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Let T ⊂ R be a periodic time scale in shifts 𝛿
±
with period 𝑃 ∈ (𝑡

0
,∞)T and 𝑡

0
∈ T is nonnegative and fixed. By using a multiple

fixed point theorem in cones, some criteria are established for the existence and multiplicity of positive solutions in shifts 𝛿
±
for a

class of higher-dimensional functional dynamic equations with impulses on time scales of the following form: 𝑥Δ(𝑡) = 𝐴(𝑡)𝑥(𝑡) +
𝑏(𝑡)𝑓(𝑡, 𝑥(𝑔(𝑡))), 𝑡 ̸= 𝑡

𝑗
, 𝑡 ∈ T , 𝑥(𝑡+

𝑗
) = 𝑥(𝑡

−

𝑗
) + 𝐼

𝑗
(𝑥(𝑡

𝑗
)), where 𝐴(𝑡) = (𝑎

𝑖𝑗
(𝑡))
𝑛×𝑛

is a nonsingular matrix with continuous real-
valued functions as its elements. Finally, numerical examples are presented to illustrate the feasibility and effectiveness of the results.

1. Introduction

As is known to all, both continuous and discrete systems are
very important in implementation and application.The study
of dynamic equations on time scales, which unifies differen-
tial, difference, ℎ-difference, and 𝑞-differences equations and
more, has received much attention; see, for example, [1–16]
and the references therein. The theory of dynamic equations
on time scales was introduced by Hilger in his PhD thesis in
1988 [5]. The existence problem of periodic solutions is an
important topic in qualitative analysis of functional dynamic
equations. Up to now, there are only a few results concerning
periodic solutions of dynamic equations on time scales; see,
for example, [6–9]. In these papers, authors considered the
existence of periodic solutions for dynamic equations on time
scales satisfying the condition “there exists a 𝜔 > 0 such that
𝑡 ± 𝜔 ∈ T , ∀𝑡 ∈ T .” Under this condition, all periodic time
scales are unbounded above and below. However, there are
many time scales such as 𝑞Z = {𝑞

𝑛
: 𝑛 ∈ Z} ∪ {0} and

√N = {√𝑛 : 𝑛 ∈ N} which do not satisfy this condition.
Adivar and Raffoul introduced a new periodicity concept on
time scales which does not oblige the time scale to be closed
under the operation 𝑡 ± 𝜔 for a fixed 𝜔 > 0. They defined
a new periodicity concept with the aid of shift operators 𝛿

±

which are first defined in [10] and then generalized in [11].

Recently, based on a fixed-point theorem in cones, Çetin
and Serap Topal studied the existence of positive periodic
solutions in shifts 𝛿

±
for some nonlinear first-order func-

tional dynamic equation on time scales; see [12, 13]. However,
to the best of our knowledge, there are few papers published
on the existence of positive periodic solutions in shifts 𝛿

±

for higher-dimensional functional dynamic equations with
impulses, especially systems with the coefficient matrix being
an arbitrary nonsingular 𝑛 × 𝑛matrix.

Motivated by the above, in the present paper, we consider
the following system:

𝑥
Δ
(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑏 (𝑡) 𝑓 (𝑡, 𝑥 (𝑔 (𝑡))) , 𝑡 ̸= 𝑡

𝑗
, 𝑡 ∈ T ,

𝑥 (𝑡
+

𝑗
) = 𝑥 (𝑡

−

𝑗
) + 𝐼

𝑗
(𝑥 (𝑡

𝑗
)) ,

(1)

where T ⊂ R is a periodic time scale in shifts 𝛿
±
with period

𝑃 ∈ [𝑡
0
,∞)T and 𝑡

0
∈ T is nonnegative and fixed; 𝐴 =

(𝑎
𝑖𝑗
)
𝑛×𝑛

is a nonsingular matrix with continuous real-valued
functions as its elements, 𝐴 ∈ R, and 𝑎

𝑖𝑗
∈ 𝐶(T ,R) is Δ-

periodic in shifts 𝛿
±
with period 𝜔; 𝑏 = diag(𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
)

and 𝑏
𝑖
∈ 𝐶(T ,R) is Δ-periodic in shifts 𝛿

±
with period 𝜔;

𝑓 = (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
)
𝑇 and 𝑓

𝑖
∈ 𝐶(T × R𝑛,R) is periodic

in shifts 𝛿
±
with period 𝜔 with respect to the first variable;
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𝑔 ∈ 𝐶(T , T) is periodic in shifts 𝛿
±
with period 𝜔; 𝑥(𝑡+

𝑗
) and

𝑥(𝑡
−

𝑗
) represent the right and the left limit of 𝑥(𝑡

𝑗
) in the sense

of time scales; in addition, if 𝑡
𝑗
is right-scattered, then 𝑥(𝑡+

𝑗
) =

𝑥(𝑡
𝑗
), whereas if 𝑡

𝑗
is left-scattered, then 𝑥(𝑡−

𝑗
) = 𝑥(𝑡

𝑗
); 𝐼
𝑗
=

(𝐼
1

𝑗
, 𝐼
2

𝑗
, . . . , 𝐼

𝑛

𝑗
)
𝑇 and 𝐼𝑖

𝑗
∈ 𝐶(R𝑛,R). Assume that there exists a

positive constant 𝑞 such that 𝑡
𝑗+𝑞
= 𝛿

𝜔

+
(𝑡
𝑗
), 𝐼
𝑗+𝑞
= 𝐼
𝑗
, 𝑗 ∈ Z.

For each interval I ofR, we denote IT = I ∩ T ; without loss of
generality, set [𝑡

0
, 𝛿
𝜔

+
(𝑡
0
))T ∩ {𝑡𝑗, 𝑗 ∈ Z} = {𝑡1, 𝑡2, . . . , 𝑡𝑞}.

In [14], Li and Hu studied the existence of positive
periodic solutions of system (1) on a periodic time scale
T with 𝑏(𝑡) = 1. The time scale T considered in [14] is
unbounded above and below. Moreover, the condition (𝑃

4
)

in [14] is too strict so that it cannot be satisfied even if
the coefficient matrix 𝐴 is a diagonal matrix. Therefore, the
results in [14] are less applicable.

The main purpose of this paper is to study the existence
and multiplicity of positive periodic solutions in shifts 𝛿

±
of

system (1) undermore general assumptions. By using Leggett-
Williams fixed point theorem, sufficient conditions for the
existence of at least three positive periodic solutions in shifts
𝛿
±
of system (1) will be established. The results presented in

this paper improve and generalize the results in [14].
In this paper, for each 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ 𝐶(T ,R𝑛),

the norm of 𝑥 is defined as ‖𝑥‖ = sup
𝑡∈[𝑡0,𝛿

𝜔

+
(𝑡0)]T

|𝑥(𝑡)|
0
, where

|𝑥(𝑡)|
0
= ∑

𝑛

𝑖=1
|𝑥
𝑖
(𝑡)| and when it comes to the fact that 𝑥

is continuous, delta derivative, delta integrable, and so forth;
we mean that each element 𝑥

𝑖
is continuous, delta derivative,

delta integrable, and so forth.
The organization of this paper is as follows. In Section 2,

we introduce some notations and definitions and state
some preliminary results needed in later sections. Besides,
in Section 2, we give some lemmas about the exponential
function with shift operators, and Green’s function of system
(1). In Section 3, we establish our main results for positive
periodic solutions in shifts 𝛿

±
by applying Leggett-Williams

fixed point theorem. In Section 4, numerical examples are
presented to illustrate that our results are feasible and more
general.

2. Preliminaries

Let T be a nonempty closed subset (time scale) of R. The
forward and backward jump operators 𝜎, 𝜌 : T → T and
the graininess 𝜇 : T → R+ are defined, respectively, by

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > 𝑡} , 𝜌 (𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡} ,

𝜇 (𝑡) = 𝜎 (𝑡) − 𝑡.

(2)

A point 𝑡 ∈ T is called left-dense if 𝑡 > inf T and
𝜌(𝑡) = 𝑡, left-scattered if 𝜌(𝑡) < 𝑡, right-dense if 𝑡 < sup T
and 𝜎(𝑡) = 𝑡, and right-scattered if 𝜎(𝑡) > 𝑡. If T has a left-
scattered maximum𝑚, then T𝑘 = T \ {𝑚}; otherwise, T𝑘 = T .
If T has a right-scattered minimum 𝑚, then T

𝑘
= T \ {𝑚};

otherwise, T
𝑘
= T .

A function 𝑓 : T → R𝑛 is right-dense continuous
provided that it is continuous at right-dense point in T and

its left-side limits exist at left-dense points in T . If 𝑓 is
continuous at each right-dense point and each left-dense
point, then 𝑓 is said to be a continuous function on T . The
set of continuous functions 𝑓 : T → R𝑛 will be denoted by
𝐶(T) = 𝐶(T ,R𝑛).

For the basic theories of calculus on time scales, see [15].

Definition 1 (see [15]). An 𝑛×𝑛-matrix-valued function𝐴 on
a time scale T is called regressive (with respect to T) provided
that

𝐼 + 𝜇 (𝑡) 𝐴 (𝑡) (3)

is invertible for all 𝑡 ∈ T𝑘. The set of all regressive and rd-
continuous functions 𝐴 : T → R𝑛×𝑛 will be denoted byR =

R(T ,R𝑛×𝑛).

