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The Hopf bifurcation of a fractional-order Van der Pol (VDP for short) system with a random parameter is investigated. Firstly,
the Chebyshev polynomial approximation is applied to study the stochastic fractional-order system. Based on the method, the
stochastic system is reduced to the equivalent deterministic one, and then the responses of the stochastic system can be obtained by
numerical methods.Then, according to the existence conditions of Hopf bifurcation, the critical parameter value of the bifurcation
is obtained by theoretical analysis. Then, numerical simulations are carried out to verify the theoretical results.

1. Introduction

Fractional calculus is a topic of more than 300 years old.
The idea of fractional calculus has been known since the
regular calculus. However, its development is very rapid just
in recent several decades due to its application in physics,
engineering, secure communications, and so on. Meanwhile,
it has been found that many fractional-order nonlinear sys-
tems can demonstrate chaotic behavior, such as fractional-
order Chua circuit [1], fractional-order Lorenz system [2],
and fractional-order Chen system [3]. These examples and
many other similar samples perfectly clarify the importance
of consideration and analysis of dynamical systems with frac-
tional-order models [4–6].

The VDP oscillator represents a nonlinear systemwith an
interesting behavior that exhibits naturally in several appli-
cations. It has been used for study and design of many mod-
els including biological phenomena, such as the heartbeat,
neurons, acoustic models, and radiation of mobile phones,
and as a model of electrical oscillators. The deterministic
VDP has very rich dynamical behaviors, such as saddle-node
bifurcation, symmetry-breaking bifurcation, period-doubl-
ing bifurcation, Hopf bifurcation, and chaos. Recently, many
researchers studied the bifurcation and periodic solutions of
the VDP system in detail [7–11]. As research on fractional

differential equations goes up, the VDPmodel with fractional
order was proposed and investigated in [12, 13]. It was found
that when the order is less than 1, the fractional-order VDP
system also has rich dynamics similar to the corresponding
integer-order one.

In the real world, uncertainty due to measuring, mate-
rials, manufacturing, and assembling is inevitable. These
uncertainties usually can be modeled as random parameters
with certain statistics. A stochastic system means a system
with random parameters of given statistics, which is a mathe-
matical model close to the real world.There are several meth-
ods to deal with the dynamical problems of stochastic
systems. The first one is the Monte Carlo method [14], which
is simple and universal but usually involves a great deal of
computational effort. The second one is the stochastic finite
element method [15], which involves the least computation
but is usually restricted to systems with random variables of
small perturbations only. And the third one is orthogonal
polynomials [16–20], which is based on the expansion theory
of orthogonal polynomials, without the limitation of small
perturbations. There are a lot of references about the analysis
of stochastic systems via orthogonal polynomials. For exam-
ple, in [21, 22], the Chebyshev polynomial approximationwas
applied to analyze the bifurcation and chaos of stochastic
Duffing system and stochastic Duffing-Van der Pol system.
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The period-doubling bifurcation for double-well stochastic
Duffing system was investigated via Lagurre polynomial
approximation in [23]. Recently, the synchronization for a
stochastic fractional-order system with a random parameter
via Laguerre polynomial was analyzed in [24]. However, the
literature on the investigation of a stochastic fractional-order
VDP system is few.

Inspired by the above discussion, in this paper, Hopf
bifurcations of a fractional-order VDP system with a random
parameter are studied. Firstly, the Chebyshev polynomial
approximationmethod is applied to investigate the stochastic
fractional-order system. Based on this method, the stochastic
system is reduced to the equivalent deterministic one. Then,
according to the existence conditions of Hopf bifurcation,
the critical parameter value of the bifurcation is obtained
by theoretical analysis. Meanwhile, numerical simulations
are performed to verify the theoretical results. Besides, the
Hopf bifurcation with the variation of derivative order is also
observed by numerical computations.

The paper is organized as follows. In Section 2, the defi-
nitions for the fractional calculus and numerical algorithms
are given. In Section 3, the Chebyshev polynomials are intro-
duced as the basis of orthogonal polynomial approximation.
In Section 4, the transformation of stochastic fractional-
order VDP system into its equivalent deterministic one by
Chebyshev polynomial approximation is shown. Section 5 is
devoted to studying the Hopf bifurcation of the stochastic
system. Finally, we summarize the results in Section 6.

