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The symplectic approach, the separation of variables based onHamiltonian systems, for the plane elasticity problem of quasicrystals
with point group 12mm is developed. By introducing appropriate transformations, the basic equations of the problem are converted
to two independent Hamiltonian dual equations, and the associated Hamiltonian operator matrices are obtained. The study of the
operator matrices shows the feasibility of the method. Without any assumptions, the general solution is presented for the problem
with mixed boundary conditions.

1. Introduction

Quasicrystals (QCs), a new material and structure, were
first discovered by the authors in [1] in 1984. QCs that
exhibit excellent physical and mechanical properties, such as
low friction, high hardness, and high wear resistance, have
promising potential applications (cf. [2]). It is well known
that the general solution of quasicrystal elasticity is very
important, but it is difficult to be obtained because of the
complexity of the basic governing equations. So far, many
methods and techniques have been developed to seek for the
general solution (see, e.g., [3–8]). However, some problems
of quasicrystal elasticity have not been solved well due to the
complicated assumptions of the solution, and the symplectic
approach, developed by Zhong [9], may be helpful in those
problems.

The symplectic approach has advantages of avoiding the
difficulty of solving high order differential equations and
having no any further assumptions and has been applied into
various research fields such as elasticity [10–12], viscoelastic-
ity [13], fluid mechanics [14], piezoelectric material [15], and
functionally graded effects [16]. In this method, one needs
to transform the considered problem into Hamiltonian dual
equations and then obtains the desired Hamiltonian operator
matrix. Based on the eigenvalue analysis and eigenfunction
expansion, the analytical solution of the problem can be

explicitly presented. It should be noted that the feasibility of
this method depends on the completeness of eigenfunction
systems of the correspondingHamiltonian operatormatrices.

To the best of the author’s knowledge, there are no reports
of the method on the analysis of QCs. The objective of
this paper is to propose the symplectic approach for the
plane elasticity problem of quasicrystals with point group
12mm. After derivation of two independent Hamiltonian
dual equations of the problem, we prove the completeness
of eigenfunction systems for the corresponding Hamiltonian
operator matrices. Finally, we obtain the analytical solution
with the use of the eigenfunction expansion.

2. Basic Equations and Their Hamiltonian
Dual Equations

According to the quasicrystal elasticity theory, we have
the deformation geometry equations of the plane elasticity
problem of quasicrystals with point group 12mm
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the equilibrium equations
𝜕𝜎
𝑖𝑗

𝜕𝑥
𝑗

+ 𝑓
𝑖
= 0,

𝜕𝐻
𝑖𝑗

𝜕𝑥
𝑗

+ 𝑔
𝑖
= 0, (2)

and the generalized Hooke’s law
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Here 𝑢
𝑖
and𝑤

𝑖
are the phonon and phason displacements, 𝜎

𝑖𝑗

and 𝜀
𝑖𝑗
are the phonon stresses and strains,𝐻

𝑖𝑗
and𝑤
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are the

phason stresses and strains, 𝐶
12
, 𝐶
66
, 𝐾
1
, 𝐾
2
, and 𝐾

3
are the

elastic constants, and 𝑓
𝑖
and 𝑔

𝑖
are the body and generalized

body forces, respectively.
Substituting (1) and (3) into (2), we get the displacement

equilibrium equations

𝐶
66
∇
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where ∇2 = (𝜕
2
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=
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Then (4) can be expressed in the following matrix forms:
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Obviously,𝐻𝑇
1
= 𝐽𝐻
1
𝐽 and𝐻

𝑇

2
= 𝐽𝐻
2
𝐽, in which 𝐽 = (

0 𝐼
2

−𝐼
2
0
)

is the symplecticmatrix with 𝐼
2
being the 2×2 identitymatrix.

Thus,𝐻
1
and𝐻

2
are bothHamiltonian operatormatrices and

(6) and (7) are exactly the Hamiltonian dual equations for
the plane elasticity problem of quasicrystals with point group
12mm.

