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We prove a general theorem on fixed points of multivalued mappings that are not necessarily contractions and derive a number of
recent contributions on this topic for contraction mappings.

1. Introduction

One of the most powerful results of functional analysis is
the Banach contraction principle which states that if 𝑓 is
a contraction on a complete metric space (𝑋, 𝑑), that is,
𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑟𝑑(𝑥, 𝑦) for every 𝑥, 𝑦 ∈ 𝑋 and some
fixed 𝑟 ∈ (0, 1), then 𝑓 has a unique fixed point. Moreover,
that unique point can be approximately computed by a very
simple iterative procedure. Namely, starting from any point
𝑥
0

∈ 𝑋, the sequence obtained by 𝑥
𝑛+1

= 𝑓(𝑥
𝑛
) for

𝑛 ≥ 0 converges to the fixed point. Numerous applications
and generalizations of this principle are known in nonlinear
analysis (see [1–5] and many references given in these).

Since the publication of the Banach principle, there
have been a huge number of research papers devoted to
its generalization. Among them, the extension to set-valued
mappings receives a lot of attention. The works by Nadler Jr.
[6] andMarkin [7] are among the first efforts in this direction,
in which the Hausdorff distance is used to define contraction
set-valued mappings. Further significant generalizations are
presented in [8–19] and many others.

The aim of the present paper is to give a general condition
for existence of fixed points of set-valued mappings that are
not necessarily contractions. The novelty of our approach
is the relaxation of requirements for a point to be chosen
at current iteration to lie in the image of the point at the
preceding iteration during the construction of a sequence
of points that converges to a fixed point. Another novelty

resides in the use of two different functions to estimate the
distance between two consecutive points of the procedure,
which makes our result flexible and allows us to deduce a
number of important theorems of the aforementioned works
for contraction mappings.

2. The Main Result

Throughout this section, we assume that (𝑋, 𝑑) is a complete
metric space. Given a nonempty set 𝐴 ⊆ 𝑋, the distance from
a point 𝑎 ∈ 𝑋 to 𝐴 is denoted by 𝑑(𝑎, 𝐴) and defined by
𝑑(𝑎, 𝐴) = inf

𝑥∈𝐴
𝑑(𝑎, 𝑥).

Theorem 1. Let 𝐹 be a set-valued map on 𝑋 with values in the
space of nonempty closed subsets of𝑋. Assume that the function
𝑑(𝑥, 𝐹(𝑥)) is lower semicontinuous on 𝑋 and that there are
positive valued functions 𝜙 and 𝜓 on [0, ∞) such that

(i) lim sup
𝑠→ 𝑡
+(𝜙(𝑠)/𝜓(𝑠)) < 1 for each 𝑡 ≥ 0.

Then 𝐹 has a fixed point if either of the following conditions
holds:

(A) lim inf
𝑠→0

𝜓(𝑠) > 0, and for every 𝑥 ∈ 𝑋 there is
some 𝑦 ∈ 𝑋 such that
(ii) 𝑑(𝑦, 𝐹(𝑦)) ≤ 𝜙(𝑑(𝑥, 𝐹(𝑥)))𝑑(𝑥, 𝑦) ≤ 𝜓(𝑑(𝑥,
𝐹(𝑥)))𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝐹(𝑥));
(B) lim sup

𝑠
𝑛
→𝑡

(𝜙(𝑠
𝑛
)/𝜓(𝑠
𝑛
)) < 1 whenever

lim
𝑠
𝑛
→𝑡

𝜓(𝑠
𝑛
) < 1 for 𝑡 > 0, and there is some
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𝑎 > 0 such that for every 𝑥 ∈ 𝑋 with 𝑥 ∉ 𝐹(𝑥) there is
some 𝑦 ∈ 𝑋 satisfying
(iii) 𝑑(𝑥, 𝑦) ≥ 𝑑(𝑥, 𝐹(𝑥)) and 𝜓(𝑑(𝑥, 𝑦)) ≥ 𝑎;
(iv) 𝑑(𝑦, 𝐹(𝑦)) ≤ 𝜙(𝑑(𝑥, 𝑦))𝑑(𝑥, 𝑦) ≤ 𝜓(𝑑(𝑥, 𝑦))𝑑(𝑥,
𝑦) ≤ 𝑑(𝑥, 𝐹(𝑥)).

