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A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson
scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into
a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be
marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study
of this method.

1. Introduction

Much physical phenomena are described by nonlinear partial
differential equations. Most of these equations do not have an
analytical solution, or it is extremely difficult and expensive to
compute their analytical solutions. Hence a numerical study
of these nonlinear partial differential equations is important
in practice. The regularized long wave (RLW) equation

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
− 𝜇𝑢
𝑥𝑥𝑡

= 0, (1)

where 𝜇 is a positive constant, is a nonlinear evolution
equation, which was originally introduced by Peregrine [1]
in describing the behavior of an undular bore and studied
later by Benjamin et al. [2]. This equation plays an important
role in describing physical phenomena in various disciplines,
such as the nonlinear transverse waves in shallow water, ion-
acoustic waves in plasma, magnetohydrodynamics waves in
plasma, longitudinal dispersive waves in elastic rods, and
pressure waves in liquid’s gas bubbles.Many numerical meth-
ods for the RLW equation have been proposed, such as finite
differencemethods [3, 4], the Galerkin finite elementmethod
[5–8], the least squares method [9–11], various collocation
methods with quadratic B-splines [12], cubic B-splines [13]
and septic splines [14], meshfree method [15, 16], and an
explicit multistep method [17].

The RLW equation is a special case of the generalized
regularized long wave (GRLW) equation

𝑢
𝑡
+ 𝑢
𝑥
+ 𝛿𝑢
𝑝
𝑢
𝑥
− 𝜇𝑢
𝑥𝑥𝑡

= 0, (2)

where 𝛿 and 𝜇 are positive constants and 𝑝 is a positive inte-
ger. Somenumericalmethods [18–24] for theGRLWequation
have been also presented, such as a finite difference method
[18], a decomposition method [20], and a sinc-collocation
method [23]. Another special case of the GRLW equation is
called the modified regularized long wave (MRLW) equation
in which 𝑝 = 2 [25]. Some authors have studied the MRLW
equation using various numerical methods, such as a finite
difference method [26], a collocation method [27], a spline
method [28, 29], and the Adomian decomposition method
[30].

In this paper, we study a Galerkin method for the
MRLW equation by using linear finite elements in space and
extrapolation to remove the nonlinear term. We discuss the
properties of this method and compare its accuracy with
previous studies. The interaction of two and three solitons
is also studied. Moreover, the propagation of the Maxwellian
initial condition is simulated.

The outline of this paper is as follows. In the next
section, the governing equation, its analytical solution, and
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three invariants are given. In Section 3, we propose the
numerical method, including semidiscretization in space and
full discretization in space and time. In Section 4, we present
a stability analysis. In Section 5, some numerical experiments
are presented. Finally, we give a brief conclusion in Section 6.

2. Governing Equation

We assumeΩ = (𝑎, 𝑏) to be an open, bounded subset of𝑅 and
𝑇 > 0 to be a final time. We set Ω

𝑇
= Ω × (0, 𝑇), 𝐽 = (0, 𝑇]

and consider the following MRLW equation:

𝑢
𝑡
+ 𝑢
𝑥
+ 6𝑢
2
𝑢
𝑥
− 𝜇𝑢
𝑥𝑥𝑡

= 0, in Ω
𝑇
,

𝑢 = 0, on 𝜕Ω × [0, 𝑇] ,

𝑢 = 𝑢
0
, on Ω × {𝑡 = 0} ,

(3)

where 𝑢
0
: Ω → 𝑅 is the initial datum, 𝜇 is a positive

constant, and the subscripts 𝑥 and 𝑡 denote differentiation in
space and time, respectively. The physical boundary condi-
tion requires 𝑢 → 0 as 𝑥 → ±∞.

The MRLW equation (3) has the exact solution [25]:
𝑢 (𝑥, 𝑡) = √𝑐 sech (𝑝 (𝑥 − (𝑐 + 1) 𝑡 − 𝑥

0
)) , (4)

where 𝑝 = √𝑐/𝜇(𝑐 + 1) and 𝑥
0
and 𝑐 are arbitrary constants.

Furthermore, (3) possesses three invariants of motion corre-
sponding to conservation of mass, momentum, and energy
[25]:

𝐼
1
= ∫

𝑏

𝑎

𝑢 𝑑𝑥,

𝐼
2
= ∫

𝑏

𝑎

(𝑢
2
+ 𝜇𝑢
𝑥

2
) 𝑑𝑥,

𝐼
3
= ∫

𝑏

𝑎

(𝑢
4
− 𝜇𝑢
𝑥

2
) 𝑑𝑥.

(5)

These invariants are used to check the conservative properties
of a numerical method, especially for problems without an
analytical solution and during collision of solitons.

3. Numerical Methods

Set 𝑉 = 𝐻
1

0
(Ω) = {V ∈ 𝐻1(Ω) : V|

𝜕Ω
= 0}. Applying Green’s

formula to problem (3) and using the boundary condition in
the definition of𝑉, we derive the variational form of problem
(3). Find 𝑢 : 𝐽 → 𝑉 such that

(

𝜕𝑢

𝜕𝑡

, V) + 𝐵 (𝑢, V) + 𝐶 (𝑢, V) + 𝐷 (𝑢, V) = 0, ∀V ∈ 𝑉, 𝑡 ∈ 𝐽,

(𝑢 (𝑥, 0) , V) = (𝑢
0
(𝑥) , V) , ∀V ∈ 𝑉, 𝑥 ∈ Ω,

(6)
where

𝐵 (𝑢, V) = ∫
𝑏

𝑎

𝜇𝑢
𝑥𝑡
⋅ V
𝑥
𝑑𝑥,

𝐶 (𝑢, V) = ∫
𝑏

𝑎

𝑢
𝑥
⋅ V 𝑑𝑥,

𝐷 (𝑢, V) = ∫
𝑏

𝑎

6𝑢
2
𝑢
𝑥
⋅ V 𝑑𝑥.