We consider the problem satisfying the mixed boundary
conditions

𝑢
𝑥
= 0, 𝜎

𝑥𝑦
= 0, for 𝑥 = 0, 𝑥 = ℎ,

𝑤
𝑥
= 0, 𝐻

𝑥𝑦
= 0, for 𝑥 = 0, 𝑥 = ℎ.

(9)

From (9) and (3), we have

𝑞
1
= 𝑞
3
= 0, for 𝑥 = 0, 𝑥 = ℎ. (10)

3. Theoretical Analysis

In the following, we only discuss (6), and the analysis for (7)
is similar.

First, considering the homogeneous equation of (6),

𝜕

𝜕𝑦

𝑍
1
= 𝐻
1
𝑍
1
. (11)

Applying the method of separation of variables to the above
equation, we write the solution as

𝑍
1
= 𝑋 (𝑥) 𝑌 (𝑦) , (12)

in which𝑌(𝑦) = 𝑒
𝜇𝑦, and 𝜇 and𝑋(𝑥) are the eigenvalue of the

Hamiltonian operator matrix𝐻
1
and its associated eigenvec-

tor, respectively. They are determined by the equation

𝐻
1
𝑋(𝑥) = 𝜇𝑋 (𝑥) . (13)

Solving (13) with the boundary conditions (9) and (10) at
𝑥 = 0, ℎ, we obtain the eigenvalues of𝐻

1
:

𝜇
0
= 0, 𝜇

𝑛
=

𝑛𝜋

ℎ

, 𝜇
−𝑛

= −

𝑛𝜋

ℎ

,

𝑛 = 1, 2, . . . ,

(14)
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and the associated eigenvectors of 𝜇
0
, 𝜇
𝑛
, and 𝜇

−𝑛
are

𝑋
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0

1

0

0
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𝑛
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0

0
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respectively. From

𝐻
1
𝑋
1

𝑛
(𝑥) = 𝜇

𝑛
𝑋
1

𝑛
(𝑥) + 𝑋

0

𝑛
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and the imposed boundary conditions, the first-order Jordan
form eigenvectors of 𝜇

0
, 𝜇
𝑛
, and 𝜇
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𝑋
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0
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) ,
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=

(

(

(

(

(
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𝑛
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)

)

)
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)

,

𝑋
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=
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𝐶
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+ 𝐶
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𝑛
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𝐶
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+ 𝐶
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𝐶
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+ 𝐶
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𝑛
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)

)

)

)

)

,

(17)

respectively. Besides, we can verify that there are no other
high-order Jordan form eigenvectors in every chain.

It is easy to prove that the above eigenvectors and
Jordan form eigenvectors satisfy the symplectic conjugacy
and orthogonality; that is,

∫

ℎ

0

𝑋
0

0

𝑇

𝐽𝑋
0

0
𝑑𝑥 = ∫

ℎ

0

𝑋
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0

𝑇

𝐽𝑋
1

𝑛
𝑑𝑥 = ∫

ℎ

0

𝑋
1

0

𝑇

𝐽𝑋
0

𝑛
𝑑𝑥

= ∫

ℎ

0

𝑋
1

0

𝑇

𝐽𝑋
1

𝑛
𝑑𝑥 = 0,

∫

ℎ

0

𝑋
0

𝑛

𝑇

𝐽𝑋
0

𝑛
𝑑𝑥 = ∫

ℎ

0

𝑋
0

𝑛

𝑇

𝐽𝑋
1

𝑛
𝑑𝑥 = ∫

ℎ

0

𝑋
0

𝑛

𝑇

𝐽𝑋
0

−𝑛
𝑑𝑥

= ∫

ℎ

0

𝑋
1

𝑛

𝑇

𝐽𝑋
1

−𝑛
𝑑𝑥 = 0,

∫

ℎ

0

𝑋
0

0

𝑇

𝐽𝑋
1

0
𝑑𝑥 = ℎ, ∫

ℎ

0

𝑋
0

𝑛

𝑇

𝐽𝑋
1

−𝑛
𝑑𝑥 = −

2𝐶
66

𝐶
12

+ 𝐶
66

ℎ,

𝑛 = ±1, ±2, . . . .