Proof. We wish to construct a Cauchy sequence {𝑥
𝑛
}∞
𝑛=0

such
that the sequence {𝑑(𝑥

𝑛
, 𝐹(𝑥
𝑛
))}∞
𝑛=0

converges to 0. This,
of course, proves the theorem because the limit 𝑥 of the
sequence {𝑥

𝑛
}∞
𝑛=0

satisfies

𝑑 (𝑥, 𝐹 (𝑥)) ≤ lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
)) = 0, (1)

which shows that 𝑥 ∈ 𝐹(𝑥), because the set 𝐹(𝑥) is closed.
We assume (A) first. Let us start with any point 𝑥

0
∈ 𝑋. If

𝑥
0

∈ 𝐹(𝑥
0
), we are done. If not, we choose 𝑥

1
∈ 𝑋 as given in

(ii):

𝑑 (𝑥
1
, 𝐹 (𝑥
1
)) ≤ 𝜙 (𝑑 (𝑥

0
, 𝐹 (𝑥
0
))) 𝑑 (𝑥

0
, 𝑥
1
) ,

𝜓 (𝑑 (𝑥
0
, 𝐹 (𝑥
0
))) 𝑑 (𝑥

0
, 𝑥
1
) ≤ 𝑑 (𝑥

0
, 𝐹 (𝑥
0
)) .

(2)

Similarly, restarting from 𝑥
1
we choose 𝑥

2
∈ 𝑋 satisfying the

inequalities in (ii) and continue this process either to arrive
at a fixed point of 𝐹 or to obtain a sequence of 𝑥

𝑛
s such that

𝑥
𝑛

∉ 𝐹(𝑥
𝑛
) and

𝑑 (𝑥
𝑛+1

, 𝐹 (𝑥
𝑛+1

)) ≤ 𝜙 (𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
))) 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

)

≤ 𝜓 (𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
))) 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

)

≤ 𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
))

(3)

for every 𝑛 ≥ 1. Observe that 𝜙(𝑑(𝑥
𝑛
, 𝐹(𝑥
𝑛
))) > 0 because,

otherwise, in view of (3) one would have 𝑥
𝑛+1

∈ 𝐹(𝑥
𝑛+1

),
which is a contradiction. Hence, 𝜓(𝑑(𝑥

𝑛
, 𝐹(𝑥
𝑛
))) > 0. It

follows that

𝑑 (𝑥
𝑛+1

, 𝐹 (𝑥
𝑛+1

)) ≤
𝜙 (𝑑 (𝑥

𝑛
, 𝐹 (𝑥
𝑛
)))

𝜓 (𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
)))

𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
)) . (4)

In view of (3), the sequence {𝑑(𝑥
𝑛
, 𝐹(𝑥
𝑛
))}∞
𝑛=0

is decreasing
and hence decreasingly converges to some limit 𝛿 ≥ 0.
Actually 𝛿 = 0 because otherwise, by passing to the limit on
both sides of (4) for 𝑥

𝑛
𝑘

instead of 𝑥
𝑛
when 𝑘 tends to ∞ and

by (i), we would obtain

𝛿 ≤ 𝛿 lim sup
𝑘→∞

𝜙 (𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

))

𝜓 (𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

))
< 𝛿, (5)

which is a contradiction. The first part of hypothesis (A) and
(3) imply

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (6)

We claim that this sequence is a Cauchy sequence. Indeed, by
(i) and the first hypothesis of (A), there are some 𝑞 ∈ (0, 1),
𝛼 > 0, and 𝑁 ≥ 1 such that

𝜙 (𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
)))

𝜓 (𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
)))

≤ 𝑞,

𝜓 (𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
))) ≥ 𝛼 ∀𝑛 ≥ 𝑁.

