝑏
2

2
, 𝐴 = 𝐴 (𝑎, 𝑏) =

𝑎 + 𝑏

2
,

𝐺 = 𝐺 (𝑎, 𝑏) = √𝑎𝑏,

𝑃 = 𝑃 (𝑎, 𝑏) =
𝑎 − 𝑏

2 arcsin ((𝑎 − 𝑏) / (𝑎 + 𝑏))
,

𝑇 = 𝑇 (𝑎, 𝑏) =
𝑎 − 𝑏

2 arctan ((𝑎 − 𝑏) / (𝑎 + 𝑏))
,

(182)

respectively. In same way, we have

𝑆𝑌 (𝐺, 𝐴) = 𝐴𝑒
𝐺/𝑃−1

= 𝑋 (𝑎, 𝑏) ≡ 𝑋, (183)

which is a Sándor mean introduced in [20, page 82], [30].
Also, we get

𝑆𝑌 (𝐴,𝑄) = 𝑄𝑒
𝐴/𝑇−1

:= 𝐵 (𝑎, 𝑏) ≡ 𝐵, (184)

which is also a newmean, and it satisfies the double inequality
𝐴 < 𝐵 < 𝑄.

There are many inequalities involving means 𝑄, 𝐴, 𝐺,
𝑃, and 𝑇; we quote [15, 20, 25, 27, 31–44]. Inequalities for
Sándor’s mean 𝑋 can be found in [20, pages 86–93] and [19,
Section 6].

We now deduce some inequalities involving these means
from the inequalities for trigonometric functions established
in Section 3.

Step 1. Put 𝑡 = arccos(𝑎/b), where 𝑏 ≥ 𝑎 > 0.

Step 2. Put (𝑎, 𝑏) = (𝑚(𝑥, 𝑦),𝑀(𝑥, 𝑦)), where
𝑚(𝑥, 𝑦),𝑀(𝑥, 𝑦) are means of positive numbers 𝑥 and
𝑦, and𝑚(𝑥, 𝑦) ≤ 𝑀(𝑥, 𝑦) for all 𝑥, 𝑦 > 0.

Let (𝑚,𝑀) = (𝐺, 𝐴) and (𝑚,𝑀) = (𝐴,𝑄). Then the
following variable substitutions follows from Steps 1 and 2.

(i) Substitution 1: 𝑡 = arccos(𝐺/𝐴). Then

sin 𝑡
𝑡
=
𝑃

𝐴
, cos 𝑡 = 𝐺

𝐴
, 𝑒

𝑡 cot 𝑡−1
= 𝑒
𝐺/𝑃−1

. (185)

(ii) Substitution 2: 𝑡 = arccos(𝐴/𝑄). Then

sin 𝑡
𝑡
=
𝑇

𝑄
, cos 𝑡 = 𝐴

𝑄
, 𝑒

𝑡 cot 𝑡−1
= 𝑒
𝐴/𝑇−1

. (186)

For simplicity in expressions, we only select the functions
involving (sin 𝑡)/𝑡, cos 𝑡, and cos(𝑡/2) in a chain of inequalities
given in Section 3.

The following follows from (88).

Proposition 28. For 𝑏 ≥ 𝑎 > 0, the inequalities

√𝑏𝑆𝑌 (𝑎, 𝑏) < 𝑏
1/3
(
𝑎 + 𝑏

2
)

2/3

< 𝑆𝐵 (𝑎, 𝑏) (187)
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hold. Moreover, replacing (𝑎, 𝑏) by (𝐺, 𝐴), we have

√𝐴𝑋 < 𝐴
1/3
(
𝐺 + 𝐴

2
)

2/3

< 𝑃; (188)

replacing (𝑎, 𝑏) by (𝐴, 𝑄), we get

√𝑄𝐵 < 𝑄
1/3
(
𝐴 + 𝑄

2
)

2/3

< 𝑇. (189)

Remark 29. The second inequalities in (188) and (189) are due
to Sándor [31, 33], while the one connecting 𝑃 and√𝐴𝑋 first
appeared in [20, page 82, (2.6)].

From inequalities (90), we have the following.

Proposition 30. For 𝑏 ≥ 𝑎 > 0, the double inequality

2𝑎 + 𝑏

3
< 𝑆𝑌 (𝑎, 𝑏) <

2𝑎 + 𝑏

𝑒
(190)

is valid, where 3 and 𝑒 are the best possible constants. Moreover,
replacing (𝑎, 𝑏) by (𝐺, 𝐴) and (𝐴, 𝑄), we get

2𝐺 + 𝐴

3
< 𝑋 <

2𝐺 + 𝐴

𝑒
, (191)

2𝐴 + 𝑄

3
< 𝐵 <

2𝐴 + 𝑄

𝑒
. (192)

Remark 31. The left-hand side inequalities in (190), (191), and
(192) can be found in [19, Example 6.1]. But the left-hand side
inequality in (191) is weaker than

𝐴𝐺

𝑃
<
𝐴 (𝑃 + 𝐺)

3𝑃 − 𝐺
< 𝑋 (193)

proved by Sándor [20, page 89, (2.14)].