Definition 2 (see [15]). Let 𝑡
0
∈ T and assume that 𝐴 is a

regressive 𝑛 × 𝑛-matrix-valued function. The unique matrix-
valued solution of the IVP is

𝑌
Δ
= 𝐴 (𝑡) 𝑌, 𝑌 (𝑡

0
) = 𝐼, (4)

where 𝐼 denotes as usual the 𝑛×𝑛-identitymatrix, is called the
matrix exponential function (at 𝑡

0
), and is denoted by 𝑒

𝐴
(⋅, 𝑡
0
).

Lemma 3 (see [15]). If 𝐴 is a regressive 𝑛 × 𝑛-matrix-valued
function on T , then

(i) 𝑒
0
(𝑡, 𝑠) ≡ 𝐼 and 𝑒

𝐴
(𝑡, 𝑡) ≡ 𝐼;

(ii) 𝑒
𝐴
(𝜎(𝑡), 𝑠) = (𝐼 + 𝜇(𝑡)𝐴(𝑡))𝑒

𝐴
(𝑡, 𝑠);

(iii) 𝑒
𝐴
(𝑡, 𝑠) = 𝑒

−1

𝐴
(𝑠, 𝑡);

(iv) 𝑒
𝐴
(𝑡, 𝑠)𝑒

𝐴
(𝑠, 𝑟) = 𝑒

𝐴
(𝑡, 𝑟).

Lemma4 (see [15])). Let𝐴 be a regressive 𝑛×𝑛-matrix-valued
function on T and suppose that 𝑓 : T → R𝑛 is rd-continuous.
Let 𝑡

0
∈ T and

𝑦
Δ
= 𝐴 (𝑡) 𝑦 + 𝑓 (𝑡) , 𝑦 (𝑡

0
) = 𝑦

0
, (5)

has a unique solution 𝑦 : T → R𝑛. Moreover, the solution is
given by

𝑦 (𝑡) = 𝑒
𝐴
(𝑡, 𝑡

0
) 𝑦
0
+ ∫

𝑡

𝑡0

𝑒
𝐴
(𝑡, 𝜎 (𝜏)) 𝑓 (𝜏) Δ𝜏. (6)

The following definitions and lemmas about the shift
operators and the new periodicity concept for time scales can
be found in [16].

Let T∗ be a nonempty subset of the time scale T and
let 𝑡

0
∈ T∗ be a fixed number; define operators 𝛿

±
:

[𝑡
0
,∞) × T∗ → T∗. The operators 𝛿

+
and 𝛿

−
associated

with 𝑡
0
∈ T∗(called the initial point) are said to be forward

and backward shift operators on the set T∗, respectively. The
variable 𝑠 ∈ [𝑡

0
,∞)T in 𝛿

±
(𝑠, 𝑡) is called the shift size. The

values 𝛿
+
(𝑠, 𝑡) and 𝛿

−
(𝑠, 𝑡) in T∗ indicate 𝑠 units translation of

the term 𝑡 ∈ T∗ to the right and left, respectively. The sets

D
±
:= {(𝑠, 𝑡) ∈ [𝑡

0
,∞)

T
× T
∗
: 𝛿
∓
(𝑠, 𝑡) ∈ T

∗
} (7)

are the domains of the shift operator 𝛿
±
, respectively. Here-

after, T∗ is the largest subset of the time scale T such that the
shift operators 𝛿

±
: [𝑡
0
,∞) × T∗ → T∗ exist.
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Definition 5 (see [16], periodicity in shifts 𝛿
±
). Let T be a time

scale with the shift operators 𝛿
±
associated with the initial

point 𝑡
0
∈ T∗. The time scale T is said to be periodic in shifts

𝛿
±
if there exists 𝑝 ∈ (𝑡

0
,∞)T∗ such that (𝑝, 𝑡) ∈ D

±
for all

𝑡 ∈ T∗. Furthermore, if

𝑃 := inf {𝑝 ∈ (𝑡
0
,∞)

T∗
: (𝑝, 𝑡) ∈ 𝛿

±
, ∀𝑡 ∈ T

∗
} ̸= 𝑡

0
, (8)

then 𝑃 is called the period of the time scale T .

Definition 6 (see [16], periodic function in shifts 𝛿
±
). Let T be

a time scale that is periodic in shifts 𝛿
±
with the period 𝑃. We

say that a real-valued function 𝑓 defined on T∗ is periodic in
shifts 𝛿

±
if there exists 𝜔 ∈ [𝑃,∞)T∗ such that (𝜔, 𝑡) ∈ D

±

and 𝑓(𝛿𝜔
±
(𝑡)) = 𝑓(𝑡) for all 𝑡 ∈ T∗, where 𝛿𝜔

±
:= 𝛿

±
(𝜔, 𝑡). The

smallest number 𝜔 ∈ [𝑃,∞)T∗ is called the period of 𝑓.

Definition 7 (see [16], Δ-periodic function in shifts 𝛿
±
). Let

T be a time scale that is periodic in shifts 𝛿
±
with the period

𝑃. We say that a real-valued function 𝑓 defined on T∗ is Δ-
periodic in shifts 𝛿

±
if there exists 𝜔 ∈ [𝑃,∞)T∗ such that

(𝜔, 𝑡) ∈ D
±
for all 𝑡 ∈ T∗ and the shifts 𝛿𝜔

±
areΔ-differentiable

with rd-continuous derivatives and𝑓(𝛿𝜔
±
(𝑡))𝛿

Δ𝜔

±
(𝑡) = 𝑓(𝑡) for

all 𝑡 ∈ T∗, where 𝛿𝜔
±
:= 𝛿

±
(𝜔, 𝑡). The smallest number 𝜔 ∈

[𝑃,∞)T∗ is called the period of 𝑓.

Lemma 8 (see [16]). Consider 𝛿𝜔
+
(𝜎(𝑡)) = 𝜎(𝛿

𝜔

+
(𝑡)) and

𝛿
𝜔

−
(𝜎(𝑡)) = 𝜎(𝛿

𝜔

−
(𝑡)) for all 𝑡 ∈ T∗.

Lemma 9 (see [16]). Let T be a time scale that is periodic in
shifts 𝛿

±
with the period 𝑃, and let 𝑓 be a Δ-periodic function

in shifts 𝛿
±
with the period 𝜔 ∈ [𝑃,∞)T∗ . Suppose that 𝑓 ∈

𝐶
𝑟𝑑
(T), then

∫

𝑡

𝑡0

𝑓 (𝑠) Δ𝑠 = ∫

𝛿
𝜔

±
(𝑡)

𝛿
𝜔

±
(𝑡0)

𝑓 (𝑠) Δ𝑠. (9)

Let T be a time scale that is periodic in shifts 𝛿
±
. If one

takes V(𝑡) = 𝛿𝜔
±
(𝑡), then one has V(T) = T and [𝑓(V(𝑡))]Δ =

(𝑓
Δ
∘ V)(𝑡)VΔ(𝑡).
Now, we prove two properties of the exponential func-

tions 𝑒
𝐴
(𝑡, 𝑡
0
) and shift operators on time scales.

Lemma 10. Let T be a time scale that is periodic in shifts 𝛿
±

with the period𝑃. Suppose that the shifts 𝛿𝜔
±
areΔ-differentiable

on 𝑡 ∈ T∗, where 𝜔 ∈ [𝑃,∞)T∗ and 𝐴 ∈ R is Δ-periodic in
shifts 𝛿

±
with the period 𝜔. Then

𝑒
𝐴
(𝛿
𝜔

±
(𝑡) , 𝛿

𝜔

±
(𝑡
0
)) = 𝑒

𝐴
(𝑡, 𝑡

0
) for 𝑡, 𝑡

0
∈ T
∗
. (10)

Proof. Let 𝑌(𝑡) = 𝐹(𝛿𝜔
±
(𝑡)), where 𝐹(𝑡) = 𝑒

𝐴
(𝑡, 𝛿

𝜔

±
(𝑡
0
)), then

𝑌
Δ
(𝑡) = [𝐹 (𝛿

𝜔

±
(𝑡))]

Δ

= (𝐹
Δ
∘ 𝛿
𝜔

±
) (𝑡) 𝛿

Δ𝜔

±
(𝑡)

= 𝐴 (𝛿
𝜔

±
(𝑡)) 𝛿

Δ𝜔

±
(𝑡) 𝑒

𝐴
(𝛿
𝜔

±
(𝑡) , 𝛿

𝜔

±
(𝑡
0
))

= 𝐴 (𝑡) 𝑒
𝐴
(𝛿
𝜔

±
(𝑡) , 𝛿

𝜔

±
(𝑡
0
))

= 𝐴 (𝑡) 𝑌 (𝑡) ,

(11)

and 𝑌(𝑡
0
) = 𝑒

𝐴
(𝛿
𝜔

±
(𝑡
0
), 𝛿
𝜔

±
(𝑡
0
)) = 𝐼. Hence, 𝑌 solves the IVP,

𝑌
Δ
(𝑡) = 𝐴 (𝑡) 𝑌 (𝑡) , 𝑌 (𝑡

0
) = 𝐼, (12)

which has exactly one solution according to Lemma 4, and
therefore we have

𝑒
𝐴
(𝛿
𝜔

±
(𝑡) , 𝛿

𝜔

±
(𝑡
0
)) = 𝑒

𝐴
(𝑡, 𝑡

0
) for 𝑡, 𝑡

0
∈ T
∗
. (13)

This completes the proof.