2. Fundamentals of Fractional Derivative

2.1. Definition. Fractional calculus is a generalization of
integration and differentiation to a noninteger-order inte-
grodifferential operator

𝑎
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𝑞

𝑡
which is defined by

𝑎
𝐷
𝑞

𝑡
=
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(1)

where 𝑞 is the derivative order which can be a complex
number and 𝑅(𝑞) is the real part of 𝑞. The numbers 𝑎 and
𝑡 are the limits of the operator.There are many definitions for
fractional derivatives. Three most frequently used ones are
the Grunwald-Letnikov definition, the Riemann-Liouville,
and the Caputo definitions.

The Grunwald-Letnikov definition (GL) derivative with
fractional-order 𝑞 is described by

GL
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where the symbol [∙] means the integer part.

The Riemann-Liouville (RL) definition of fractional
derivatives is given by
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(3)

where Γ(∙) is the gamma function.
The Caputo (𝐶) fractional derivative is defined as follows:
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(4)

It is well known that the initial conditions for the
fractional differential equations with Caputo derivatives take
the same form as for the integer-order ones, which is very
suitable for practical problems [25].Therefore, we will use the
Caputo definition for the fractional derivatives in this paper.

2.2. Numerical Algorithms. Obtaining numerical solutions
of a fractional differential equation is not easily compared
with that for ordinary differential equations. There are two
approximation methods which can frequently be used to
numerical computations on chaos and bifurcations with
fractional differential equations. One is an improved ver-
sion of Adams-Bashforth-Moulton algorithm based on the
predictor-correctors scheme [26], which is a time-domain
approach. The other is a method, known as frequency
domain approximation [27], based on numerical analysis of
fractional-order systems in the frequency domain.

Simulations for fractional-order systems using the time
domain methods are complicated and due to long memory
characteristics of these systems require a very long simulation
time but on the other hand, it ismore accurate [28].Therefore,
we employ the improved predictor-corrector algorithm for
fractional-order differential equations in this paper.

In order to get the approximate solution of a fractional-
order chaotic system by the improved predictor-corrector
algorithm, the following equation is considered:

𝑑
𝑞
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𝑑𝑡𝑞
= 𝑓 (𝑡, 𝑥) , 0 ≤ 𝑡 ≤ 𝑇
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(0) = 𝑥
(𝑘)

0
, 𝑘 = 0, 1, . . . , ⌈𝑞⌉ − 1,

(5)

where ⌈𝑞⌉ is just the value 𝑞 rounded up to the nearest integer
and 𝑥

(𝑘) is the ordinary 𝑘th derivative of 𝑥. Formula (5) is
equivalent to the Volterra integral equation

𝑥 (𝑡) =

⌈𝑞⌉−1

∑

𝑘=0

𝑥
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Now, for the sake of simplicity, we assume that we areworking
on a uniform grid {𝑡

𝑛
= 𝑛ℎ : 𝑛 = 0, 1, . . . ,𝑀} with some

integer 𝑀 and set ℎ = 𝑇/𝑀. Using the standard quadrature
techniques for the integral in (6), denote 𝑔(𝜏) = 𝑓(𝜏, 𝑥(𝜏));
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the integral is replaced by the trapezoidal quadrature formula
at point 𝑡

𝑛+1
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where𝑔
𝑛+1

is the piecewise linear interpolant for𝑔with nodes
and knots chosen at the 𝑡

𝑗
, (𝑗 = 0, 1, . . . , 𝑛 + 1). After some

elementary calculations, the right hand side of (7) gives

∫

𝑡
𝑛+1

0

(𝑡
𝑛+1

− 𝜏)
𝑞−1

𝑔
𝑛+1

(𝜏) 𝑑𝜏 =
ℎ
𝑞

𝑞 (𝑞 + 1)

𝑛+1

∑

𝑗=0

𝛼
𝑗,𝑛+1

𝑔 (𝑡
𝑗
) .

(8)

And if we use the product rectangle rule, the right hand of (7)
can be written as
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Then the predictor and corrector formulae for solving (6) are
given, respectively, by
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The approximation accuracy of scheme (11) is 𝑂(ℎ
min{2,1+𝑞}

).

3. The Chebyshev Polynomials

In general, random parameters in some engineering struc-
tures are bounded in nature. So the probability density
function (PDF for short) model for the bounded random
variables is taken to be an arch-like PDF of the form [29]:
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Figure 1: The arch-like PDF curve for random variable 𝑢.