(7)

3.1. Semidiscretization in Space. Let us consider a uniform 1𝐷

meshwith themesh sizeℎ = 𝑥
𝑖+1
−𝑥
𝑖
, 𝑖 = 0, 1, . . . , 𝑁−1, which

consists of𝑁 + 1 points 𝑎 = 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑁−1
< 𝑥
𝑁
= 𝑏.

Then we obtain
𝑁−1

∑

𝑖=0

(∫

𝑥𝑖+1

𝑥𝑖

𝜕𝑢

𝜕𝑡

⋅ V 𝑑𝑥 + ∫
𝑥𝑖+1

𝑥𝑖

𝜇𝑢
𝑥𝑡
⋅ V
𝑥
𝑑𝑥

+∫

𝑥𝑖+1

𝑥𝑖

𝑢
𝑥
⋅ V 𝑑𝑥 + ∫

𝑥𝑖+1

𝑥𝑖

6𝑢
2
𝑢
𝑥
⋅ V 𝑑𝑥) = 0.

(8)

We make the transformation 𝑥 = 𝑥
𝑖
+ 𝜂ℎ, 0 ≤ 𝜂 ≤ 1, 𝑖 =

0, 1, . . . , 𝑁−1, in order to transfer an element into a standard
interval. From (8), we derive the following equation:

∫

1

0

𝜕𝑢

𝜕𝑡

⋅ V 𝑑𝜂 +
𝜇

ℎ
2
∫

1

0

𝑢
𝜂𝑡
⋅ V
𝜂
𝑑𝜂 +

1

ℎ

∫

1

0

𝑢
𝜂
⋅ V 𝑑𝜂

+

6

ℎ

∫

1

0

𝑢
2
𝑢
𝜂
⋅ V 𝑑𝜂 = 0.

(9)

Now, we define the finite dimensional subspace 𝑉
ℎ
⊂ 𝑉,

𝑉
ℎ
= span{𝐿

1
, 𝐿
2
}, where

𝐿
1
= 𝜂, 𝐿

2
= 1 − 𝜂 (10)

are the linear basis functions on each element. Then the
semidiscrete scheme for problem (3) is formulated as follows.
Find 𝑢

ℎ
: 𝐽 → 𝑉

ℎ
such that

(

𝜕𝑢
ℎ

𝜕𝑡

, V) + 𝐵 (𝑢
ℎ
, V) + 𝐶 (𝑢

ℎ
, V) + 𝐷 (𝑢

ℎ
, V) = 0,

∀V ∈ 𝑉
ℎ
, 𝑡 ∈ 𝐽,

(𝑢
ℎ
(𝑥, 0) , V) = (𝑢ℎ

0
(𝑥) , V) , ∀V ∈ 𝑉

ℎ
, 𝑥 ∈ Ω.

(11)

The variation of 𝑢 over the element [𝑥
𝑖
, 𝑥
𝑖+1
], 𝑖 =

0, 1, . . . , 𝑁 − 1 is expressed as

𝑢
𝑒
=

2

∑

𝑗=1

𝐿
𝑗
(𝑥) 𝑢
𝑗
(𝑡) . (12)

For 𝑗 = 1, 2, we choose V = 𝐿
𝑗
in problem (11) and

substitute (12) into (11). Then an element’s contribution is
obtained in the form of

2

∑

𝑖=1

{

{

{

(∫

1

0

𝐿
𝑖
⋅ 𝐿
𝑗
𝑑𝑥 +

𝜇

ℎ
2
∫

1

0

𝐿
󸀠

𝑖
⋅ 𝐿
󸀠

𝑗
𝑑𝑥)

𝜕𝑢
𝑖

𝜕𝑡

+

1

ℎ

(∫

1

0

𝐿
󸀠

𝑖
⋅ 𝐿
𝑗
𝑑𝑥)𝑢

𝑖

+(

6

ℎ

∫

1

0

(

2

∑

𝑖=1

𝑢
𝑖
𝐿
𝑖
)

2

𝐿
󸀠

𝑖
⋅ 𝐿
𝑗
𝑑𝑥)𝑢

𝑖

}

}

}

= 0,

(13)

where the symbol ( 󸀠) denotes differentiation with respect to
𝜂, which, in matrix form, is given by

(𝐴
𝑒
+ 𝐵
𝑒
)

𝜕𝑢
𝑒

𝜕𝑡

+ 𝐶
𝑒
𝑢
𝑒
+ 𝐷
𝑒
(𝑢
𝑒
) 𝑢
𝑒
= 0, (14)
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where 𝑢𝑒 = (𝑢
1
, 𝑢
2
)
𝑇 are relevant nodal parameters. The

element matrices are

𝐴
𝑒

𝑗𝑘
= ∫

1

0

𝐿
𝑗
𝐿
𝑘
𝑑𝜂,

𝐵
𝑒

𝑗𝑘
=

𝜇

ℎ
2
∫

1

0

𝐿
󸀠

𝑗
𝐿
󸀠

𝑘
𝑑𝜂,

𝐶
𝑒

𝑗𝑘
=

1

ℎ

∫

1

0

𝐿
󸀠

𝑗
𝐿
𝑘
𝑑𝜂,

𝐷
𝑒

𝑗𝑘
=

6

ℎ

∫

1

0

(

2

∑

𝑚=1

𝑢
𝑚
𝐿
𝑚
)

2

𝐿
󸀠

𝑗
𝐿
𝑘
𝑑𝜂.