Lemma 11. Let T be a time scale that is periodic in shifts 𝛿
±

with the period𝑃. Suppose that the shifts 𝛿𝜔
±
areΔ-differentiable

on 𝑡 ∈ T∗, where 𝜔 ∈ [𝑃,∞)T∗ and 𝐴 ∈ R is Δ-periodic in
shifts 𝛿

±
with the period 𝜔. Then

𝑒
𝐴
(𝛿
𝜔

±
(𝑡) , 𝜎 (𝛿

𝜔

±
(𝑠))) = 𝑒

𝐴
(𝑡, 𝜎 (𝑠)) for 𝑡, 𝑠 ∈ T∗. (14)

Proof. From Lemma 8, we know 𝛿
𝜔

±
(𝜎(𝑡)) = 𝜎(𝛿

𝜔

±
(𝑡)). By

Lemmas 10 and 3, we can obtain

𝑒
𝐴
(𝛿
𝜔

±
(𝑡) , 𝜎 (𝛿

𝜔

±
(𝑠))) = 𝑒

𝐴
(𝑡, 𝜎 (𝑠)) for 𝑡, 𝑠 ∈ T∗. (15)

This completes the proof.

Define

𝑃𝐶 (T)

= {𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

: T → R
𝑛
𝑥
𝑖

(𝑡𝑗 ,𝑡𝑗+1)
∈ 𝐶 (𝑡

𝑗
, 𝑡
𝑗+1
) ,

∃𝑥 (𝑡
−

𝑗
) = 𝑥 (𝑡

𝑗
) , 𝑥 (𝑡

+

𝑗
) , 𝑗 ∈ Z, 𝑖 = 1, 2, . . . , 𝑛} .

(16)

Set

𝑋 = {𝑥 (𝑡) : 𝑥 (𝑡) ∈ 𝑃𝐶 (T) , 𝑥 (𝛿
𝜔

+
(𝑡)) = 𝑥 (𝑡)} (17)

with the norm defined by ‖𝑥‖ = sup
𝑡∈[𝑡0,𝛿

𝜔

+
(𝑡0)]T

|𝑥(𝑡)|
0
, where

|𝑥(𝑡)|
0
= ∑

𝑛

𝑖=1
|𝑥
𝑖
(𝑡)|; then𝑋 is a Banach space.

Lemma 12. The function 𝑥 ∈ 𝑋 is an 𝜔-periodic solution in
shifts 𝛿

±
of system (1) if and only if 𝑥 is an 𝜔-periodic solution

in shifts 𝛿
±
of

𝑥 (𝑡) = ∫

𝛿
𝜔

+
(𝑡)

𝑡

𝐺 (𝑡, 𝑠) 𝑏 (𝑠) 𝑓 (𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝐺(𝑡, 𝑡
𝑗
) 𝑒
𝐴
(𝜎 (𝑡

𝑗
) , 𝑡
𝑗
) 𝐼
𝑗
(𝑥 (𝑡

𝑗
)) ,

(18)

where

𝐺 (𝑡, 𝑠) = [𝑒
𝐴
(𝑡
0
, 𝛿
𝜔

+
(𝑡
0
)) − 𝐼]

−1

𝑒
𝐴
(𝑡, 𝜎 (𝑠)) := (𝐺

𝑖𝑘
)
𝑛×𝑛
.

(19)

Proof. If 𝑥(𝑡) is an 𝜔-periodic solution in shifts 𝛿
±
of system

(1), for any 𝑡 ∈ T , there exists 𝑗 ∈ Z such that 𝑡
𝑗
is the first
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impulsive point after 𝑡. By using Lemma 4, for 𝑠 ∈ [𝑡, 𝑡
𝑗
]T , we

have

𝑥 (𝑠) = 𝑒
𝐴
(𝑠, 𝑡) 𝑥 (𝑡)

+ ∫

𝑠

𝑡

𝑒
𝐴
(𝑠, 𝜎 (𝜃)) 𝑏 (𝜃) 𝑓 (𝜃, 𝑥 (𝑔 (𝜃))) Δ𝜃.

(20)

Then

𝑥 (𝑡
𝑗
) = 𝑒

𝐴
(𝑡
𝑗
, 𝑡) 𝑥 (𝑡)

+ ∫

𝑡𝑗

𝑡

𝑒
𝐴
(𝑡
𝑗
, 𝜎 (𝜃)) 𝑏 (𝜃) 𝑓 (𝜃, 𝑥 (𝑔 (𝜃))) Δ𝜃.

(21)

Again, using Lemma 4 and (21), for 𝑠 ∈ (𝑡
𝑗
, 𝑡
𝑗+1
]T , then

𝑥 (𝑠) = 𝑒
𝐴
(𝑠, 𝑡

𝑗
) 𝑥 (𝑡

+

𝑗
)

+ ∫

𝑠

𝑡𝑗

𝑒
𝐴
(𝑠, 𝜎 (𝜃)) 𝑏 (𝜃) 𝑓 (𝜃, 𝑥 (𝑔 (𝜃))) Δ𝜃

= 𝑒
𝐴
(𝑠, 𝑡

𝑗
) 𝑥 (𝑡

𝑗
)

+ ∫

𝑠

𝑡𝑗

𝑒
𝐴
(𝑠, 𝜎 (𝜃)) 𝑏 (𝜃) 𝑓 (𝜃, 𝑥 (𝑔 (𝜃))) Δ𝜃

+ 𝑒
𝐴
(𝑠, 𝑡

𝑗
) 𝐼
𝑗
(𝑥 (𝑡

𝑗
))

= 𝑒
𝐴
(𝑠, 𝑡) 𝑥 (𝑡)

+ ∫

𝑠

𝑡

𝑒
𝐴
(𝑠, 𝜎 (𝜃)) 𝑏 (𝜃) 𝑓 (𝜃, 𝑥 (𝑔 (𝜃))) Δ𝜃

+ 𝑒
𝐴
(𝑠, 𝑡

𝑗
) 𝐼
𝑗
(𝑥 (𝑡

𝑗
)) .

(22)

Repeating the above process for 𝑠 ∈ [𝑡, 𝛿𝜔
+
(𝑡)]T , we have

𝑥 (𝑠) = 𝑒
𝐴
(𝑠, 𝑡) 𝑥 (𝑡)

+ ∫

𝑠

𝑡

𝑒
𝐴
(𝑠, 𝜎 (𝜃)) 𝑏 (𝜃) 𝑓 (𝜃, 𝑥 (𝑔 (𝜃))) Δ𝜃

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝑠)T

𝑒
𝐴
(𝑠, 𝑡

𝑗
) 𝐼
𝑗
(𝑥 (𝑡

𝑗
)) .

(23)

Let 𝑠 = 𝛿𝜔
+
(𝑡) in the above equality; we have

𝑥 (𝛿
𝜔

+
(𝑡)) = 𝑒

𝐴
(𝛿
𝜔

+
(𝑡) , 𝑡) 𝑥 (𝑡)

+ ∫

𝛿
𝜔

+
(𝑡)

𝑡

𝑒
𝐴
(𝛿
𝜔

+
(𝑡) , 𝜎 (𝜃)) 𝑏 (𝜃) 𝑓 (𝜃, 𝑥 (𝑔 (𝜃))) Δ𝜃

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝑒
𝐴
(𝛿
𝜔

+
(𝑡) , 𝑡

𝑗
) 𝐼
𝑗
(𝑥 (𝑡

𝑗
)) .

(24)

Noticing that 𝑥(𝛿𝜔
+
(𝑡)) = 𝑥(𝑡) and 𝑒

𝐴
(𝑡, 𝛿

𝜔

+
(𝑡)) = 𝑒

𝐴
(𝑡
0
, 𝛿
𝜔

+
(𝑡
0
)),

by Lemma 3, then 𝑥 satisfies (18).

Let 𝑥 be an𝜔-periodic solution in shifts 𝛿
±
of (18). If 𝑡 ̸= 𝑡

𝑖
,

𝑖 ∈ Z, then, by (18) and Lemma 8, we have

𝑥
Δ
(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐺 (𝜎 (𝑡) , 𝛿

𝜔

+
(𝑡)) 𝑏 (𝛿

𝜔

+
(𝑡)) 𝛿

Δ𝜔

+
(𝑡)

× 𝑓 (𝛿
𝜔

+
(𝑡) , 𝑥 (𝑔 (𝛿

𝜔

+
(𝑡)))

− 𝐺 (𝜎 (𝑡) , 𝑡) 𝑏 (𝑡) 𝑓 (𝑡, 𝑥 (𝑔 (𝑡)))

= 𝐴 (𝑡) 𝑥 (𝑡) + 𝑏 (𝑡) 𝑓 (𝑡, 𝑥 (𝑔 (𝑡))) .