Inequalities (100) can be written as the corresponding
inequalities for certain bivariate means as follows.

Proposition 32. For 𝑏 ≥ 𝑎 > 0, the inequalities

𝑆𝐵(𝑎, 𝑏)
1/ ln(𝜋/2)

𝑏1/ ln(𝜋/2)−1
<
((𝑎 + 𝑏) /2)

2/ ln 2

𝑏2/ ln 2−1

< 𝑆𝑌 (𝑎, 𝑏) <
((𝑎 + 𝑏) /2)

4/3

𝑏1/3
<
𝑆𝐵(𝑎, 𝑏)

2

𝑏

(194)

hold true with the best possible exponents and coefficients.
Moreover, replacing (𝑎, 𝑏) by (𝐺, 𝐴) and (𝐴, 𝑄), we have

𝑃
1/ ln(𝜋/2)

𝐴1/ ln(𝜋/2)−1
<
((𝐺 + 𝐴) /2)

2/ ln 2

𝐴2/ ln 2−1

< 𝑋 <
((𝐺 + 𝐴) /2)

4/3

𝐴1/3
<
𝑃
2

𝐴
,

(195)

𝑇
1/ ln(𝜋/2)

𝑄1/ ln(𝜋/2)−1
<
((𝐴 + 𝑄) /2)

2/ ln 2

𝑄2/ ln 2−1

< 𝑋 <
((𝐴 + 𝑄) /2)

4/3

𝑄1/3
<
𝑇
2

𝑄
.

(196)

Remark 33. The fourth inequality in (195) was first proved by
Sándor in [31].

From (130) in Corollary 22, we clearly see the following.

Proposition 34. For 𝑏 ≥ 𝑎 > 0, the inequalities

√
8

𝜋𝑒

𝑎 + 𝑏

2
< 𝑏
1−𝛾
1/2
/4
(
𝑎 + 𝑏

2
)

𝛾
1/2
/4

< √𝑆𝐵 (𝑎, 𝑏) 𝑆𝑌 (𝑎, 𝑏) <
𝑎 + 𝑏

2

(197)

hold, where the exponents 𝛾
1/2
/4 = (ln(𝜋𝑒/2))/ ln 4 ≈ 1.0471

and 1 and the coefficients √8/(𝜋𝑒) ≈ 0.96788 and 1 are the
best possible constants.Moreover, replacing (𝑎, 𝑏) by (𝐺, 𝐴) and
(𝐴, 𝑄), we have

√
8

𝜋𝑒

𝐺 + 𝐴

2
< 𝐴
1−𝛾
1/2
/2
(
𝐺 + 𝐴

2
)

𝛾
1/2
/2

< √𝑃𝑋 <
𝐺 + 𝐴

2
,

√
8

𝜋𝑒

𝐴 + 𝑄

2
< 𝑄
1−𝛾
1/2
/2
(
𝐴 + 𝑄

2
)

𝛾
1/2
/2

< √𝑇𝐵 <
𝐴 + 𝑄

2
.

(198)

Inequalities (134) lead to the following.

Proposition 35. For 𝑏 ≥ 𝑎 > 0, the sharp inequalities

2

𝜋
− 𝑒
−1
<
SB (𝑎, 𝑏) − 𝑆𝑌 (𝑎, 𝑏)

𝑏 − 𝑎
<
1

3
(199)

hold true. Moreover, replacing (𝑎, 𝑏) by (𝐺, 𝐴), (𝐴, 𝑄), we have

2

𝜋
− 𝑒
−1
<
𝑃 − 𝑋

𝐴 − 𝐺
<
1

3
,

2

𝜋
− 𝑒
−1
<
𝑇 − 𝐵

𝑄 − 𝐴
<
1

3
.

(200)

Inequalities (144) lead to the following conclusion.

Proposition 36. For 𝑏 ≥ 𝑎 > 0, the inequalities

√𝑎𝑏 < √𝑆𝐵 (𝑎, 𝑏) 𝑆𝑌 (𝑎, 𝑏) <
𝑎 + 𝑏

2

<
𝑆𝐵 (𝑎, 𝑏) + 𝑆𝑌 (𝑎, 𝑏)

2
< (𝑒
−1
+
2

𝜋
)
𝑎 + 𝑏

2

(201)

are valid, where 𝑒−1+2/𝜋 ≈ 1.0045 is the best possible constant.
In particular, replacing (𝑎, 𝑏) by (𝐺, 𝐴) and (𝐴, 𝑄), we get

√𝐺𝐴 < √𝑃𝑋 <
𝐺 + 𝐴

2
<
𝑃 + 𝑋

2
< (𝑒
−1
+
2

𝜋
)
𝐺 + 𝐴

2
,

(202)

√𝐴𝑄 < √𝑇𝐵 <
𝐴 + 𝑄

2
<
𝑇 + 𝐵

2
< (𝑒
−1
+
2

𝜋
)
𝐴 + 𝑄

2
.

(203)

Remark 37. The first inequality in (202) was established by
Sándor in [20, page 87, (2.2)].
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