(15)

For the element [𝑥
𝑖
, 𝑥
𝑖+1
] (𝑖 = 0, 1, . . . , 𝑁− 1), the indices

𝑗 and 𝑘 take only the values 1 and 2 so that the matrices 𝐴𝑒,
𝐵
𝑒, 𝐶𝑒, and𝐷𝑒 are 2 × 2:

𝐴
𝑒
= (

1

3

1

6

1

6

1

3

) ,

𝐵
𝑒

𝑗𝑘
=

𝜇

ℎ
2
(

1 −1

−1 1
) ,

𝐶
𝑒

𝑗𝑘
=

1

ℎ

(

−

1

2

1

2

−

1

2

1

2

) ,

𝐷
𝑒

𝑗𝑘

=

6

ℎ

×(

−(

1

4

𝑢
2

1
+

1

6

𝑢
1
𝑢
2
+

1

12

𝑢
2

2
)

1

4

𝑢
2

1
+

1

6

𝑢
1
𝑢
2
+

1

12

𝑢
2

2

−(

1

12

𝑢
2

1
+

1

6

𝑢
1
𝑢
2
+

1

4

𝑢
2

2
)

1

12

𝑢
2

1
+

1

6

𝑢
1
𝑢
2
+

1

4

𝑢
2

2

).

(16)

Assembling contributions from all elements leads to the
following matrix form of the coupled nonlinear ordinary
differential equations:

(𝐴 + 𝐵)

𝜕𝑢

𝜕𝑡

+ 𝐶𝑢 + 𝐷 (𝑢) 𝑢 = 0, (17)

where 𝑢 = (𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑁
)
𝑇 contains all the nodal parame-

ters.The four assembledmatrices are tridiagonal.The general
row for each matrix has the following form:

𝐴 : (

1

6

,

2

3

,

1

6

) ,

𝐵 :

𝜇

ℎ
2
(−1, 2, −1) ,

𝐶 :

1

2ℎ

(−1, 0, 1) ,

𝐷 :

6

ℎ

(−

1

12

(𝑢
2

𝑚−1
+ 2𝑢
𝑚−1

𝑢
𝑚
+ 3𝑢
2

𝑚
) ,

1

12

(𝑢
2

𝑚−1
− 𝑢
2

𝑚+1
) +

1

6

𝑢
𝑚
(𝑢
𝑚−1

− 𝑢
𝑚+1

) ,

1

12

(3𝑢
2

𝑚
+ 2𝑢
𝑚
𝑢
𝑚+1

+ 𝑢
2

𝑚+1
)) .

(18)

3.2. Full Discretization. We now consider a fully discrete
scheme. Let 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑀 = 𝑇 be a uniformpartition
of 𝐽 into subintervals 𝐽𝑛 = (𝑡𝑛, 𝑡𝑛+1), 𝑛 = 0, 1, . . . ,𝑀 − 1, with
length Δ𝑡 = 𝑡

𝑛+1
− 𝑡
𝑛
= 𝑇/𝑀. For a generic function V of

time, set V𝑛 = V(𝑡𝑛).Weuse theCrank-Nicolson discretization
method in (17) with

𝜕𝑢

𝜕𝑡

=

𝑢
𝑛
− 𝑢
𝑛−1

Δ𝑡

, 𝑢̂
𝑛
=

𝑢
𝑛
+ 𝑢
𝑛−1

2

. (19)

Then (17) can be written as

(𝐴 + 𝐵)

𝜕𝑢

𝜕𝑡

+ 𝐶𝑢̂
𝑛
+ 𝐷 (𝑢̂

𝑛
) 𝑢̂
𝑛
= 0, (20)

with 𝑢0 = 𝑢
ℎ

0
. This equation is symmetric about the point

𝑡 = 𝑡
𝑛−1/2

, and one should, therefore, expect second order
accuracy in time. However, the linearization decreases the
order of the time discretization error to𝑂(Δ𝑡).This drawback
can be overcome by using an extrapolation technique in the
linearization of the nonlinear coefficient 𝐷. We choose 𝑢𝑛 =
(3/2)𝑢

𝑛−1
− (1/2)𝑢

𝑛−2, for 𝑛 ≥ 2, and define

(𝐴 + 𝐵)

𝜕𝑢

𝜕𝑡

+ 𝐶𝑢̂
𝑛
+ 𝐷 (𝑢

𝑛
) 𝑢̂
𝑛
= 0. (21)

Now, the Crank-Nicolson method can be shown to produce
an error of order𝑂((Δ𝑡)2). Combining with the error of finite
elementmethod, the Crank-Nicolson Galerkin finite element
method of (6) produces an error of order𝑂((Δ𝑡)2+ℎ2) overall
[17].

We can obtain the following recurrence relation at point
𝑥
𝑚
:

[

1

6

− 𝑏 −

Δ𝑡

4ℎ

−

6Δ𝑡

ℎ

(

1

24

V2
𝑚−1

+

1

12

V
𝑚−1

V
𝑚
+

1

8

V2
𝑚
)] 𝑢
𝑛

𝑚−1

+ [

2

3

+ 2𝑏 +

6Δ𝑡

ℎ

(

1

24

(V2
𝑚−1

− V2
𝑚+1

)

+

1

12

(V
𝑚−1

− V
𝑚+1

) V
𝑚
)] 𝑢
𝑛

𝑚

+ [

1

6

− 𝑏 +

Δ𝑡

4ℎ

+

6Δ𝑡

ℎ

(

1

8

V2
𝑚
+

1

12

V
𝑚
V
𝑚+1

+

1

24

V2
𝑚+1

)] 𝑢
𝑛

𝑚+1

= [

1

6

− 𝑏 +

Δ𝑡

4ℎ

+

6Δ𝑡

ℎ

(

1

24

V2
𝑚−1

+

1

12

V
𝑚−1

V
𝑚
+

1

8

V2
𝑚
)] 𝑢
𝑛−1

𝑚−1

+ [

2

3

+ 2𝑏 −

6Δ𝑡

ℎ

(

1

24

(V2
𝑚−1

− V2
𝑚+1

)