(25)

If 𝑡 = 𝑡
𝑖
, 𝑖 ∈ Z, then, by (18), we have

𝑥 (𝑡
+

𝑖
) − 𝑥 (𝑡

−

𝑖
)

= ∑

𝑗:𝑡𝑗∈[𝑡
+

𝑖
,𝛿
𝜔

+
(𝑡
+

𝑖
))T

𝐺(𝑡
𝑖
, 𝑡
𝑗
) 𝑒
𝐴
(𝜎 (𝑡

𝑗
) , 𝑡
𝑗
) 𝐼
𝑗
(𝑥 (𝑡

𝑗
))

− ∑

𝑗:𝑡𝑗∈[𝑡
−

𝑖
,𝛿
𝜔

+
(𝑡
−

𝑖
))T

𝐺(𝑡
𝑖
, 𝑡
𝑗
) 𝑒
𝐴
(𝜎 (𝑡

𝑗
) , 𝑡
𝑗
) 𝐼
𝑗
(𝑥 (𝑡

𝑗
))

= 𝐺 (𝑡
𝑖
, 𝛿
𝜔

+
(𝑡
𝑖
)) 𝑒
𝐴
(𝜎 (𝛿

𝜔

+
(𝑡
𝑖
)) , 𝛿

𝜔

+
(𝑡
𝑖
)) 𝐼
𝑖
(𝑥 (𝛿

𝜔

+
(𝑡
𝑖
)))

− 𝐺 (𝑡
𝑖
, 𝑡
𝑖
) 𝑒
𝐴
(𝜎 (𝑡

𝑖
) , 𝑡
𝑖
) 𝐼
𝑖
(𝑥 (𝑡

𝑖
))

= 𝐼
𝑖
(𝑥 (𝑡

𝑖
)) .

(26)

So, 𝑥 is an 𝜔-periodic solution in shifts 𝛿
±
of system (1). This

completes the proof.

By using Lemmas 10 and 11, it is easy to verify that Green’s
function 𝐺(𝑡, 𝑠) satisfies

𝐺 (𝛿
𝜔

+
(𝑡) , 𝛿

𝜔

+
(𝑠)) = 𝐺 (𝑡, 𝑠) , ∀𝑡 ∈ T

∗
, 𝑠 ∈ [𝑡, 𝛿

𝜔

+
(𝑡)]

T
.

(27)

For convenience, we introduce the following notations:

𝐺 (𝑡, 𝑠) 𝑒
𝐴
(𝜎 (𝑠) , 𝑠) := 𝐸 (𝑡, 𝑠) = (𝐸

𝑖𝑘
)
𝑛×𝑛
,

∀𝑡, 𝑠 ∈ T , 𝑖, 𝑘 = 1, 2, . . . , 𝑛;

𝐴
1
:= min
1≤𝑘≤𝑛

inf
𝑠,𝑡∈[𝑡0 ,𝛿

𝜔

+(𝑡0)]T



𝑛

∑

𝑖=1

𝐺
𝑖𝑘
(𝑡, 𝑠)



,

𝐵
1
:= max
1≤𝑘≤𝑛

sup
𝑠,𝑡∈[𝑡0 ,𝛿

𝜔

+(𝑡0)]T



𝑛

∑

𝑖=1

𝐺
𝑖𝑘
(𝑡, 𝑠)



,

𝐴
2
:= min
1≤𝑘≤𝑛

inf
𝑠,𝑡∈[𝑡0 ,𝛿

𝜔

+(𝑡0)]T



𝑛

∑

𝑖=1

𝐸
𝑖𝑘
(𝑡, 𝑠)



,

𝐵
2
:= max
1≤𝑘≤𝑛

sup
𝑠,𝑡∈[𝑡0,𝛿

𝜔

+(𝑡0)]T



𝑛

∑

𝑖=1

𝐸
𝑖𝑘
(𝑡, 𝑠)



,

𝐴
3
:= min {𝐴

1
, 𝐴
2
} , 𝐵

3
:= max {𝐵

1
, 𝐵
2
} .

(28)

Hereafter, we assume that

(𝑃
1
) 𝐴
3
> 0, 𝐵

3
> 0;

(𝑃
2
) 𝐺
𝑖𝑘
𝑏
𝑘
𝑓
𝑘
≥ 0, 𝐸

𝑖𝑘
𝐼
𝑘

𝑗
≥ 0, ∀𝑖, 𝑘 = 1, 2, . . . , 𝑛, 𝑗 ∈ Z.
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Let

𝐾 = {𝑥 ∈ 𝑋 : |𝑥 (𝑡)|
0
≥ 𝜉 ‖𝑥‖ , 𝑡 ∈ [𝑡

0
, 𝛿
𝜔

+
(𝑡
0
)]

T
} , (29)

where 𝜉 = 𝐴
3
/𝐵
3
∈ (0, 1). Obviously,𝐾 is a cone in𝑋.

Define an operator𝐻 by

(𝐻𝑥) (𝑡) = ∫

𝛿
𝜔

+
(𝑡)

𝑡

𝐺 (𝑡, 𝑠) 𝑏 (𝑠) 𝑓 (𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝐺(𝑡, 𝑡
𝑗
) 𝑒
𝐴
(𝜎 (𝑡

𝑗
) , 𝑡
𝑗
) 𝐼
𝑗
(𝑥 (𝑡

𝑗
)) ;

(30)

that is,

(𝐻𝑥) (𝑡) = ∫

𝛿
𝜔

+
(𝑡)

𝑡

𝐺 (𝑡, 𝑠) 𝑏 (𝑠) 𝑓 (𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝐸 (𝑡, 𝑡
𝑗
) 𝐼
𝑗
(𝑥 (𝑡

𝑗
)) ,

(31)

for all 𝑥 ∈ 𝐾, 𝑡 ∈ T , where 𝐺(𝑡, 𝑠) is defined by (19), and

(𝐻𝑥) (𝑡) = ((𝐻
1
𝑥) (𝑡) , (𝐻

2
𝑥) (𝑡) , . . . , (𝐻

𝑛
𝑥) (𝑡))

𝑇

, (32)

where

(𝐻
𝑖
𝑥) (𝑡) = ∫

𝛿
𝜔

+
(𝑡)

𝑡

𝑛

∑

𝑘=1

𝐺
𝑖𝑘
𝑏
𝑘
(𝑠) 𝑓

𝑘
(𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝑛

∑

𝑘=1

𝐸
𝑖𝑘
𝐼
𝑘

𝑗
(𝑥 (𝑡

𝑗
)) ,

𝑖 = 1, 2, . . . , 𝑛.

(33)

In the following, we will give some lemmas concerning𝐾
and𝐻 defined by (29) and (31), respectively.

Lemma 13. Assume that (𝑃
1
)-(𝑃

2
) hold; then𝐻 : 𝐾 → 𝐾 is

well defined.

Proof. For any 𝑥 ∈ 𝐾, it is clear that𝐻𝑥 ∈ 𝑃𝐶(T). In view of
(31), by Lemma 9 and (27), for 𝑡 ∈ T , we obtain

(𝐻𝑥) (𝛿
𝜔

+
(𝑡))

= ∫

𝛿
𝜔

+
(𝛿
𝜔

+
(𝑡))

𝛿
𝜔

+
(𝑡)

𝐺 (𝛿
𝜔

+
(𝑡) , 𝑠) 𝑏 (𝑠) 𝑓 (𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝛿
𝜔

+
(𝑡),𝛿
𝜔

+(𝛿
𝜔

+
(𝑡)))T

𝐺(𝛿
𝜔

+
(𝑡) , 𝑡

𝑗
) 𝑒
−𝑎

× (𝜎 (𝑡
𝑗
) , 𝑡
𝑗
) 𝐼
𝑗
(𝑥 (𝑡

𝑗
))

= ∫

𝛿
𝜔

+
(𝑡)

𝑡

𝐺 (𝛿
𝜔

+
(𝑡) , 𝛿

𝜔

+
(𝑠)) 𝑏 (𝛿

𝜔

+
(𝑠)) 𝛿

Δ𝜔

+
(𝑠)

× 𝑓 (𝛿
𝜔

+
(𝑠) , 𝑥 (𝑔 (𝛿

𝜔

+
(𝑠)))) Δ𝑠

+ ∑

𝑘:𝑡𝑘∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝐺 (𝛿
𝜔

+
(𝑡) , 𝛿

𝜔

+
(𝑡
𝑘
)) 𝑒
−𝑎

× (𝜎 (𝛿
𝜔

+
(𝑡
𝑘
)) , 𝛿

𝜔

+
(𝑡
𝑘
)) 𝐼
𝑘
(𝑥 (𝛿

𝜔

+
(𝑡
𝑘
)))

= ∫

𝛿
𝜔

+
(𝑡)

𝑡

𝐺 (𝑡, 𝑠) 𝑏 (𝑠) 𝑓 (𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑘:𝑡𝑘∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝐺 (𝑡, 𝑡
𝑘
) 𝑒
−𝑎
(𝜎 (𝑡

𝑘
) , 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡

𝑘
))

= (𝐻𝑥) (𝑡) ;

(34)

that is,𝐻𝑥 ∈ 𝑋.
Furthermore, for any 𝑥 ∈ 𝐾, ∀𝑡 ∈ [𝑡

0
, 𝛿
𝜔

+
(𝑡
0
)]
T
, by (𝑃

2
),

we have

|(𝐻𝑥) (𝑡)|
0

=



∫

𝛿
𝜔

+
(𝑡)

𝑡

𝐺 (𝑡, 𝑠) 𝑏 (𝑠) 𝑓 (𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝐸 (𝑡, 𝑡
𝑗
) 𝐼
𝑗
(𝑥 (𝑡

𝑗
))

0

=

𝑛

∑

𝑖=1



∫

𝛿
𝜔

+
(𝑡)

𝑡

𝑛

∑

𝑘=1

𝐺
𝑖𝑘
𝑏
𝑘
(𝑠) 𝑓

𝑘
(𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝑛

∑

𝑘=1

𝐸
𝑖𝑘
𝐼
𝑘

𝑗
(𝑥 (𝑡

𝑗
))