(7)

Combining this with (3) yields

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑚

) ≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛+𝑚−1

, 𝑥
𝑛+𝑚

)

≤
1

𝛼
[𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
))

+ ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛+𝑚−1

, 𝐹 (𝑥
𝑛+𝑚−1

))]

≤
1

𝛼
𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
)) [1 + 𝑞 + ⋅ ⋅ ⋅ + 𝑞𝑚−1]

≤
1 − 𝑞𝑚

𝛼 (1 − 𝑞)
𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
))

(8)

for 𝑛 ≥ 𝑁 and 𝑚 ≥ 1. Since the sequence {𝑑(𝑥
𝑛
, 𝐹(𝑥
𝑛
))}∞
𝑛=0

converges to 0 as 𝑛 tends to ∞, we deduce that the sequence
{𝑥
𝑛
}∞
𝑛=0

is Cauchy and hence it converges to some limit as
requested.

We now assume (B). By the same argument as mentioned
above, we may find either a fixed point of 𝐹 or a sequence of
𝑥
𝑛
s such that 𝑥

𝑛
∉ 𝐹(𝑥

𝑛
) and

𝑎 ≤ 𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) , (9)

𝑑 (𝑥
𝑛+1

, 𝐹 (𝑥
𝑛+1

)) ≤ 𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)

≤ 𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) 𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
))

≤ 𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
))

(10)

in which 𝜙(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)) > 0 and 𝜓(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)) > 0 for every
𝑛 ≥ 1 and deduce that

𝑑 (𝑥
𝑛+1

, 𝐹 (𝑥
𝑛+1

)) ≤
𝜙 (𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

))

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

))
𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
)) . (11)

From (10) we know that the sequence {𝑑(𝑥
𝑛
, 𝐹(𝑥
𝑛
))}∞
𝑛=0

is
decreasing and hence decreasingly converges to some limit
𝛿 ≥ 0. Then, in view of (10) and (9), the inferior limit
of the sequence {𝑑(𝑥

𝑛
, 𝑥
𝑛+1

)}∞
𝑛=0

is finite. Let us denote by
{𝑑(𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

)}∞
𝑘=0

a subsequence such that

𝜃 = lim
𝑘→∞

𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

) = lim inf
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) . (12)

We easily have 𝛿 ≤ 𝜃 ≤ 𝛿/𝑎. We wish to prove that these
values are all equal to zero.

Claim 1 (𝛿 = 𝜃). Suppose to the contrary that 𝛿 < 𝜃. Then
𝛿 > 0. We choose a small 𝜖 > 0 such that 𝛿 + 𝜖 < 𝜃 − 𝜖. Then
there is some 𝑁 > 1 such that

𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
)) ≤ 𝛿 + 𝜖 < 𝜃 − 𝜖 ≤ 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) for 𝑛 ≥ 𝑁.
(13)

This and (10) yield

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) (𝜃 − 𝜖) ≤ 𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)

≤ 𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
)) ≤ 𝛿 + 𝜖

(14)

which implies that lim sup
𝑛→∞

𝜓(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)) < 1. By using
the first part of (B) and by passing to the limit in (11) for 𝑥

𝑛
𝑘
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instead of 𝑥
𝑛
when 𝑛

𝑘
tends to ∞, we arrive at the following

inequality:

𝛿 = lim
𝑘→∞

𝑑 (𝑥
𝑛
𝑘

, 𝐹 (𝑥
𝑛
𝑘

))

≤ lim sup
𝑘→∞

𝜙 (𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

))

𝜓 (𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

))
𝑑 (𝑥
𝑛
𝑘

, 𝐹 (𝑥
𝑛
𝑘

))

≤ 𝛿 lim sup
𝑘→∞

𝜙 (𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

))

𝜓 (𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

))
< 𝛿,

(15)

which is a contradiction. By this, 𝛿 = 𝜃.