(18)

Next, we will prove the symplectic orthogonal expansion
theorem, that is, the completeness theorem of the generalized
eigenvector system (i.e., the collection of all the eigenvectors
and Jordan form eigenvectors), which shows that the sym-
plectic method can be adopted to solve the title problem.

Theorem 1. The generalized eigenvector system

{𝑋
0

0
, 𝑋
1

0
} ∪ {𝑋

0

𝑛
, 𝑋
1

𝑛
| 𝑛 = ±1, ±2, . . .} (19)

of the Hamiltonian operator matrix 𝐻
1
is complete in the

Hilbert space 𝑋; that is, there exist constant sequences {𝑐0
0
, 𝑐
1

0
},

{𝑐
𝑖

𝑛
}
∞

𝑛=1
, and {𝑐

𝑖

−𝑛
}
∞

𝑛=1
(𝑖 = 0, 1) such that

Φ = 𝑐
0

0
𝑋
0

0
+ 𝑐
1

0
𝑋
1

0
+

+∞

∑

𝑛=1

(𝑐
0

𝑛
𝑋
0

𝑛
+ 𝑐
1

𝑛
𝑋
1

𝑛
+ 𝑐
0

−𝑛
𝑋
0

−𝑛
+ 𝑐
1

−𝑛
𝑋
1

−𝑛
)

(20)

for each Φ = (𝜙
1
(𝑥), 𝜙

2
(𝑥), 𝜙

3
(𝑥), 𝜙

4
(𝑥))
𝑇

∈ 𝑋, where 𝑋 =

𝐿
2
[0, ℎ] × 𝐿

2
[0, ℎ] × 𝐿

2
[0, ℎ] × 𝐿

2
[0, ℎ].

Proof. For anyΦ ∈ 𝑉, in order to prove equality (20), we set

𝑐
0

0
=

∫

ℎ

0
Φ
𝑇
𝐽𝑋
1

0
𝑑𝑥

∫

ℎ

0
𝑋
0

0

𝑇
𝐽𝑋
1

0
𝑑𝑥

=

∫

ℎ

0
𝜙
2
𝑑𝑥

ℎ

,

𝑐
1

0
=

∫

ℎ

0
Φ
𝑇
𝐽𝑋
0

0
𝑑𝑥

∫

ℎ

0
𝑋
1

0

𝑇
𝐽𝑋
0

0
𝑑𝑥

=

∫

ℎ

0
𝜙
4
𝑑𝑥

ℎ

,

𝑐
0

𝑛
=

∫

ℎ

0
Φ
𝑇
𝐽𝑋
1

−𝑛
𝑑𝑥

∫

ℎ

0
𝑋
0

𝑛

𝑇
𝐽𝑋
1

−𝑛
𝑑𝑥

=

∫

ℎ

0
𝜙
1
sin (𝜇

𝑛
𝑥) 𝑑𝑥 − ∫

ℎ

0
𝜙
2
cos (𝜇

𝑛
𝑥) 𝑑𝑥

ℎ

− (∫

ℎ

0

𝜙
3
sin (𝜇

𝑛
𝑥) 𝑑𝑦+ (

(𝐶
12

+ 3𝐶
66
)

(𝐶
12

+ 𝐶
66
) 𝜇
𝑛

+ 1)

×∫

ℎ

0

𝜙
4
cos (𝜇

𝑛
𝑥) 𝑑𝑥) × (

2𝐶
66

𝐶
12

+ 𝐶
66

ℎ)

−1

,
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𝑐
1

𝑛
=

∫

ℎ

0
Φ
𝑇
𝐽𝑋
0

−𝑛
𝑑𝑥

∫

ℎ

0
𝑋
1

𝑛

𝑇
𝐽𝑋
0

−𝑛
𝑑𝑥

=

∫

ℎ

0
𝜙
3
sin (𝜇

𝑛
𝑥) 𝑑𝑥 + ∫

ℎ

0
𝜙
4
cos (𝜇

𝑛
𝑥) 𝑑𝑥

(2𝐶
66
/ (𝐶
12

+ 𝐶
66
)) ℎ

(21)
by the symplectic orthogonal relationship (18). Then,

𝑐
0

0
𝑋
0

0
+ 𝑐
1

0
𝑋
1

0
+

+∞

∑

𝑛=1

(𝑐
0

𝑛
𝑋
0

𝑛
+ 𝑐
1

𝑛
𝑋
1

𝑛
+ 𝑐
0

−𝑛
𝑋
0

−𝑛
+ 𝑐
1

−𝑛
𝑋
1

−𝑛
)