+

1

12

(V
𝑚−1

− V
𝑚+1

) V
𝑚
)] 𝑢
𝑛−1

𝑚

+ [

1

6

− 𝑏 −

Δ𝑡

4ℎ

−

6Δ𝑡

ℎ

(

1

8

V2
𝑚
+

1

12

V
𝑚
V
𝑚+1

+

1

24

V2
𝑚+1

)] 𝑢
𝑛−1

𝑚+1
,

(22)
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where V
𝑚
and 𝑏 are given by

V
𝑚
=

3

2

𝑢
𝑛−1

𝑚
−

1

2

𝑢
𝑛−2

𝑚
,

𝑏 =

𝜇

ℎ
2
.

(23)

As (22) is used only for 𝑛 ≥ 2, we must compute 𝑢1 by
another method. For this, we choose a predictor-corrector
method. Let 𝑛 = 1 in (21); we can get the first approximation
𝑢
1,0 with 𝑢

1 replaced by 𝑢0. Then we use (1/2)(𝑢1,0 + 𝑢
0
)

to substitute 𝑢1 in (21) and regard the result as the final
approximation 𝑢1. Or, more precisely, the concrete procedure
is as follows. First, set

𝑢
0
= 𝑢
0

ℎ
; (24)

then we calculate

(𝐴 + 𝐵)

𝑢
1,0
− 𝑢
0

Δ𝑡

+ 𝐶

𝑢
1,0
+ 𝑢
0

2

+ 𝐷 (𝑢
0
)

𝑢
1,0
+ 𝑢
0

2

= 0;

(25)

finally, we have

(𝐴 + 𝐵)

𝑢
1
− 𝑢
0

Δ𝑡

+ 𝐶

𝑢
1
+ 𝑢
0

2

+ 𝐷(

𝑢
1,0
+ 𝑢
0

2

)

𝑢
1
+ 𝑢
0

2

= 0.

(26)

Thus we can use theThomas algorithm to solve the linear
algebraic equations.

In order to improve the accuracy in time, we also use
Runge-Kutta discretizationmethod.The fourth order Runge-
Kutta discretization method in (17) can be described as
follows:

𝑢
𝑛+1

= 𝑢
𝑛
+

𝐾
1
+ 2𝐾
2
+ 2𝐾
3
+ 𝐾
4

6

,

− (𝐴 + 𝐵)𝐾
1
= [𝐶𝑢

𝑛
+ 𝐷 (𝑢

𝑛
) 𝑢
𝑛
] Δ𝑡,

− (𝐴 + 𝐵)𝐾
2

= [𝐶(𝑢
𝑛
+

1

2

𝐾
1
) + 𝐷(𝑢

𝑛
+

1

2

𝐾
1
)(𝑢
𝑛
+

1

2

𝐾
1
)]Δ𝑡,

− (𝐴 + 𝐵)𝐾
3

= [𝐶(𝑢
𝑛
+

1

2

𝐾
2
) + 𝐷(𝑢

𝑛
+

1

2

𝐾
2
)(𝑢
𝑛
+

1

2

𝐾
2
)]Δ𝑡,

− (𝐴 + 𝐵)𝐾
4

= [𝐶 (𝑢
𝑛
+ 𝐾
3
) + 𝐷 (𝑢

𝑛
+ 𝐾
3
) (𝑢
𝑛
+ 𝐾
3
)] Δ𝑡.

(27)

4. Stability Analysis

A linear stability analysis is made of the growth factor 𝑔 of the
error 𝜀𝑛

𝑗
in a typical Fourier mode of amplitude 𝜀𝑛:

𝜀
𝑛

𝑗
= 𝑒
𝑖𝑗𝑘ℎ

𝜀
𝑛
, (28)

where 𝑘 is a mode number and ℎ is the element size. The von
Neumann stability method can only be applied to a linear
scheme, so we linearize the nonlinear term by assuming that
𝑢 in this term is locally constant. Substituting (28) into (22)
gives

𝜀
𝑛+1

= 𝑔 𝜀
𝑛
, (29)

𝑔 =

𝛼 + 𝛽𝑖

𝛼 − 𝛽𝑖

, (30)

where

𝛼 = (

1

3

− 2𝑏) cos (𝑘ℎ) + 2

3

+ 2𝑏,

𝛽 =

Δ𝑡

2ℎ

(1 + 𝜀𝐶) sin (𝑘ℎ) .
(31)

Taking the modulus of (30) gives

󵄨
󵄨
󵄨
󵄨
𝑔
󵄨
󵄨
󵄨
󵄨
= √𝑔𝑔 = 1. (32)

Therefore, our method is marginally stable.

5. Numerical Experiments

In this section, we present some numerical tests to check
the efficiency and accuracy of our method, which are the
propagation of single soliton and collision of two and three
solitons at different time levels. Finally, we investigate the
development of theMaxwellian initial condition into solitary
waves.

To illustrate the accuracy of the present method, we use
𝐿
2
- and 𝐿

∞
-error norms

𝐿
2
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
exact,𝑛

− 𝑢
𝑛󵄩󵄩
󵄩
󵄩
󵄩2
= (ℎ

𝑁

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
exact,𝑛
𝑗

− 𝑢
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

)

1/2

,

𝐿
∞
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
exact,𝑛

− 𝑢
𝑛󵄩󵄩
󵄩
󵄩
󵄩∞

= max
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
exact,𝑛
𝑗

− 𝑢
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

(33)

to compare the numerical solution with the exact solution,
which show the mean and maximum differences between
the numerical and analytical solutions. The quantities 𝐼

1
, 𝐼
2
,

and 𝐼
3
measure the conservation laws of our method during

propagation.