≥ 𝐴
3
∫

𝛿
𝜔

+
(𝑡)

𝑡

𝑛

∑

𝑘=1


𝑏
𝑘
(𝑠) 𝑓

𝑘
(𝑠, 𝑥 (𝑔 (𝑠)))


Δ𝑠

+ 𝐴
3

𝑛

∑

𝑘=1

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑥 (𝑡

𝑗
))


= 𝐴
3
∫

𝛿
𝜔

+
(𝑡0)

𝑡0


𝑏 (𝑠) 𝑓 (𝑠, 𝑥 (𝑔 (𝑠)))

0
Δ𝑠

+ 𝐴
3

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑥 (𝑡

𝑗
))
0

=
𝐴
3

𝐵
3

[

[

𝐵
3
∫

𝛿
𝜔

+
(𝑡0)

𝑡0


𝑏 (𝑠) 𝑓 (𝑠, 𝑥 (𝑔 (𝑠)))

0
Δ𝑠

+𝐵
3

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑥 (𝑡

𝑗
))
0

]

]

≥ 𝜉 ‖𝐻𝑥‖ ;

(35)

that is,𝐻𝑥 ∈ 𝐾. This completes the proof.
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Define

𝐵
𝑚
:= min
1≤𝑖≤𝑛

∫

𝛿
𝜔

+
(𝑡0)

𝑡0


𝑏
𝑖
(𝑠)

Δ𝑠,

𝐵
𝑀
:= max
1≤𝑖≤𝑛

∫

𝛿
𝜔

+
(𝑡0)

𝑡0


𝑏
𝑖
(𝑠)

Δ𝑠.

(36)

Lemma 14. Assume that (𝑃
1
)-(𝑃

2
) hold; then𝐻 : 𝐾 → 𝐾 is

completely continuous.

Proof. We first show that 𝐻 is continuous. Because of the
continuity of 𝑓 and 𝐼

𝑗
, 𝑗 ∈ Z, for any ] > 0 and 𝜀 > 0, there

exists a 𝜂 > 0 such that

{𝜙, 𝜓 ∈ 𝐶 (T ,R
𝑛
) ,

𝜙

≤ ], 𝜓


≤ ], 𝜙 − 𝜓


< 𝜂} (37)

imply that


𝑓 (𝑠, 𝜙 (𝑔 (𝑠))) − 𝑓 (𝑠, 𝜓 (𝑔 (𝑠)))

0
<

𝜀

2𝐵
3
𝐵
𝑀
,


𝐼
𝑗
(𝜙) − 𝐼

𝑗
(𝜓)
0
<

𝜀

2𝐵
3
𝑞

, 𝑗 ∈ Z.

(38)

Therefore, if 𝑥, 𝑦 ∈ 𝐾with ‖𝑥‖ ≤ ], ‖𝑦‖ ≤ ], ‖𝑥−𝑦‖ < 𝜂, then


(𝐻𝑥) (𝑡) − (𝐻𝑦) (𝑡)

0

≤

𝑛

∑

𝑖=1



∫

𝛿
𝜔

+
(𝑡)

𝑡

𝑛

∑

𝑘=1

𝐺
𝑖𝑘
𝑏
𝑘
(𝑠) 𝑓

𝑘
(𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝑛

∑

𝑘=1

𝐸
𝑖𝑘
𝐼
𝑘

𝑗
(𝑥 (𝑡

𝑗
))

− ∫

𝛿
𝜔

+
(𝑡)

𝑡

𝑛

∑

𝑘=1

𝐺
𝑖𝑘
𝑏
𝑘
(𝑠) 𝑓

𝑘
(𝑠, 𝑦 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝑛

∑

𝑘=1

𝐸
𝑖𝑘
𝐼
𝑘

𝑗
(𝑦 (𝑡

𝑗
))



≤ ∫

𝛿
𝜔

+
(𝑡)

𝑡

𝑛

∑

𝑘=1



𝑛

∑

𝑖=1

𝐺
𝑖𝑘




𝑏
𝑘
(𝑠) 𝑓

𝑘
(𝑠, 𝑥 (𝑔 (𝑠)))

−𝑏
𝑘
(𝑠) 𝑓

𝑘
(𝑠, 𝑦 (𝑔 (𝑠)))


Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝑛

∑

𝑘=1



𝑛

∑

𝑖=1

𝐸
𝑖𝑘




𝐼
𝑘

𝑗
(𝑥 (𝑡

𝑗
)) − 𝐼

𝑘

𝑗
(𝑦 (𝑡

𝑗
))


<𝐵
3
(∫

𝛿
𝜔

+
(𝑡)

𝑡


𝑏 (𝑠) 𝑓(𝑠, 𝑥 (𝑔 (𝑠))) −𝑏 (𝑠) 𝑓 (𝑠, 𝑦 (𝑔 (𝑠)))

0
Δ𝑠

+

𝑝

∑

𝑗=1


𝐼
𝑗
(𝑥) − 𝐼

𝑗
(𝑦)
0
)

< 𝐵
3
(𝐵
𝑀 𝜀

2𝐵
3
𝐵
𝑀
+ 𝑞

𝜀

2𝐵
3
𝑞

)

= 𝜀,

(39)

for all 𝑡 ∈ [𝑡
0
, 𝛿
𝜔

+
(𝑡
0
)]T , which yields


𝐻𝑥 − 𝐻𝑦


= sup
𝑡∈[𝑡0,𝛿

𝜔

+(𝑡0)]T


(𝐻𝑥) (𝑡) − (𝐻𝑦) (𝑡)

0
≤ 𝜀;

(40)

that is,𝐻 is continuous.
Next, we show that 𝐻 maps any bounded sets in 𝐾 into

relatively compact sets. We first prove that 𝑓 maps bounded
sets into bounded sets. Indeed, let 𝜀 = 1; for any ] > 0, there
exists 𝜂 > 0 such that {𝑥, 𝑦 ∈ 𝐾, ‖𝑥‖ ≤ ], ‖𝑦‖ ≤ ], ‖𝑥 − 𝑦‖ <
𝜂, 𝑠 ∈ [𝑡

0
, 𝛿
𝜔

+
(𝑡
0
)]T } imply that


𝑓 (𝑠, 𝑥 (𝑔 (𝑠))) − 𝑓 (𝑠, 𝑦 (𝑔 (𝑠)))

0
< 1,


𝐼
𝑗
(𝑥 (𝑡

𝑗
)) − 𝐼

𝑗
(𝑦 (𝑡

𝑗
))
0
< 1, 𝑗 ∈ Z.

(41)

Choose a positive integer 𝑁 such that (]/𝑁) < 𝜂. Let 𝑥 ∈ 𝐾
and define 𝑥𝑘(⋅) = 𝑥(⋅)𝑘/𝑁, 𝑘 = 0, 1, 2, . . . , 𝑁. If ‖𝑥‖ < ], then


𝑥
𝑘
− 𝑥
𝑘−1

= sup
𝑡∈[𝑡0 ,𝛿

𝜔

+(𝑡0)]T



𝑥(⋅)𝑘

𝑁

−
𝑥(⋅)(𝑘 − 1)

𝑁

0

≤ ‖𝑥‖
1

𝑁

≤
]
𝑁

< 𝜂.

(42)

So


𝑓 (𝑠, 𝑥

𝑘
(𝑔 (𝑠))) − 𝑓 (𝑠, 𝑥

𝑘−1
(𝑔 (𝑠)))

0
< 1,

(43)

for all 𝑠 ∈ [𝑡
0
, 𝛿
𝜔

+
(𝑡
0
)]T , and


𝐼
𝑗
(𝑥
𝑘
(𝑡
𝑗
)) − 𝐼

𝑗
(𝑥
𝑘
(𝑡
𝑗
))
0
< 1, 𝑗 ∈ Z,

(44)
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and these yield


𝑓 (𝑠, 𝑥 (𝑔 (𝑠)))

0

=

𝑓 (𝑠, 𝑥

𝑁
(𝑔 (𝑠)))

0

≤

𝑁

∑

𝑘=1


𝑓 (𝑠, 𝑥

𝑘
(𝑔 (𝑠))) − 𝑓 (𝑠, 𝑥

𝑘−1
(𝑔 (𝑠)))

0
+

𝑓 (𝑠, 0)

0

< 𝑁 + sup
𝑠∈[𝑡0,𝛿

𝜔

+(𝑡0)]T


𝑓 (𝑠, 0)

0
=: 𝑊,


𝐼
𝑗
(𝑥 (𝑡

𝑗
))
0

=

𝐼
𝑗
(𝑥
𝑁
(𝑡
𝑗
))
0

≤

𝑁

∑

𝑘=1


𝐼
𝑗
(𝑥
𝑁
(𝑡
𝑗
)) − 𝐼

𝑗
(𝑥
𝑁−1
(𝑡
𝑗
))
0
+

𝐼
𝑗
(0)
0

< 𝑁 + max
1≤𝑗≤𝑞


𝐼
𝑗
(0)
0
=: 𝑈, 𝑗 ∈ Z.