=

(

(

(

(

(

(

(

(

(

+∞

∑

𝑛=1

2

ℎ

∫

ℎ

0

(𝜙
1
sin 𝑛𝜋𝑥

ℎ

𝑑𝑥) sin 𝑛𝜋𝑥

ℎ

1

ℎ

∫

ℎ

0

𝜙
2
𝑑𝑥 +

+∞

∑

𝑛=1

2

ℎ

(∫

ℎ

0

𝜙
2
cos 𝑛𝜋𝑥

ℎ

𝑑𝑥) cos 𝑛𝜋𝑥
ℎ

+∞

∑

𝑛=1

2

ℎ

∫

1

0

(𝜙
3
sin 𝑛𝜋𝑥

ℎ

𝑑𝑥) sin 𝑛𝜋𝑥

ℎ

1

ℎ

∫

ℎ

0

𝜙
4
𝑑𝑥 +

+∞

∑

𝑛=1

2

ℎ

(∫

ℎ

0

𝜙
4
cos 𝑛𝜋𝑥

ℎ

𝑑𝑥) cos 𝑛𝜋𝑥
ℎ

)

)

)

)

)

)

)

)

)

,

(22)
in which the four components of the above expression are
the corresponding Fourier series of 𝜙

1
, 𝜙
2
, 𝜙
3
, 𝜙
4
associated

with the orthogonal function system {sin(𝑛𝜋𝑥/ℎ)}+∞
𝑛=1

or
{cos(𝑛𝜋𝑥/ℎ)}+∞

𝑛=0
in 𝐿
2
[0, ℎ]. Therefore, equality (20) is valid,

which means that the generalized eigenvector system of𝐻
1
is

complete in the Hilbert space𝑋.

Similarly, for the Hamiltonian operator matrix 𝐻
2
, we

also have the following completeness theory.

Theorem 2. The generalized eigenvector system

{𝑋

0

0
, 𝑋

1

0
} ∪ {𝑋

0

𝑛
, 𝑋

1

𝑛
| 𝑛 = ±1, ±2, . . .} (23)

of the Hamiltonian operator matrix 𝐻
2
is complete in the

Hilbert space 𝑋, where

𝑋

0

0
= (

0

1

0

0

) , 𝑋

0

𝑛
= (

sin (𝜆
𝑛
𝑥)

cos (𝜆
𝑛
𝑥)

0

0

) ,

𝑋

1

0
= (

0

0

0

1

) ,

𝑋

1

𝑛
=

(

(

(

(

sin (𝜆
𝑛
𝑥)

(1 +

2𝐾
1
+ 𝐾
2
+ 𝐾
3

𝜆
𝑛
(𝐾
2
+ 𝐾
3
)

) cos (𝜆
𝑛
𝑥)

−(

2𝐾
1

𝐾
2
+ 𝐾
3

+ 2) sin (𝜆
𝑛
𝑥)

(

2𝐾
1

𝐾
2
+ 𝐾
3

+ 2) cos (𝜆
𝑛
𝑥)

)

)

)

)

(24)

are the associated eigenvectors and the first-order Jordan form
eigenvectors of the eigenvalue 𝜆

0
= 0 and 𝜆

𝑛
= 𝑛𝜋/ℎ of𝐻

2
.

4. General Solution

By completeness Theorem 1, the general solution of the
inhomogeneous equation (6) is represented in the form

𝑍
1
(𝑥, 𝑦) = 𝑋

0

0
𝑌
0

0
(𝑦) + 𝑋

1

0
𝑌
1

0
(𝑦)

+

+∞

∑

𝑛=1

(𝑋
0

𝑛
𝑌
0

𝑛
(𝑦) + 𝑋

1

𝑛
𝑌
1

𝑛
(𝑦) + 𝑋

0

−𝑛
𝑌
0

−𝑛
(𝑦)

+𝑋
1

−𝑛
𝑌
1

−𝑛
(𝑦)) .