5.1. Single Soliton. The analytical values of the three variants
are

𝐼
1
=

𝜋√𝑐

𝑝

, 𝐼
2
=

2𝑐

𝑝

+

2𝜇𝑝𝑐

3

, 𝐼
3
=

4𝑐
2

3𝑝

−

2𝜇𝑝𝑐

3

.

(34)

For the purpose of comparison with the previous work
[28], we choose the parameters 𝑥

0
= 40, 𝑐 = 0.05, ℎ =

𝑘 = 0.2, 𝑇 = 10, and 0 ≤ 𝑥 ≤ 100. Then the amplitude
is 0.7071068 and the analytical values of three invariants are
𝐼
1
= 3.219174470, 𝐼

2
= 0.465531499, and 𝐼

3
= 0.008001323.

The relevant numerical results which applied the Crank-
Nicolson scheme in (22) and the Runge-Kutta scheme in
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Figure 1: Solitary wave with 𝑐 = 0.05, ℎ = 0.2, 𝑘 = 0.2 and 𝑥
0
= 40,

0 ≤ 𝑥 ≤ 100.
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Figure 2: Error graph for 𝑐 = 0.05, ℎ = 0.2, 𝑘 = 0.2 and𝑥
0
= 40, 0 ≤

𝑥 ≤ 100.

(27) are presented in Tables 1 and 2, respectively. The profiles
of solitary waves at time = 5 and time = 10 are given in
Figure 1 and the error distribution in the wave profile in the
three-dimensional view at different time level is illustrated
in Figure 2. Table 3 presents the variants, 𝐿

∞
norm, and 𝐿

2

norm at time = 10 against the quadratic B-splines and the
cubic B-splines in [28].

We also choose the parameters 𝑐 = 0.3, ℎ = 0.1, 𝑘 = 0.01,
and 𝑥

0
= 40, with the range [0, 100]. Then the amplitude

is 0.54772 and the analytical values of three invariants are
𝐼
1
= 3.581966678, 𝐼

2
= 1.345076492, and 𝐼

3
= 0.153723028.

Tables 4 and 5 show the results about the three invariants, the
𝐿
2
norm, and the 𝐿

∞
norm at different times and compare

these results with those by the collocation method with
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Figure 3: Solitary wave with 𝑐 = 0.3, ℎ = 0.1, 𝑘 = 0.01 and 𝑥
0
=

40, 0 ≤ 𝑥 ≤ 100.

0

2

4

0

50

100

x-ax
is

2
4

6
8

10

t-axis

−4

−2

Er
ro
r-
ax
is

×10
−4

Figure 4: Error graph for 𝑐 = 0.3, ℎ = 0.1, 𝑘 = 0.01 and𝑥
0
= 40, 0 ≤

𝑥 ≤ 100.

cubic B-splines in [27] using the Crank-Nicolson scheme in
(22) and the Runge-Kutta scheme in (27), respectively. The
changes of the variants are satisfactorily small, though our
result for this case is notmore accurate than the result in [27],
where the simulation is done up to 𝑡 = 10. The profile of the
approximate solution is given in Figures 3 and 4 shows the
error profile of the single solitary waves.

The Runge-Kutta Galerkin method algorithm has been
run for different space steps with a fixed time step 𝑘 = 0.01.
The error and convergence order of space for the 𝐿

2
- and

𝐿
∞
-norm are recorded in Tables 6 and 7, respectively, which

verify that the 𝐿
2
- and 𝐿

∞
-error can achieve the order𝑂(ℎ2)

in space. And the algorithm has also been run for different
time steps with a fixed space step ℎ = 0.1. The error and
convergence order of time for the 𝐿

2
- and 𝐿

∞
-norm are

recorded in Tables 8 and 9, respectively.
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Table 1: Invariants and error norms for single solitary wave, 𝑐 = 0.05, ℎ = 0.2, 𝑘 = 0.2, 𝑥
0
= 40, and 0 ≤ 𝑥 ≤ 100 (using Crank-Nicolson time

discretization).

Time 𝐼
1

𝐼
2

𝐼
3

𝐿
2

𝐿
∞Analytical 3.219174 0.465531 8.001323E − 03

0 3.218839 0.4655250 8.007784E − 03 0 0
2 3.218839 0.4655233 8.007697E − 03 0.83581𝐸 − 04 0.45779𝐸 − 04

4 3.218854 0.4655215 8.007602E − 03 1.36403𝐸 − 04 0.45846𝐸 − 04

6 3.218842 0.4655196 8.007507E − 03 1.92290𝐸 − 04 0.68890𝐸 − 04

8 3.218819 0.4655177 8.007410E − 03 2.47879𝐸 − 04 0.91724𝐸 − 04

10 3.218794 0.4655159 8.007313E − 03 3.02940𝐸 − 04 1.13929𝐸 − 04

Table 2: Invariants and error norms for single solitary wave, 𝑐 = 0.05, ℎ = 0.2, 𝑘 = 0.2, 𝑥
0
= 40, and 0 ≤ 𝑥 ≤ 100 (using Runge-Kutta time

discretization).