(45)

It follows from (32) and (45) that, for 𝑡 ∈ [𝑡
0
, 𝛿
𝜔

+
(𝑡
0
)]T ,

‖𝐻𝑥‖ = sup
𝑡∈[𝑡0 ,𝛿

𝜔

+(𝑡0)]T

𝑛

∑

𝑖=1


(𝐻
𝑖
𝑥) (𝑡)


≤ 𝐵

3
(𝑊𝐵

𝑀
+ 𝑝𝑈) := 𝐷.

(46)

Finally, for 𝑡 ∈ T , we have

(𝐻𝑥)
Δ
(𝑡) = 𝐴 (𝑡) (𝐻𝑥) (𝑡) + 𝑏 (𝑡) 𝑓 (𝑡, 𝑥 (𝑔 (𝑡))) . (47)

So

(𝐻𝑥)

Δ
(𝑡)
0
=

𝐴 (𝑡) (𝐻𝑥) (𝑡) + 𝑏 (𝑡) 𝑓 (𝑡, 𝑥 (𝑔 (𝑡)))

0

≤ 𝐴
𝑢
𝐷 + 𝐵

𝑢
𝑊,

(48)

where 𝐴𝑢 := max
1≤𝑗≤𝑛

sup
𝑡∈[𝑡0 ,𝛿

𝜔

+
(𝑡0)]T

∑
𝑛

𝑖=1
|𝑎
𝑖𝑗
(𝑡)|, 𝐵𝑢 :=

max
1≤𝑗≤𝑛

sup
𝑡∈[𝑡0,𝛿

𝜔

+
(𝑡0)]T

|𝑏
𝑖
(𝑡)|.

To sum up, {𝐻𝑥 : 𝑥 ∈ 𝐾, ‖𝑥‖ ≤ ]} is a family of uniformly
bounded and equicontinuous functionals on [𝑡

0
, 𝛿
𝜔

+
(𝑡
0
)]T . By

a theorem of Arzela-Ascoli, we know that the functional𝐻 is
completely continuous. This completes the proof.

3. Main Results

In this section, we will state and prove our main results about
the existence of at least three positive periodic solutions of
system (1) via Leggett-Williams fixed point theorem.

Let 𝑋 be a Banach space with cone 𝐾. A map 𝛼 is said
to be a nonnegative continuous concave functional on 𝐾 if
𝛼 : 𝐾 → [0, +∞) is continuous and

𝛼 (𝜆𝑥 + (1 − 𝜆) 𝑦) ≥ 𝜆𝛼 (𝑥) + (1 − 𝜆) 𝛼 (𝑦) ,

∀𝑥, 𝑦 ∈ 𝐾, 0 < 𝜆 < 1.

(49)

Let 𝑎, 𝑏 be two numbers such that 0 < 𝑎 < 𝑏 and let 𝛼 be a
nonnegative continuous concave functional on 𝐾. We define
the following convex sets:

𝐾
𝑎
= {𝑥 ∈ 𝐾 : ‖𝑥‖ < 𝑎} ,

𝐾 (𝛼, 𝑎, 𝑏) = {𝑥 ∈ 𝐾 : 𝑎 ≤ 𝛼 (𝑥) , ‖𝑥‖ ≤ 𝑏} .

(50)

Lemma 15 (see [17] Leggett-Williams fixed point theorem).
Let 𝐻 : 𝐾

𝑐
→ 𝐾

𝑐
be completely continuous and let 𝛼 be

a nonnegative continuous concave functional on 𝐾 such that
𝛼(𝑥) ≤ ‖𝑥‖ for all 𝑥 ∈ 𝐾

𝑐
. Suppose that there exist 0 < 𝑑 < 𝑎 <

𝑏 ≤ 𝑐 such that

(1) {𝑥 ∈ 𝐾(𝛼, 𝑎, 𝑏) : 𝛼(𝑥) > 𝑎} ̸= 0 and 𝛼(𝐻𝑥) > 𝑎 for
𝑥 ∈ 𝐾(𝛼, 𝑎, 𝑏);

(2) ‖𝐻𝑥‖ < 𝑑 for all ‖𝑥‖ ≤ 𝑑;
(3) 𝛼(𝐻𝑥) > 𝑎 for all 𝑥 ∈ 𝐾(𝛼, 𝑎, 𝑐) with ‖𝐻(𝑥)‖ > 𝑏.

Then𝐻 has at least three fixed points 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐾

𝑐
satisfying

‖𝑥
1
‖ < 𝑑, 𝑎 < 𝛼(𝑥

2
), ‖𝑥

3
‖ > 𝑑 and 𝛼(𝑥

3
) < 𝑎.

For convenience, we introduce the following notations:

𝑓
𝜗
:= lim sup
‖𝑢‖→𝜗

sup
𝑡∈[𝑡0,𝛿

𝜔

+
(𝑡0)]T


𝑓 (𝑡, 𝑢)

0

‖𝑢‖

,

𝐼
𝜗
:= lim sup
‖𝑢‖→𝜗

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑢)
0

‖𝑢‖

,

𝑓
𝑏
:= min
𝜉𝑏≤|𝑢|0≤𝑏

inf
𝑡∈[𝑡0 ,𝛿

𝜔

+
(𝑡0)]T


𝑓 (𝑡, 𝑢)

0
,

𝐼
𝑏
:= min
𝜉𝑏≤|𝑢|0≤𝑏

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑢)
0
.

(51)

Theorem 16. Assume that (𝑃
1
)-(𝑃

2
) hold, and there exists a

number 𝑏 > 0 such that the following conditions

(i) 𝑓0 + 𝐼0 < 1/𝐵
3
, 𝑓∞ + 𝐼∞ < 1/𝐵

3
,

(ii) 𝐵𝑚𝑓
𝑏
+ 𝐼
𝑏
> 𝜉𝑏/𝐴

3
for 𝜉𝑏 ≤ |𝑢|

0
≤ 𝑏, 𝑡 ∈ T ,

hold. Then system (1) has at least three positive 𝜔-periodic
solutions in shifts 𝛿

±
.

Proof. By the condition 𝑓∞ + 𝐼∞ < 1/𝐵
3
of (i), one can find

that, for

0 < 𝜀 <

(1/𝐵
3
) − (𝑓

∞
+ 𝐼
∞
)

2

, (52)

there exists a 𝑐
0
> 𝑏 such that


𝑓 (𝑠, 𝑢)

0
≤
𝑓
∞
+ 𝜀

𝐵
𝑀

‖𝑢‖ ,

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑢)
0
≤ (𝐼

∞
+ 𝜀) ‖𝑢‖ ,

(53)

where ‖𝑢‖ > 𝑐
0
.
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Let 𝑐
1
= 𝑐
0
/𝜉; if 𝑥 ∈ 𝐾, ‖𝑥‖ > 𝑐

1
, then ‖𝑥‖ > 𝑐

0
, and we

have

|(𝐻𝑥) (𝑡)|
0

=



∫

𝛿
𝜔

+
(𝑡)

𝑡

𝐺 (𝑡, 𝑠) 𝑏 (𝑠) 𝑓 (𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝐸(𝑡, 𝑡
𝑗
)𝐼
𝑗
(𝑥(𝑡

𝑗
))

0

≤ 𝐵
3

𝑛

∑

𝑘=1

∫

𝛿
𝜔

+
(𝑡)

𝑡


𝑏
𝑘
(𝑠) 𝑓

𝑘
(𝑠, 𝑥 (𝑔 (𝑠)))


Δ𝑠

+ 𝐵
3

𝑛

∑

𝑘=1

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑥 (𝑡

𝑗
))


≤ 𝐵
3
𝐵
𝑀
𝑓 (𝑠, 𝑥 (𝑔 (𝑠)))

0

+ 𝐵
3

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑥 (𝑡

𝑗
))
0

≤ 𝐵
3
[𝑓
∞
+ 𝐼
∞
+ 2𝜀] ‖𝑥‖

< ‖𝑥‖ .

(54)

Take 𝑘
𝑐1
= {𝑥 | 𝑥 ∈ 𝐾, ‖𝑥‖ ≤ 𝑐

1
}; then the set 𝑘

𝑐1
is

a bounded set. According to the fact that 𝐻 is completely
continuous, then𝐻maps bounded sets into bounded sets and
there exists a number 𝑐

2
such that

‖𝐻𝑥‖ ≤ 𝑐
2
, ∀𝑥 ∈ 𝑘

𝑐1
. (55)

If 𝑐
2
≤ 𝑐

1
, we deduce that 𝐻 : 𝑘

𝑐1
→ 𝑘

𝑐1
is completely

continuous. If 𝑐
2
< 𝑐

1
, then, from (54), we know that for

any 𝑥 ∈ 𝑘
𝑐2
\ 𝑘
𝑐1
and ‖𝐻𝑥‖ < ‖𝑥‖ < 𝑐

2
hold. Thus we

have 𝐻 : 𝑘
𝑐2
→ 𝑘

𝑐2
is completely continuous. Now, take

𝑐 = max{𝑐
1
, 𝑐
2
}; then 𝑐 > 𝑏, so 𝐻 : 𝑘

𝑐
→ 𝑘

𝑐
is completely

continuous.
Denote the positive continuous concave functional 𝛼(𝑥)

as 𝛼(𝑥) = inf
𝑡∈[𝑡0 ,𝛿

𝜔

+
(𝑡0)]T

|𝑥(𝑡)|
0
. Firstly, let 𝑎 = 𝜉𝑏 and take

𝑥 ≡ (𝑎 + 𝑏)/2, 𝑥 ∈ 𝐾(𝛼, 𝑎, 𝑏), 𝛼(𝑥) > 𝑎, then the set {𝑥 ∈
𝐾(𝛼, 𝑎, 𝑏)} ̸= 0. By (ii), if 𝑥 ∈ 𝐾(𝛼, 𝑎, 𝑏), then 𝛼(𝑥) ≥ 𝑎, and we
have