Claim 2 (𝛿 = 𝜃 = 0). Suppose to the contrary that 𝛿 > 0.
According to (iii),

𝛿 ≤ 𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
)) ≤ 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) , (16)

which means that lim
𝑘→∞

𝑑(𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

) = 𝛿+. Due to (i), we
deduce from (9) that

𝛿 ≤ 𝛿 lim sup
𝑘→∞

𝜙 (𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

))

𝜓 (𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

))
< 𝛿, (17)

which, again, is a contradiction.

Claim 3. The sequence {𝑥
𝑛
}∞
𝑛=0

is a Cauchy sequence. In view
of Claim 2 and (iii), the sequence {𝑑(𝑥

𝑛
, 𝑥
𝑛+1

)}∞
𝑛=0

converges
to zero. By (i), there are some 𝑞 ∈ (0, 1) and 𝑁 > 0 such that

𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

))

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

))
≤ 𝑞 ∀𝑛 ≥ 𝑁. (18)

It remains to apply the same argument as in the case of
condition (A) to conclude the proof.

We close up this section by observing that in the literature
on fixed points of contraction mappings it is frequently
required that the element 𝑦 in conditions (A) and (B) belongs
to 𝐹(𝑥), in which case the hypothesis 𝑑(𝑥, 𝑦) ≥ 𝑑(𝑥, 𝐹(𝑥))
(condition (iii)) is evidently satisfied. The fact that 𝑦 is
allowed to be chosen outside 𝐹(𝑥) is extremely important in
computing fixed points of mappings that are not contractive
at certain points. Below is an example to illustrate this.

Example 2. Consider a discrete metric space 𝑋 consisting of
five points: 0, 0.25, 0.5, 0.75, and 1 of the real lineR equipped
with the usual distance. Define a map 𝐹 : 𝑋 → 𝑋 by

𝐹 (0) = 1, 𝐹 (0.25) = 0.75, 𝐹 (0.5) = 0.5,

𝐹 (0.75) = 0.5, 𝐹 (1) = 0.
(19)

It is clear that 𝐹 is not a contraction. If we start at 𝑥
0

= 0 and
apply the classical algorithm 𝑥

𝑛+1
= 𝐹(𝑥

𝑛
) for 𝑛 ≥ 0, then it

produces an infinite loop and we never get the fixed point. In

order to avoid cycling, let us define two functions 𝜙 and 𝜓 on
[0, ∞) by

𝜙 (𝑡) =
{{
{{
{

1

3
if 0 ≤ 𝑡 ≤

3

4
,

𝑡 −
5

12
if 𝑡 ≥

3

4
,

𝜓 (𝑡) =
{{
{{
{

2

3
if 0 ≤ 𝑡 ≤

3

4
,

𝑡 −
1

12
if 𝑡 ≥

3

4
.

(20)

Now we start with 𝑥
0

= 0. If we take 𝑦 = 𝐹(𝑥
0
), then neither

(ii) nor (iv) is satisfied. Let us choose 𝑥
1

= 0.75 the closest
element to 𝐹(𝑥

0
) for which condition (ii) of Theorem 1 is

fulfilled. In the next iteration we take 𝑥
2

= 0.5 = 𝐹(𝑥
1
) that

satisfies the above-mentioned condition too.This 𝑥
2
is a fixed

point of 𝐹.

3. Particular Cases

In this section we deduce a number of results in recent
publications from the main theorem given in the preceding
section.The first corollary is Mizoguchi-Takahashi’s theorem
(Theorem 5, [18]) which according to Suzuki [19] is a real
generalization of Nadler’s theorem [6]. We recall that the
Hausdorff metric induced by 𝑑 is given by

ℎ (𝐴, 𝐵) = max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵) ; sup
𝑏∈𝐵

𝑑 (𝑏, 𝐴)} (21)

for any two subsets 𝐴 and 𝐵 of 𝑋.

Corollary 3. Let 𝐹 be a set-valued map on 𝑋 with values in
the space of nonempty closed bounded subsets of 𝑋. Assume
that there is a function 𝜙 : [0, ∞) → [0, 1) satisfying

(M1) lim sup
𝑠→ 𝑡
+𝜙(𝑠) < 1 for each 𝑡 ≥ 0;

(M2) ℎ(𝐹(𝑥), 𝐹(𝑦)) ≤ 𝜙(𝑑(𝑥, 𝑦))𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋.