Time 𝐼
1

𝐼
2

𝐼
3

𝐿
2

𝐿
∞Analytical 3.219174 0.465531 8.001323E − 03

0 3.218839 0.4655250 8.007778E − 03 0 0
2 3.218977 0.4655250 8.007779E − 03 2.613735𝐸 − 05 4.577868𝐸 − 05

4 3.219083 0.4655250 8.007780E − 03 3.432730𝐸 − 05 2.894973𝐸 − 05

6 3.219165 0.4655250 8.007780E − 03 4.744950𝐸 − 05 2.214867𝐸 − 05

8 3.219229 0.4655250 8.007780E − 03 6.052811𝐸 − 05 2.298029𝐸 − 05

10 3.219274 0.4655250 8.007780E − 03 7.200630𝐸 − 05 2.346961𝐸 − 05

Table 3: Invariants and error norms for single solitary wave, 𝑐 = 0.05, ℎ = 0.2, 𝑘 = 0.2, 𝑥
0
= 40, 0 ≤ 𝑥 ≤ 100, and time = 10.

Method 𝐼
1

𝐼
2

𝐼
3

𝐿
2

𝐿
∞Analytical 3.219174 0.465531 8.001323E − 03

Our scheme in (22) 3.218794 0.4655160 8.007313E − 03 3.02940𝐸 − 04 1.13929𝐸 − 04

Our scheme in (27) 3.219274 0.4655250 8.007780E − 03 0.720063𝐸 − 04 0.234696𝐸 − 04

Quadratic [28] 3.215653 0.4655665 8.004883E − 03 1.99288𝐸 − 04 4.81156𝐸 − 04

Cubic [28] 3.215189 0.4655136 7.999173E − 03 4.53811𝐸 − 04 6.25887𝐸 − 04

Table 4: Invariants and error norms for single solitary wave, 𝑐 = 0.3, ℎ = 0.1, 𝑘 = 0.01, 𝑥
0
= 40, and 0 ≤ 𝑥 ≤ 100 (using Crank-Nicolson

time discretization).

Time 𝐼
1

𝐼
2

𝐼
3

𝐿
2

𝐿
∞Analytical 3.581967 1.345076 0.1537230

0 3.581967 1.344973 0.1538264 0 0
2 3.581967 1.344973 0.1538263 1.42310𝐸 − 04 0.45779𝐸 − 04

4 3.581966 1.344973 0.1538262 2.65355𝐸 − 04 1.53988𝐸 − 04

6 3.581966 1.344973 0.1538261 3.74673𝐸 − 04 2.00152𝐸 − 04

8 3.581966 1.344972 0.1538260 4.77620𝐸 − 04 2.42916𝐸 − 04

10 3.581966 1.344972 0.1538260 5.77512𝐸 − 04 2.84373𝐸 − 04

[27] 3.58197 1.34508 0.153723 4.02927𝐸 − 04 2.06732𝐸 − 04

Table 5: Invariants and error norms for single solitary wave, 𝑐 = 0.3, ℎ = 0.1, 𝑘 = 0.01, 𝑥
0
= 40, and 0 ≤ 𝑥 ≤ 100 (using Runge-Kutta time

discretization).

Time 𝐼
1

𝐼
2

𝐼
3

𝐿
2

𝐿
∞Analytical 3.581967 1.345076 0.1537230

0 3.581967 1.344973 0.1538264 0 0
2 3.581967 1.344973 0.1538263 1.396685𝐸 − 04 0.920780𝐸 − 04

4 3.581967 1.344973 0.1538262 2.592545𝐸 − 04 1.512530𝐸 − 04

6 3.581967 1.344973 0.1538262 3.647701𝐸 − 04 1.956752𝐸 − 04

8 3.581967 1.344973 0.1538262 4.638980𝐸 − 04 2.368004𝐸 − 04

10 3.581967 1.344973 0.1538262 5.600205𝐸 − 04 2.766940𝐸 − 04

[27] 3.58197 1.34508 0.153723 4.02927𝐸 − 04 2.06732𝐸 − 04
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Table 6: The order of convergence in space for 𝐿
2
error norm with 𝑘 = 0.01 and 𝑐 = 0.3.

Space Δℎ = 0.1 Δℎ = 0.2 Δℎ = 0.4

Order Order
(0.1/0.2) (0.2/0.4)

2 1.396685 × 10−4 5.598770 × 10−4 2.258793 × 10−3 2.0031 2.0124
4 2.592545 × 10−4 1.038054 × 10−3 4.168527 × 10−3 2.0014 2.0057
6 3.647701 × 10−4 1.459612 × 10−3 5.846531 × 10−3 2.0005 2.0020
8 4.638980 × 10−4 1.855582 × 10−3 7.421648 × 10−3 2.0000 1.9999
10 5.600205 × 10−4 2.239531 × 10−3 8.948683 × 10−3 1.9996 1.9985

Table 7: The order of convergence in space for 𝐿
∞
error norm with 𝑘 = 0.01 and 𝑐 = 0.3.

Space Δℎ = 0.1 Δℎ = 0.2 Δ𝑡 = 0.4

Order Order
(0.1/0.2) (0.2/0.4)

2 0.920780 × 10−4 3.689931 × 10−4 1.480253 × 10−3 2.0027 2.0042
4 1.512530 × 10−4 6.055462 × 10−4 2.430139 × 10−3 2.0012 2.0047
6 1.956752 × 10−4 7.811765 × 10−4 3.126531 × 10−3 1.9972 2.0008
8 2.368004 × 10−4 9.454389 × 10−4 3.768796 × 10−3 1.9973 1.9950
10 2.766940 × 10−4 1.104758 × 10−3 4.416067 × 10−3 1.9974 1.9990

Table 8: The order of convergence in time for 𝐿
2
error norm with ℎ = 0.1 and 𝑐 = 0.3.

Time Δ𝑡 = 2.0 Δ𝑡 = 1.0 Δ𝑡 = 0.5

Order Order
(2.0/1.0) (1.0/0.5)

2 0.0511878 0.00418182 4.219760 × 10−4 3.613597 3.308899
4 0.0835505 0.00806197 8.133115 × 10−4 3.309253 3.309253
6 0.1027137 0.01176588 1.180928 × 10−3 3.125948 3.316617
8 0.1141693 0.01561415 1.547231 × 10−3 2.870249 3.335094
10 0.1220153 0.01982141 1.925846 × 10−3 2.621930 3.363496

Table 9: The order of convergence in time for 𝐿
∞
error norm with ℎ = 0.1 and 𝑐 = 0.3.