𝛼 (𝐻𝑥)

= inf
𝑡∈[𝑡0,𝛿

𝜔

+(𝑡0)]T

|(𝐻𝑥) (𝑡)|
0

= inf
𝑡∈[𝑡0,𝛿

𝜔

+(𝑡0)]T



∫

𝛿
𝜔

+
(𝑡)

𝑡

𝐺 (𝑡, 𝑠) 𝑏 (𝑠) 𝑓 (𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝐸(𝑡, 𝑡
𝑗
)𝐼
𝑗
(𝑥(𝑡

𝑗
))

0

≥ 𝐴
3

𝑛

∑

𝑘=1

∫

𝛿
𝜔

+
(𝑡)

𝑡


𝑏
𝑘
(𝑠) 𝑓

𝑘
(𝑠, 𝑥 (𝑔 (𝑠)))


Δ𝑠

+ 𝐴
3

𝑛

∑

𝑘=1

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑥 (𝑡

𝑗
))


≥ 𝐴
3
𝐵
𝑚
𝑓 (𝑠, 𝑥 (𝑔 (𝑠)))

0

+ 𝐴
3

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑥 (𝑡

𝑗
))
0

≥ 𝐴
3
(𝐵
𝑚
𝑓
𝑏
+ 𝐼
𝑏
)

> 𝐴
3

𝜉𝑏

𝐴
3

= 𝑎.

(56)

Hence, condition (1) of Lemma 15 holds.
Secondly, by the condition 𝑓0 + 𝐼0 < 1/𝐵

3
of (i), one can

find that, for

0 < 𝜀 <

(1/𝐵
3
) − (𝑓

0
+ 𝐼
0
)

2

,
(57)

there exists a 𝑑 (0 < 𝑑 < 𝑎) such that


𝑓 (𝑠, 𝑢)

0
≤
𝑓
0
+ 𝜀

𝐵
𝑀

‖𝑢‖ ,

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑢)
0
≤ (𝐼

0
+ 𝜀) ‖𝑢‖ ,

(58)

where 0 ≤ ‖𝑢‖ ≤ 𝑑. If 𝑥 ∈ 𝐾
𝑑
= {𝑥 | ‖𝑥‖ ≤ 𝑑}, we have

|(𝐻𝑥) (𝑡)|
0
=



∫

𝛿
𝜔

+
(𝑡)

𝑡

𝐺 (𝑡, 𝑠) 𝑏 (𝑠) 𝑓 (𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠

+ ∑

𝑗:𝑡𝑗∈[𝑡,𝛿
𝜔

+
(𝑡))T

𝐸 (𝑡, 𝑡
𝑗
) 𝐼
𝑗
(𝑥 (𝑡

𝑗
))

0

≤ 𝐵
3

𝑛

∑

𝑘=1

∫

𝛿
𝜔

+
(𝑡)

𝑡


𝑏
𝑘
(𝑠) 𝑓

𝑘
(𝑠, 𝑥 (𝑔 (𝑠)))


Δ𝑠

+ 𝐵
3

𝑛

∑

𝑘=1

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑥 (𝑡

𝑗
))


≤ 𝐵
3
𝐵
𝑀
𝑓 (𝑠, 𝑥 (𝑔 (𝑠)))

0

+ 𝐵
3

𝑞

∑

𝑗=1


𝐼
𝑗
(𝑥 (𝑡

𝑗
))
0

≤ 𝐵
3
[𝑓
0
+ 𝐼
0
+ 2𝜀] ‖𝑥‖

< ‖𝑥‖ ≤ 𝑑;

(59)

that is, condition (2) of Lemma 15 holds.
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Finally, if 𝑥 ∈ 𝐾(𝛼, 𝑎, 𝑐) with ‖𝐻𝑥‖ > 𝑏, by the definition
of the cone𝐾, we have

𝛼 (𝐻𝑥) = inf
𝑡∈[𝑡0 ,𝛿

𝜔

+(𝑡0)]T

|(𝐻𝑥) (𝑡)|
0

≥ inf
𝑡∈[𝑡0 ,𝛿

𝜔

+(𝑡0)]T

𝜉 ‖𝐻𝑥‖ > 𝜉𝑏 = 𝑎,

(60)

which implies that condition (3) of Lemma 15 holds.
To sum up, all conditions in Lemma 15 hold. By

Lemma 15, the operator 𝐻 has at least three fixed points in
𝐾
𝑐
.Therefore, system (1) has at least three positive𝜔-periodic

solutions in shifts 𝛿
±
, and

𝑥
1
∈ 𝐾

𝑑
, 𝑥

2
∈ {𝑥 ∈ 𝐾 (𝛼, 𝑎, 𝑐) , 𝛼 (𝑥) > 𝑎} ,

𝑥
3
∈ 𝐾

𝑐
\ 𝛼 (𝐾 (𝛼, 𝑎, 𝑐) ∪ 𝐾

𝑑
) .

(61)

This completes the proof.

Corollary 17. Using the following

(𝑖∗) 𝑓0 = 0, 𝐼0 = 0, 𝑓∞ = 0, 𝐼∞ = 0,

instead of (𝑖) in Theorem 16, the conclusion of Theorem 16
remains true.

4. Numerical Examples

Consider the following system with impulses on time scales:

𝑥
Δ
(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑏 (𝑠) 𝑓 (𝑡, 𝑥 (𝑔 (𝑡))) , 𝑡 ̸= 𝑡

𝑗
, 𝑡 ∈ T ,

𝑥 (𝑡
+

𝑗
) = 𝑥 (𝑡

−

𝑗
) + 𝐼

𝑗
(𝑥 (𝑡

𝑗
)) .

(62)

Example 1. Let

𝐴 (𝑡) = [
−1.5 1

1 −1.5
] ,

𝑏 (𝑡) = diag (1 − 0.5 sin 4𝜋𝑡, 1 − 0.5 sin 4𝜋𝑡) ,

𝑓 (𝑡, 𝑥 (𝑔 (𝑡))) = [

[

|𝑥 (𝑡)|
0
(0.05 − 0.03 |sin 2𝜋𝑡|)

(|𝑥 (𝑡)|
0
)
2

𝑒
−0.01|𝑥(𝑡)|0

]

]

,

𝐼
𝑖

𝑗
(𝑥 (𝑡

𝑗
)) = 0.01


sin (𝑥 (𝑡𝑗)

0
)

,

𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 10,

(63)

in system (62), where |𝑥(𝑡)|
0
= |𝑥

1
(𝑡)| + |𝑥

2
(𝑡)|. Then

𝑒
𝐴
(𝑡, 𝑡

0
) = 𝑒

−0.5
(𝑡, 𝑡

0
) [
1 0

0 1
]

+ 𝑒
−0.5
(𝑡, 𝑡

0
) ∫

𝑡

𝑡0

1

1 − 2.5𝜇 (𝑠)

Δ𝑠 [
−2 1

1 −2
] .

(64)

Case 1. T = R, and 𝜔 = 0.5. Let 𝑡
0
= 0; then 𝛿𝜔

+
(𝑡) = 𝑡 + 0.5. It

is easy to verify that 𝐴(𝑡), 𝑏(𝑡), and 𝑓(𝑡, 𝑥) satisfy

𝐴 (𝛿
𝜔

+
(𝑡)) 𝛿

Δ𝜔

+
(𝑡) = 𝐴 (𝑡) , 𝑏 (𝛿

𝜔

+
(𝑡)) 𝛿

Δ𝜔

+
(𝑡) = 𝑏 (𝑡) ,

𝑓 (𝛿
𝜔

+
(𝑡) , 𝑥) = 𝑓 (𝑡, 𝑥) , ∀𝑡 ∈ T

∗
,

(65)

and 𝐴 ∈R. By a direct calculation, we can get

𝑒
𝐴
(𝑡, 𝑠) = 𝑒

−0.5(𝑡−𝑠)
[
1 − 2 (𝑡 − 𝑠) (𝑡 − 𝑠)

(𝑡 − 𝑠) 1 − 2 (𝑡 − 𝑠)
] ,

𝐺 (𝑡, 𝑠)

= 𝐸 (𝑡, 𝑠) = (𝑒
𝐴
(0, 0.5) − 𝐼)

−1

𝑒
𝐴
(𝑡, 𝑠)

= 𝑒
−0.5(𝑡−𝑠)

× [

[

0.7662 − 1.2187 (𝑡 − 𝑠) 0.3137 + 0.1388 (𝑡 − 𝑠)

0.3137 + 0.1388 (𝑡 − 𝑠) 0.7662 − 1.2187 (𝑡 − 𝑠)

]

]

.

(66)

Since 𝑠 ∈ [𝑡, 𝛿𝜔
+
(𝑡)]T = [𝑡, 𝑡 + 0.5], 𝑡 − 𝑠 ∈ [−0.5, 0]. Then

𝐴
3
= 1.0779, 𝐵

3
= 2.0800,

𝜉 = 0.5192, 𝐵
𝑚
= 0.5.

(67)

From the above, we can see that conditions (𝑃
1
) and (𝑃

2
) hold.