(25)

The vector 𝐹
1
can also be expanded as

𝐹
1
= 𝑋
0

0
𝐹
0

0
(𝑦) + 𝑋

1

0
𝐹
1

0
(𝑦)

+

+∞

∑

𝑛=1

(𝑋
0

𝑛
𝐹
0

𝑛
(𝑦) + 𝑋

1

𝑛
𝐹
1

𝑛
(𝑦) + 𝑋

0

−𝑛
𝐹
0

−𝑛
(𝑦)

+𝑋
1

−𝑛
𝐹
1

−𝑛
(𝑦)) .

(26)

Multiplying both sides of (26) by𝑋1
0

𝑇

𝐽,𝑋0
0

𝑇

𝐽,𝑋1
−𝑛

𝑇

𝐽,𝑋0
−𝑛

𝑇

𝐽,
𝑋
1

𝑛

𝑇

𝐽, and 𝑋
0

𝑛

𝑇

𝐽 and then integrating by 𝑥 from 0 to ℎ,
respectively, we have

𝐹
0

0
(𝑦) =

∫

ℎ

0
𝑋
1

0

𝑇

𝐽𝐹
1
𝑑𝑥

∫

ℎ

0
𝑋
1

0

𝑇
𝐽𝑋
0

0
𝑑𝑥

= 0,

𝐹
1

0
(𝑦) =

∫

ℎ

0
𝑋
0

0

𝑇

𝐽𝐹
1
𝑑𝑥

∫

ℎ

0
𝑋
0

0

𝑇
𝐽𝑋
1

0
𝑑𝑥

= −

∫

ℎ

0
𝑓
2
𝑑𝑥

(𝐶
12

+ 2𝐶
66
) ℎ

,

𝐹
0

𝑛
(𝑦) =

∫

ℎ

0
𝑋
1

−𝑛

𝑇

𝐽𝐹
1
𝑑𝑥

∫

ℎ

0
𝑋
1

−𝑛

𝑇
𝐽𝑋
0

𝑛
𝑑𝑥

= (∫

ℎ

0

𝑓
1
sin (𝜇

𝑛
𝑥) 𝑑𝑥 + (

𝐶
12

+ 3𝐶
66

(𝐶
12

+ 𝐶
66
) 𝜇
𝑛

+ 1)

×∫

ℎ

0

𝑓
2
cos (𝜇

𝑛
𝑥) 𝑑𝑥)

× (

2𝐶
66
(𝐶
12

+ 2𝐶
66
)

𝐶
12

+ 𝐶
66

ℎ)

−1

,

𝐹
1

𝑛
(𝑦) =

∫

ℎ

0
𝑋
0

−𝑛

𝑇

𝐽𝐹
1
𝑑𝑥

∫

ℎ

0
𝑋
0

−𝑛

𝑇
𝐽𝑋
1

𝑛
𝑑𝑥

=

−∫

ℎ

0
𝑓
1
sin (𝜇

𝑛
𝑥) 𝑑𝑥 − ∫

ℎ

0
𝑓
2
cos (𝜇

𝑛
𝑥) 𝑑𝑥

(2𝐶
66
(𝐶
12

+ 2𝐶
66
) / (𝐶
12

+ 𝐶
66
)) ℎ

𝑛 = ±1, ±2, . . . .

(27)
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Table 1: The computed results.

(𝑥, 𝑦) (0.1464, 0.8536) (1.4, 0.55) (2.1, 0.34) (3.42, 0.89) (4.7, 0.27)
𝑢
𝑥

0.204 −0.08131 −0.237 0.4822 −0.2427
𝑢
𝑦

−0.06272 −0.01618 −0.02746 −0.0399 −0.04801
𝑤
𝑥

0.2965 −0.243 −0.583 0.6355 −0.4975
𝑤
𝑦

−0.02621 −0.006761 −0.01148 −0.01667 −0.02006

Then, substituting (25) and (26) into (6) yields

𝑑𝑌
1

0
(𝑦)