Time Δ𝑡 = 2.0 Δ𝑡 = 1.0 Δ𝑡 = 0.5

Order Order
(2.0/1.0) (1.0/0.5)

2 0.0318115 2.528470 × 10−3 2.505105 × 10−4 3.653213 3.335322
4 0.0498808 4.159059 × 10−3 4.456332 × 10−4 3.584155 3.222328
6 0.0594582 5.587773 × 10−3 5.905399 × 10−4 3.411531 3.242167
8 0.0641225 7.106547 × 10−3 7.270440 × 10−4 3.173611 3.289034
10 0.0661177 8.861734 × 10−3 8.671150 × 10−4 2.899376 3.353294

5.2. Collision of Two Solitons. In this section, we study the
interaction of two solitary waves with the initial conditions
given by a linear sum of two separate solitary waves of various
amplitudes:

𝑢 (𝑥, 0) =

2

∑

𝑖=1

𝐴
𝑖
sech (𝑝

𝑖
(𝑥 − 𝑥

𝑖
)) , (35)

where 𝐴
𝑖
= √𝑐𝑖

, 𝑝
𝑖
= √𝑐

𝑖
/𝜇(𝑐
𝑖
+ 1), 𝑖 = 1, 2, and 𝑥

𝑖
and

𝑐
𝑖
(𝑖 = 1, 2) are arbitrary constants. The analytical values for

the conservation laws in this case have the following form:

𝐼
1
=

𝜋√𝑐1

𝑝
1

+

𝜋√𝑐2

𝑝
2

,

𝐼
2
=

2𝑐
1

𝑝
1

+

2𝑐
2

𝑝
2

+

2𝜇𝑐
1
𝑝
1

3

+

2𝜇𝑝
2
𝑐
2

3

,

𝐼
3
=

4𝑐
1

2

3𝑝
1

+

4𝑐
2

2

3𝑝
2

−

2𝜇𝑝
1
𝑐
1

3

−

2𝜇𝑝
2
𝑐
2

3

.

(36)

In our numerical scheme, we choose ℎ = 0.1, 𝑘 = 0.01, 𝑐
1
= 1,

𝑐
2
= 0.5, 𝑥

1
= 10, and 𝑥

2
= 40, with interval [0, 100]. Then

the amplitudes are in ratio 2 : 1, where 2𝐴
2
= 𝐴
1
and the

analytical values for the conservation are 𝐼
1
= 8.2905324294,

𝐼
2
= 5.224332548, and 𝐼

3
= 1.799113742. The changes of

the invariants are satisfactorily small, since the changes of
the invariants 𝐼

1
, 𝐼
2
, and 𝐼

3
are 1.3295 × 10−4, 2.2259 × 10−5,

and 6.8989 × 10−5, respectively. The results are recorded in
Table 10. A graph of the two solitary waves collision, plotted
in a three-dimensional view at some discrete times, is shown
in Figure 5.

5.3. Collision of Three Solitons. In this section, we study the
interaction of three solitary waves with the initial conditions
given by a linear sum of three separate solitary waves of
various amplitudes:

𝑢 (𝑥, 0) =

3

∑

𝑖=1

𝐴
𝑖
sech (𝑝

𝑖
(𝑥 − 𝑥

𝑖
)) , (37)
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Table 10: Invariants and error norms for two solitary waves, 𝑐
1
= 1, 𝑐
2
= 0.5, 𝑥

1
= 10, 𝑥

2
= 40, ℎ = 0.1, 𝑘 = 0.01, and 0 ≤ 𝑥 ≤ 100.

Time 𝐼
1

𝐼
2

𝐼
3

C-N R-K C-N R-K C-N R-K
0 8.288129 8.288129 5.222934 5.222933 1.800512 1.800513
2 8.289522 8.293010 5.222910 5.222951 1.800479 1.800507
4 8.289462 8.295348 5.222887 5.222954 1.800458 1.822507
6 8.289304 8.297822 5.222864 5.222956 1.800433 1.800507
8 8.289233 8.300322 5.222840 5.222958 1.800411 1.800508
10 8.289231 8.302630 5.222817 5.222960 1.800388 1.800509

Table 11: Invariants and error norms for three solitary waves, 𝑐
1
= 1, 𝑐

2
= 0.5, 𝑐

3
= 0.25, 𝑥

1
= 10, 𝑥

2
= 20, 𝑥

3
= 40, ℎ = 0.1, 𝑘 = 0.01, and

0 ≤ 𝑥 ≤ 100.

Time 𝐼
1

𝐼
2

𝐼
3

C-N R-K C-N R-K C-N R-K
0 11.800513 11.800513 6.490318 6.490318 1.997082 1.997082
4 11.799364 11.807800 6.485747 6.490319 1.992012 1.996623
8 11.797850 11.812825 6.483120 6.490298 1.988853 1.996076
12 11.797570 11.817192 6.482677 6.490279 1.988441 1.996360
16 11.791837 11.820521 6.474939 6.490305 1.982852 1.996875
20 11.788577 11.823320 6.469884 6.490341 1.977926 1.996758
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Figure 5: Interaction of two solitons at times from 𝑡 = 2, 4, 6, 8, 10

for 𝑐
1
= 1, 𝑐
2
= 0.5, 𝑥

1
= 10, 𝑥

2
= 40, and 0 ≤ 𝑥 ≤ 100.