Then 𝐹 has a fixed point.

Proof. Our aim is to apply Theorem 1. Towards this end
we construct a function 𝜓 and prove that condition (B) is
satisfied. Let 𝜓 : [0, ∞) → [0, 1) be defined by

𝜓 (𝑡) =

{{{{
{{{{
{

1

2
if 𝜙 (𝑡) <

1

3
,

√𝜙 (𝑡) if 𝜙 (𝑡) ≥
1

3
.

(22)

We check the hypotheses of Theorem 1. First, the function
𝑑(𝑥, 𝐹(𝑥)) is Lipschitz and hence lower semicontinuous
because

𝑑 (𝑥, 𝐹 (𝑥)) − 𝑑 (𝑦, 𝐹 (𝑦))


≤ 𝑑 (𝑥, 𝑦) + ℎ (𝐹 (𝑥) , 𝐹 (𝑦)) ≤ 2𝑑 (𝑥, 𝑦)
(23)

due to condition (M2) and the fact that 𝜙(𝑡) < 1.
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Second, for every 𝑠 ≥ 0, we have 𝜙(𝑠)/𝜓(𝑠) ≤ max{2/3,

√𝜙(𝑠)}.This and (M1) imply the first part of (B) and condition
(i) of Theorem 1.

Third, by the definition of 𝜓, condition (iii) (Theorem 1)
is satisfied for every 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐹(𝑥) if we choose 𝑎 = 1/3.

And finally, the first inequality of (iv) of Theorem 1
holds for any 𝑦 ∈ 𝐹(𝑥) because of the Lipschitz condi-
tion (M2). For the second inequality it suffices to choose
𝑦 ∈ 𝐹(𝑥) so that 𝛼𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝐹(𝑥)), where 𝛼 =
max{1/2; lim sup

𝑠→𝑑(𝑥,𝐹(𝑥))
+𝜙(𝑠)} < 1. It remains to apply

Theorem 1 to complete the proof.

As far aswe know,most important generalizations of fixed
point conditions for contraction mappings without using
Hausdorff distance belong to Ciric in his recent works [9, 10].
Let us see how to deduce them fromTheorem 1.

Corollary 4 (Theorems 2.1 and 2.2 of [10] and Theorem 5
of [9]). Let 𝐹 be a set-valued map on 𝑋 with values in the
space of nonempty closed subsets of𝑋. Assume that the function
𝑑(𝑥, 𝐹(𝑥)) is lower semicontinuous on 𝑋 and that there is a
function 𝜙 : [0, ∞) → [𝛼, 1) for some 𝛼 ∈ (0, 1), which
satisfies lim sup

𝑠→ 𝑡
+𝜙(𝑠) < 1 for each 𝑡 ≥ 0. Assume further

that one of the following conditions holds.

(C1) For every 𝑥 ∈ 𝑋 there is some 𝑦 ∈ 𝐹(𝑥) such that

√𝜙 (𝑑 (𝑥, 𝐹 (𝑥)))𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝐹 (𝑥)) ,

𝑑 (𝑦, 𝐹 (𝑦)) ≤ 𝜙 (𝑑 (𝑥, 𝐹 (𝑥))) 𝑑 (𝑥, 𝑦) .

(24)

(C2) For every 𝑥 ∈ 𝑋 there is some 𝑦 ∈ 𝐹(𝑥) such that

√𝜙 (𝑑 (𝑥, 𝑦))𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝐹 (𝑥)) ,

𝑑 (𝑦, 𝐹 (𝑦)) ≤ 𝜙 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) .

(25)

(C3) In this condition 𝛼 = 0 and for every 𝑥 ∈ 𝑋 there is
some 𝑦 ∈ 𝐹(𝑥) such that

𝑑 (𝑥, 𝑦) ≤ (2 − 𝜙 (𝑑 (𝑥, 𝑦))) 𝑑 (𝑥, 𝐹 (𝑥)) ,

𝑑 (𝑦, 𝐹 (𝑦)) ≤ 𝜙 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) .
(26)

Then 𝐹 has a fixed point.