Let 𝑏 = 10; then

(i) 𝑓0 + 𝐼0 = 0.18 < 0.4808 = 1/𝐵
3
, 𝑓∞ + 𝐼∞ = 0.08 <

0.4808 = 1/𝐵
3
;

(ii) 𝐵𝑚𝑓
𝑏
+ 𝐼
𝑏
= 12.8474 > 4.8080 = 𝜉𝑏/𝐴

3
for 5.1920 ≤

|𝑥|
0
≤ 10, 𝑡 ∈ T .

According to Theorem 16, when T = R, system (62) has
at least three positive 𝜔-periodic solutions in shifts 𝛿

±
.

Case 2. T = Z, and 𝜔 = 0.5. Let 𝑡
0
= 0; then 𝛿𝜔

+
(𝑡) = 𝑡 + 0.5. It

is easy to verify that 𝐴(𝑡), 𝑏(𝑡), and 𝑓(𝑡, 𝑥) satisfy

𝐴 (𝛿
𝜔

+
(𝑡)) 𝛿

Δ𝜔

+
(𝑡) = 𝐴 (𝑡) , 𝑏 (𝛿

𝜔

+
(𝑡)) 𝛿

Δ𝜔

+
(𝑡) = 𝑏 (𝑡) ,

𝑓 (𝛿
𝜔

+
(𝑡) , 𝑥) = 𝑓 (𝑡, 𝑥) , ∀𝑡 ∈ T

∗
,

(68)

and 𝐴 ∈R. By a direct calculation, we can get

𝑒
𝐴
(𝑡, 𝑠)

= (
1

2

)

(𝑡−𝑠) [
[
[

[

1 −
4 (𝑡 − 𝑠)

3

2 (𝑡 − 𝑠)

3

2 (𝑡 − 𝑠)

3

1 −
4 (𝑡 − 𝑠)

3

]
]
]

]

,

𝐺 (𝑡, 𝑠)

= (𝑒
𝐴
(0, 𝜔) − 𝐼)

−1

𝑒
𝐴
(𝑡, 𝑠) (𝐼 + 𝐴)

−1
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= (
1

2

)

(𝑡−𝑠)

× [

[

0.9468 − 0.3882 (𝑡 − 𝑠) 1.3114 − 1.1174 (𝑡 − 𝑠)

1.3114 − 1.1174 (𝑡 − 𝑠) 0.9468 − 0.3882 (𝑡 − 𝑠)

]

]

,

𝐸 (𝑡, 𝑠)

= (𝑒
𝐴
(0, 𝜔) − 𝐼)

−1

𝑒
𝐴
(𝑡, 𝑠)

= (
1

2

)

(𝑡−𝑠)

× [

[

0.8380 − 0.9233 (𝑡 − 𝑠) 0.2911 + 0.1705 (𝑡 − 𝑠)

0.2911 + 0.1705 (𝑡 − 𝑠) 0.8380 − 0.9233 (𝑡 − 𝑠)

]

]

.

(69)

Since 𝑠 ∈ [𝑡, 𝛿𝜔
+
(𝑡)]T = [𝑡, 𝑡 + 0.5], 𝑡 − 𝑠 ∈ [−0.5, 0]. Then

𝐴
3
= 1.1291, 𝐵

3
= 4.2582,

𝜉 = 0.2652, 𝐵
𝑚
= 0.5.

(70)

From the above, we can see that conditions (𝑃
1
) and (𝑃

2
) hold.

Let 𝑏 = 10; then

(i) 𝑓0 + 𝐼0 = 0.18 < 0.2348 = 1/𝐵
3
, 𝑓∞ + 𝐼∞ = 0.08 <

0.2348 = 1/𝐵
3
;

(ii) 𝐵𝑚𝑓
𝑏
+ 𝐼
𝑏
= 3.4510 > 2.3488 = 𝜉𝑏/𝐴

3
for 2.6520 ≤

|𝑥|
0
≤ 10, 𝑡 ∈ T .

According to Theorem 16, when T = Z, system (62) has
at least three positive 𝜔-periodic solutions in shifts 𝛿

±
.

Example 2. Let

𝐴 (𝑡) =
[
[

[

−
1

5𝑡

0

0 −
1

6𝑡

]
]

]

, 𝑏 (𝑡) =
1

2𝑡

,

𝑓 (𝑡, 𝑥 (𝑔 (𝑡))) = [

[

|𝑥 (𝑡)|
0
(0.15 − 0.05 |sin 2𝜋𝑡|)

(|𝑥 (𝑡)|
0
)
2

𝑒
−0.01|𝑥(𝑡)|0

]

]

,

𝐼
𝑖

𝑗
(𝑥 (𝑡

𝑗
)) = 0.01


sin (𝑥 (𝑡𝑗)

0
)

,

𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 10,

(71)

in system (62), where |𝑥(𝑡)|
0
= |𝑥

1
(𝑡)| + |𝑥

2
(𝑡)|.

Let T = 2N0 , 𝑡
0
= 1, and 𝜔 = 4; then 𝛿𝜔

+
(𝑡) = 4𝑡. It is easy

to verify that 𝐴(𝑡), 𝑏(𝑡), and 𝑓(𝑡, 𝑥) satisfy

𝐴 (𝛿
𝜔

+
(𝑡)) 𝛿

Δ𝜔

+
(𝑡) = 𝐴 (𝑡) , 𝑏 (𝛿

𝜔

+
(𝑡)) 𝛿

Δ𝜔

+
(𝑡) = 𝑏 (𝑡) ,

𝑓 (𝛿
𝜔

+
(𝑡) , 𝑥) = 𝑓 (𝑡, 𝑥) , ∀𝑡 ∈ T

∗
,

(72)

and 𝐴 ∈R+. By a direct calculation, we can get

𝑒
𝐴
(𝑡, 𝑠) = [

𝑒
𝑎11
(𝑡, 𝑠) 0

0 𝑒
𝑎22
(𝑡, 𝑠)

] ,

𝑎
11
(𝑡) = −

1

5𝑡

, 𝑎
22
(𝑡) = −

1

6𝑡

,

𝐺 (𝑡, 𝑠) = (𝑒
𝐴
(1, 4) − 𝐼)

−1

𝑒
𝐴
(𝑡, 𝑠) (𝐼 + 𝜇 (𝑡) 𝐴)

−1

=
[
[

[

15

13

𝑒
𝑎11
(𝑡, 𝑠) 0

0
3

2

𝑒
𝑎22
(𝑡, 𝑠)

]
]

]

,

𝐸 (𝑡, 𝑠) = (𝑒
𝐴
(1, 4) − 𝐼)

−1

𝑒
𝐴
(𝑡, 𝑠)

=
[
[

[

12

13

𝑒
𝑎11
(𝑡, 𝑠) 0

0
5

4

𝑒
𝑎22
(𝑡, 𝑠)

]
]

]

.

(73)

Since 1 + 𝜇(𝑡)𝑎
11
(𝑡) = 4/5 > 0, 1 + 𝜇(𝑡)𝑎

22
(𝑡) = 5/6 > 0, then

𝑒
𝑎11
(𝑡, 𝑠) > 0, 𝑒

𝑎22
(𝑡, 𝑠) > 0, ∀𝑠 ∈ [𝑡, 𝛿𝜔

+
(𝑡)]T . Moreover, we have

𝐴
3
= 1.9230, 𝐵

3
= 2.7,

𝜉 = 0.7122, 𝐵
𝑚
= 1.

(74)

From the above, we can see that conditions (𝑃
1
) and (𝑃

2
) hold.

Let 𝑏 = 10; then
(i) 𝑓0 + 𝐼0 = 0.3 < 0.3704 = 1/𝐵

3
, 𝑓∞ + 𝐼∞ = 0.2 <

0.3704 = 1/𝐵
3
;

(ii) 𝐵𝑚𝑓
𝑏
+ 𝐼
𝑏
= 47.9482 > 3.7036 = 𝜉𝑏/𝐴

3
for 7.1220 ≤

|𝑥|
0
≤ 10, 𝑡 ∈ T .

According toTheorem 16, when T = 2N0 , system (62) has
at least three positive 𝜔-periodic solutions in shifts 𝛿

±
.

Remark 3. From Examples 1 and 2, we can see that the results
obtained in this paper can be applied to systems on more
general time scales, and not only time scales are unbounded
above and below.

Remark 4. In system (62), if 𝐴(𝑡) is a diagonal matrix, a
similar calculation in Example 2 shows that 𝐺

𝑖𝑗
= 𝐺

𝑗𝑖
= 0,

𝐸
𝑖𝑗
= 𝐸

𝑗𝑖
= 0, 𝑖 ̸= 𝑗, and the condition (𝑃

4
) in [14] cannot

be satisfied. So the main results in [14] cannot ensure the
existence of positive periodic solution of system (62), while
𝐴(𝑡) is a diagonalmatrix.Therefore, ourmain results improve
and generalize the results in [14].
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Time Scales, Birkhäauser, Boston, Mass, USA, 2003.

[16] M. Adivar, “A new periodicity concept for time scales,” Mathe-
matica Slovaca, vol. 63, no. 4, pp. 817–828, 2013.

[17] R.W. Leggett and L. R.Williams, “Multiple positive fixed points
of nonlinear operators on ordered Banach spaces,” Indiana
UniversityMathematics Journal, vol. 28, no. 4, pp. 673–688, 1979.