𝑑𝑦

= 𝐹
1

0
(𝑦) ,

𝑑𝑌
0

0
(𝑦)

𝑑𝑦

= 𝑌
1

0
(𝑦) ,

𝑑𝑌
1

𝑛
(𝑦)

𝑑𝑦

= 𝜇
𝑛
𝑌
1

𝑛
(𝑦) + 𝐹

1

𝑛
(𝑦) ,

𝑑𝑌
0

𝑛
(𝑦)

𝑑𝑦

= 𝜇
𝑛
𝑌
0

𝑛
(𝑦) + 𝑌

1

𝑛
(𝑦) + 𝐹

0

𝑛
(𝑦) .

(28)

Thus, we obtain

𝑌
1

0
(𝑦) = 𝑐

1

0
+ ∫

𝑦

0

𝐹
1

0
(𝜉) 𝑑𝜉,

𝑌
0

0
(𝑦) = 𝑐

0

0
+ 𝑐
1

0
𝑦 + ∫

𝑦

0

∫

𝜏

0

𝐹
1

0
(𝜉) 𝑑𝜉 𝑑𝜏,

𝑌
1

𝑛
(𝑦) = 𝑐

1

𝑛
𝑒
𝜇
𝑛
𝑦
+ ∫

𝑦

0

𝐹
1

𝑛
(𝜉) 𝑒
𝜇
𝑛
(𝑦−𝜉)

𝑑𝜉,

𝑌
0

𝑛
(𝑦) = (𝑐

0

𝑛
+ 𝑐
1

𝑛
𝑦) 𝑒
𝜇
𝑛
𝑦
+ ∫

𝑦

0

𝐹
0

𝑛
(𝜉) 𝑒
𝜇
𝑛
(𝑦−𝜉)

𝑑𝜉

+ ∫

𝑦

0

∫

𝜏

0

𝐹
1

𝑛
(𝜉) 𝑒
𝜇
𝑛
(𝑦−𝜉)

𝑑𝜉 𝑑𝜏,

(29)

where 𝑐
1

0
, 𝑐0
0
, 𝑐1
𝑛
, and 𝑐

0

𝑛
are unknown constants to be deter-

mined by imposing the remaining boundary conditions at 𝑦.
Substituting (29) into (25), we have the analytical solutions 𝑢

𝑥

and 𝑢
𝑦
of (4) given by

𝑢
𝑥

=

+∞

∑

𝑛=1

[ (𝑐
0

𝑛
+ 𝑐
1

𝑛
+ 𝑐
1

𝑛
𝑦) 𝑒
𝜇
𝑛
𝑦

− (𝑐
0

−𝑛
+ 𝑐
1

−𝑛
+ 𝑐
1

−𝑛
𝑦) 𝑒
−𝜇
𝑛
𝑦

+ ∫

𝑦

0

((𝐹
0

𝑛
(𝜉) + 𝐹

1

𝑛
(𝜉)) 𝑒
𝜇
𝑛
(𝑦−𝜉)

− (𝐹
0

−𝑛
(𝜉) + 𝐹

1

−𝑛
(𝜉)) 𝑒
−𝜇
𝑛
(𝑦−𝜉)

) 𝑑𝜉

+ ∫

𝑦

0

∫

𝜏

0

(𝐹
1

𝑛
(𝜉) 𝑒
𝜇
𝑛
(𝑦−𝜉)

−𝐹
1

−𝑛
(𝜉) 𝑒
−𝜇
𝑛
(𝑦−𝜉)

) 𝑑𝜉 𝑑𝜏] sin 𝜇
𝑛
𝑥,

𝑢
𝑦

= 𝑐
0

0
+ 𝑐
1

0
𝑦 + ∫

𝑦

0

∫

𝜏

0

𝐹
1

0
(𝜉) 𝑑𝜉 𝑑𝜏

−

+∞

∑

𝑛=1

[(𝑐
0

𝑛
− (

𝐶
12

+ 3𝐶
66

(𝐶
12

+ 𝐶
66
) 𝜇
𝑛

− 1) 𝑐
1

𝑛
+ 𝑐
1

𝑛
𝑦) 𝑒
𝜇
𝑛
𝑦

+ (𝑐
0

−𝑛
+ (

𝐶
12

+ 3𝐶
66

(𝐶
12

+ 𝐶
66
) 𝜇
𝑛

+ 1) 𝑐
1

−𝑛
+ 𝑐
1

−𝑛
𝑦) 𝑒
−𝜇
𝑛
𝑦

+ ∫

𝑦

0

((𝐹
0

𝑛
(𝜉) − (

𝐶
12

+ 3𝐶
66

(𝐶
12

+ 𝐶
66
) 𝜇
𝑛

− 1)