Proof. Under (C1) and (C2), set 𝜓(𝑡) = √𝜙(𝑡) for every 𝑡 ≥
0 and, under (C3), set 𝜓(𝑡) = 1/(2 − 𝜙(𝑡)). And then apply
Theorem 1. Note that 𝜓(𝑡) ≥ √𝛼 under (C1) and (C2) and
𝜓(𝑡) ≥ 1/2 under (C3) for every 𝑡 ≥ 0, and so the first part
of (A) and (iii) of Theorem 1 hold true. Other conditions of
Theorem 1 are almost immediate.

Other important results such as Theorems 6 and 7 of [9],
Theorem 2 of [12], and Theorems 3 and 4 of [14] can also be
obtained from Theorem 1 by a similar argument. Of course,
when 𝐹 is single valued, the conditions of all above cited
theorems imply that 𝐹 is a contraction, and so they are not
applicable to noncontraction mappings.

We close up this section by discussing the following very
recent result of Du and Khojasteh [20, Theorem 15]. Let
𝐹 be defined on 𝑋 with values in the space of nonempty
bounded and closed subsets of 𝑋. Let 𝜙 satisfy condition
(M1) of Corollary 3. Assume further that there is a function
𝛼 : 𝑋 × 𝑋 → [0, ∞) such that one has the following.
(D1) 𝛼(𝑥, 𝑦)𝑑(𝑦, 𝐹(𝑦)) ≤ 𝜙(𝑑(𝑥, 𝑦))𝑑(𝑥, 𝑦) for every 𝑦 ∈

𝐹(𝑥).
(D2) If 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑇(𝑥) satisfy 𝛼(𝑥, 𝑦) ≥ 1, then

𝛼(𝑦, 𝑧) ≥ 1 for all 𝑧 ∈ 𝐹(𝑦).
(D3) There is 𝑥

0
∈ 𝑋 and 𝑥

1
∈ 𝐹(𝑥

0
) such that 𝛼(𝑥

0
, 𝑥
1
) ≥

1.
(D4) One of the following conditions holds:

(H1) 𝐹 is continuous in the sense that ℎ(𝐹(𝑥
𝑛
), 𝐹(𝑥))

converges to 0 as soon as 𝑥
𝑛
tends to 𝑥;

(H2) the graph of 𝐹 is closed;
(H3) the function 𝑑(𝑥, 𝐹(𝑥)) is lower semicontinu-

ous;
(H4) for every sequence {𝑥

𝑛
}∞
𝑛=0

converging to 𝑥 and
with 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1, 𝑥
𝑛+1

∈ 𝐹(𝑥
𝑛
), one has

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹(𝑥)) = 0.

Then 𝐹 has a fixed point.
In order to apply Theorem 1 to this particular case, let us

consider a subspace 𝑌 of 𝑋 defined by 𝑌 = {𝑥 ∈ 𝑋 : 𝛼(𝑥, 𝑦) ≥
1 ∀𝑦 ∈ 𝐹(𝑥)}. It is clear that 𝑌 ̸= 0 because of (D3). Moreover,
in view of (D2), 𝐹 maps 𝑌 to closed subsets of 𝑌. By using
the function 𝜓 given in the proof of Corollary 3, we easily see
that hypotheses (i) and (B) of Theorem 1 are satisfied, which
allows us to produce aCauchy sequence {𝑥

𝑛
}∞
𝑛=0

in𝑌 such that
the sequence {𝑑(𝑥

𝑛
, 𝐹(𝑥
𝑛
))}∞
𝑛=0

converges to 0. Of course, the
limit of the sequence {𝑥

𝑛
}∞
𝑛=0

exists but not necessarily lies in
𝑌. Under condition (D4) it is evident that that limit is a fixed
point of 𝐹.
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