where 𝐴
𝑖
= √𝑐𝑖

, 𝑝
𝑖
= √𝑐
𝑖
/𝜇(𝑐
𝑖
+ 1), 𝑖 = 1, 2, 3, and 𝑥

𝑖
and

𝑐
𝑖
(𝑖 = 1, 2, 3) are arbitrary constants.The analytical values for

the conservation laws in this case have the following form:

𝐼
1
=

𝜋√𝑐1

𝑝
1

+

𝜋√𝑐2

𝑝
2

+

𝜋√𝑐3

𝑝
3

,
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=
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1

+

2𝑐
2
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+

2𝑐
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3

+
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3

+
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,
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=

4𝑐
1

2

3𝑝
1

+
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2

3𝑝
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+
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3𝑝
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−

2𝜇𝑝
1
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3

−

2𝜇𝑝
2
𝑐
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3

−

2𝜇𝑝
3
𝑐
3

3

.

(38)

In this case, we choose paraments as ℎ = 0.1, 𝑘 = 0.05,
𝑐
1
= 1, 𝑐

2
= 0.5, 𝑐

3
= 0.25, 𝑥

1
= 10, 𝑥

2
= 20, and 𝑥

3
= 40,

with interval [0, 100].Then the amplitudes are in ratio 4 : 2 : 1,

where 𝐴
1
= 2𝐴

2
= 4𝐴

3
and the analytical values for the

conservation are 𝐼
1
= 11.802939794, 𝐼

2
= 6.416902131,

and 𝐼
3
= 1.910917141. The changes of the invariants from

the initial variants approach zero throughout and agree with
the analytical values for the three invariants as presented
in Table 11, which indicates that our scheme is satisfactorily
conservative.The geometry of the initial state and the profiles
at time 𝑡 = 10, 𝑡 = 20, and 𝑡 = 35 is shown graphically in
Figure 6, respectively.

5.4. The Maxwellian Initial Condition. Finally, we consider
the development of the Maxwellian initial condition

𝑢 (𝑥, 0) = 𝑒
−(𝑥−40)

2 (39)

into a train of solitary waves. We choose different values 𝜇 =
1.0, 𝜇 = 0.5, and 𝜇 = 0.1 in our numerical scheme. The
comparison of the three variants 𝐼

1
, 𝐼
2
, and 𝐼

3
with the earlier

result in [29] is presented in Table 12, here Crank-Nicolson
method is used for time discretization. For 𝜇 = 1.0, the
changes of the variants 𝐼

1
, 𝐼
2
, and 𝐼

3
with respect to the initial

values are 3.9492 × 10−6, 6.9575 × 10−4, and 3.1509 × 10−3,
respectively, whereas they are 2.8210 × 10−6, 2.60000 × 10−4,
and 7.0771× 10−4 in [29]. For 𝜇 = 0.5, the variants are changed
by 7.8982 × 10−6, 6.8214 × 10−5, and 6.1410 × 10−4 in this case.
Thedevelopment of theMaxwellian initial condition is shown
in Figure 7 with different parameter values, respectively. The
smaller 𝜇 there is, the more the number of solitary waves will
form. The simulations are done up to time = 10 in this case.
From the previous work [25], the total number of solitary
waves and the values 𝜇 have the approximate relation

𝑁 ≅ [

1

5
√𝜇

] . (40)
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Table 12: Values of 𝐼
1
, 𝐼
2
, and 𝐼

3
for Maxwellian initial condition when ℎ = 0.1 and 𝑘 = 0.01 and the space interval [0, 100].

𝜇 Time 𝐼
1

𝐼
2

𝐼
3

𝐼
1
[29] 𝐼

2
[29] 𝐼

3
[29]

1

2 1.772528 2.499467 −0.3633570 1.772449 2.506352 −0.3668149
4 1.772544 2.499870 −0.3643380 1.772446 2.506235 −0.3666974
6 1.772532 2.500822 −0.3657774 1.772447 2.506171 −0.3666326
8 1.772524 2.500977 −0.3661331 1.772446 2.506123 −0.3665860
10 1.772521 2.501206 −0.3665079 1.772444 2.2060926 −0.3665553

0.5

2 1.772534 1.876446 0.2597450 1.772451 1.879888 0.2596494
4 1.772534 1.876534 0.2587968 1.772446 1.879855 0.2596828
6 1.772528 1.876600 0.2583802 1.772449 1.879841 0.2596973
8 1.772523 1.876581 0.2582386 1.772450 1.879834 0.2597050
10 1.772520 1.876574 0.2581499 1.772449 1.879828 0.2597092

0.1

2 1.770991 1.373320 0.7687222 1.772452 1.378607 0.7608777
4 1.769863 1.371236 0.7658462 1.772451 1.378577 0.7608364
6 1.768742 1.369139 0.7630269 1.772451 1.378546 0.7607937
8 1.767630 1.367058 0.7602389 1.772451 1.378515 0.7607529
10 1.766526 1.364993 0.7574795 1.772453 1.378483 0.7607117
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(a) Time = 0
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(b) Time = 10
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(c) Time = 20
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(d) Time = 35

Figure 6: Interaction of three solitary waves.
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Figure 7: Maxwellian initial condition with different values 𝜇.

6. Conclusion

In this paper, we have developed a Galerkin linear finite
elementmethod to investigate the propagation of solitons and
their interactions governed by the nonlinear MRLW equa-
tion. An extrapolation technique has been used to improve
the accuracy in time for this numerical method. A linear
stability analysis shows that this method is marginally stable.
The high efficiency and accuracy of our method is tested
by the numerical experiments: propagation of single soliton,
collision of two and three solitons, and development of the
Maxwellian initial condition into solitary waves. Moreover,
this method numerically satisfies the conservation laws of
mass, momentum, and energy.
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