×𝐹
1

𝑛
(𝜉) ) 𝑒

𝜇
𝑛
(𝑦−𝜉)

+ (𝐹
0

−𝑛
(𝜉) + (

𝐶
12

+ 3𝐶
66

(𝐶
12

+ 𝐶
66
) 𝜇
𝑛

+ 1)

×𝐹
1

−𝑛
(𝜉) ) 𝑒

−𝜇
𝑛
(𝑦−𝜉)

)𝑑𝜉

+∫

𝑦

0

∫

𝜏

0

(𝐹
1

𝑛
(𝜉) 𝑒
𝜇
𝑛
(𝑦−𝜉)

+ 𝐹
1

−𝑛
(𝜉) 𝑒
−𝜇
𝑛
(𝑦−𝜉)

) 𝑑𝜉 𝑑𝜏]

× cos 𝜇
𝑛
𝑥.

(30)

According to the above procedure for (7), the analytical
solutions 𝑤

𝑥
and 𝑤

𝑦
of (4) can be obtained:

𝑤
𝑥
=

+∞

∑

𝑛=1

[ (𝑑
0

𝑛
+ 𝑑
1

𝑛
+ 𝑑
1

𝑛
𝑦) 𝑒
𝜇
𝑛
𝑦

− (𝑑
0

−𝑛
+ 𝑑
1

−𝑛
+ 𝑑
1

−𝑛
𝑦) 𝑒
−𝜆
𝑛
𝑦

+ ∫

𝑦

0

((𝐹

0

𝑛
(𝜉) + 𝐹

1

𝑛
(𝜉)) 𝑒
𝜆
𝑛
(𝑦−𝜉)

− (𝐹

0

−𝑛
(𝜉) + 𝐹

1

−𝑛
(𝜉)) 𝑒
−𝜆
𝑛
(𝑦−𝜉)

) 𝑑𝜉

+ ∫

𝑦

0

∫

𝜏

0

(𝐹

1

𝑛
(𝜉) 𝑒
𝜆
𝑛
(𝑦−𝜉)

−𝐹

1

−𝑛
(𝜉) 𝑒
−𝜆
𝑛
(𝑦−𝜉)

) 𝑑𝜉 𝑑𝜏] sin 𝜆
𝑛
𝑥,
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𝑤
𝑦

= 𝑑
0

0
+ 𝑑
1

0
𝑦 + ∫

𝑦

0

∫

𝜏

0

𝐹

1

0
(𝜉) 𝑑𝜉 𝑑𝜏

+

+∞

∑

𝑛=1

[(𝑑
0

𝑛
+ (1 +

2𝐾
1
+ 𝐾
2
+ 𝐾
3

𝜆
𝑛
(𝐾
2
+ 𝐾
3
)

) 𝑑
1

𝑛
+ 𝑑
1

𝑛
𝑦) 𝑒
𝜆
𝑛
𝑦

+ (𝑑
0

−𝑛
+ (1 −

2𝐾
1
+ 𝐾
2
+ 𝐾
3

𝜆
𝑛
(𝐾
2
+ 𝐾
3
)

) 𝑑
1

−𝑛

+𝑑
1

−𝑛
𝑦) 𝑒
−𝜆
𝑛
𝑦

+ ∫

𝑦

0

((𝐹

0

𝑛
(𝜉) + (1 +

2𝐾
1
+ 𝐾
2
+ 𝐾
3

𝜆
𝑛
(𝐾
2
+ 𝐾
3
)

)𝐹

1

𝑛
(𝜉))

× 𝑒
𝜆
𝑛
(𝑦−𝜉)

+ (𝐹

0

−𝑛
(𝜉) +(1 −

2𝐾
1
+ 𝐾
2
+ 𝐾
3

𝜆
𝑛
(𝐾
2
+ 𝐾
3
)

)𝐹

1

−𝑛
(𝜉))

×𝑒
−𝜆
𝑛
(𝑦−𝜉)

) 𝑑𝜉

+ ∫

𝑦

0

∫

𝜏

0

(𝐹

1

𝑛
(𝜉) 𝑒
𝜆
𝑛
(𝑦−𝜉)

+ 𝐹

1

−𝑛
(𝜉) 𝑒
−𝜆
𝑛
(𝑦−𝜉)

) 𝑑𝜉 𝑑𝜏] cos 𝜆
𝑛
𝑥,

(31)

where 𝑑
1

0
, 𝑑
0

0
, 𝑑
1

𝑛
, and 𝑑

0

𝑛
are unknown constants to be

determined by imposing the remaining boundary conditions
at 𝑦 and

𝐹

1

0
=

∫

ℎ

0
𝑔
2
𝑑𝑥

𝐾
1
ℎ

,

𝐹

1

𝑛
=

−∫

ℎ

0
𝑔
1
sin 𝜆
𝑛
𝑥 𝑑𝑥 + ∫

ℎ

0
𝑔
2
cos 𝜆
𝑛
𝑥 𝑑𝑥

((2𝐾
1
+ 𝐾
2
+ 𝐾
3
) / (𝐾
2
+ 𝐾
3
)) ℎ

,

𝐹

0

𝑛
= (∫

ℎ

0

𝑔
1
sin 𝜆
𝑛
𝑥𝑑𝑦

−(1 −

2𝐾
1
+ 𝐾
2
+ 𝐾
3

𝜆
𝑛
(𝐾
2
+ 𝐾
3
)

)∫

ℎ

0

𝑔
2
cos 𝜆
𝑛
𝑥 𝑑𝑥)

× (

2𝐾
1
+ 𝐾
2
+ 𝐾
3

𝐾
2
+ 𝐾
3

ℎ)

−1

.

(32)

5. Numerical Calculations

Compared with [17], the present paper is devoted to the
symplectic analysis of the plane elasticity problem of qua-
sicrystals. To guarantee the feasibility of our method, we
also prove the completeness for the eigenfunction system
of the associated Hamiltonian operator matrices. Note that
the completeness does not always hold for the Hamiltonian
operator matrices.

In order to determine the unknown constants 𝑐𝑘
𝑛
and 𝑑

𝑘

𝑛

of the analytical solution in (30) and (31), we consider the
boundary conditions at 𝑦 = 0, 𝑦 = 𝑙 given by

𝑢
𝑥
= sin 4𝜋

ℎ

𝑥, 𝑢
𝑦
= 0, for 𝑦 = 0, 𝑦 = 𝑙,

𝑤
𝑥
= sin 4𝜋

ℎ

𝑥, 𝑤
𝑦
= 0, for 𝑦 = 0, 𝑦 = 𝑙.

(33)

In the following, let ℎ = 5, 𝑙 = 1, andwe take the constants
𝐶
12

= 0.5714, 𝐶
66

= 0.88445,𝐾
1
= 1.22,𝐾

2
= 0.24, and𝐾

3
=

0.6. The computed results are listed in Table 1 for illustrating
previousmain results, and the data is the same as that of using
the treatment in [17].

6. Conclusions

The symplectic approach is established for the plane elasticity
problem of quasicrystals with point group 12mm satisfying
themixed boundary conditions.The correspondingHamilto-
nian operator matrix plays an important role in this method,
whose eigenvalues and eigenfunctions need to be obtained.
Through calculations, the eigenfunction system is symplectic
orthogonal. Based on this, we further verify the feasibility
of this approach. Then the exact analytical solution is given
with the use of the symplectic eigenfunction method. We
can know that the method is totally rational and gives us a
systematic way to solve physical problems. In addition, this
approach is expected to apply to other quasicrystal problems.
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