Figure 1 shows the arch-like PDF curve for bounded
random variable 𝑢. As the orthogonal polynomial basis for
this kind of PDF, the second kind of Chebyshev polynomials
is the only choice. The general expansion for the second kind
of Chebyshev polynomials can be described as follows:
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Then, we have
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The recurrent formula for the Chebyshev polynomials of the
second kind is

𝑢𝐻
𝑛
(𝑢) =

1

2
[𝐻
𝑛−1

(𝑢) + 𝐻
𝑛+1

(𝑢)] . (15)

The orthogonality of Chebyshev polynomial of the second
kind can be expressed as

∫

1

−1

2

𝜋
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𝑖
(𝑢)𝐻
𝑗
(𝑢) 𝑑𝑢 = {

1 (𝑖 = 𝑗)

0 (𝑖 ̸= 𝑗) .
(16)

Equation (16) represents a weighted orthogonal relationship.
The weighting function is just the same as that for the PDF
of the random parameter which obeys arch distribution,
𝜌(𝑢) in (12), and the left-hand side of (16) can be regarded
as the expectation of the product 𝐻

𝑖
(𝑢)𝐻
𝑗
(𝑢). Owing to
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the orthogonality of Chebyshev polynomial, any measurable
function 𝑓(𝑢) ∈ 𝐿

2 can be expanded as

𝑓 (𝑢) =

∞

∑

𝑖=0

𝑐
𝑖
𝐻
𝑖
(𝑢) , (17)

where 𝑐
𝑖
= ∫
1

−1

𝜌(𝑢)𝑓(𝑢)𝐻
𝑖
(𝑢)𝑑𝑢. This expansion is called an

orthogonal decomposition of random function𝑓(𝑢), which is
the theoretical base of orthogonal decomposition methods.

4. The Stochastic Fractional-Order
VDP System

In this paper, we consider the fractional-order VDP system
with a random parameter. The system can be described by
the following differential equations:

𝐷
𝑞

𝑥 = 𝑦

𝐷
𝑞

𝑦 = 𝜇𝑦 − 𝑎𝑥
2

𝑦 + 𝑏𝑥,

(18)

where 𝑞 is the fractional order and 𝑥, 𝑦 are state variables. 𝑎,
𝑏 are deterministic parameters and 𝜇 is a random parameter,
and it can be expressed as

𝜇 = 𝜇 + 𝛿𝑢, (19)

where 𝜇 and 𝛿/2 are the mean value and standard deviation
of 𝜇, respectively, and 𝛿 is regarded as the intensity of 𝜇. 𝑢 is
a random variable defined on [−1, 1].

It is well known that the stochastic function space,
which is constituted with the responses of nonlinear dynamic
systems with random parameters, has proved to be a Hilbert
space with respect to convergence in the mean square.
Therefore, the fractional-order system (18) with random
parameters can be reduced into the equivalent deterministic
system by using of the orthogonal polynomial expansion. It
follows from the orthogonal polynomial approximation that
the responses of system (18) can be expressed approximately
by the following series:
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where𝐻
𝑖
(𝑢) represents the 𝑖th Chebyshev polynomial and𝑁

is the largest order of the polynomials.Then substituting (20)
into the system (18), we can get
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and with the aid of the recurrent formulas of Chebyshev
polynomial, all the nonlinear terms in the system can be
further reduced into linear combination of 𝐿

𝑖
(𝑢) as follows:
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algebraic systems, such as Maple or MATLAB. Meanwhile,
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Substituting (22) and (23) into (21), then we can have
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Multiply both sides of (24) by 𝐻
𝑖
(𝑢), 𝑖 = 0, 1, 2, . . . , 𝑁 in

sequence and take expectation with respect to 𝑢.Then we can
finally obtain the equivalent deterministic system. Remember
that if 𝑁 → ∞ in (24), then its left is strictly equivalent to
the response of stochastic system (18). Otherwise, (24) is just
approximately valid with aminimal residual error. Due to the
requirement of computational precision, we take𝑁 = 4 in the
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following numerical analysis.Therefore, we get the equivalent
deterministic system approximately as
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2
= − 𝑦

2

𝐷
𝑞

𝑦
2
= − 𝑎𝑆

2
+ 𝑏𝑥
2
+ 𝜇𝑦
2
+

1

2
𝛿 (𝑦
1
+ 𝑦
3
)

𝐷
𝑞

𝑥
3
= − 𝑦

3

𝐷
𝑞

𝑦
3
= − 𝑎𝑆

3
+ 𝑏𝑥
3
+ 𝜇𝑦
3
+

1

2
𝛿 (𝑦
2
+ 𝑦
4
)

𝐷
𝑞

𝑥
4
= − 𝑦

4

𝐷
𝑞

𝑦
4
= − 𝑎𝑆

4
+ 𝑏𝑥
4
+ 𝜇𝑦
4
+

1

2
𝛿𝑦
3
.

(25)

We can get the numerical solutions 𝑥
𝑖
, 𝑦
𝑖
, (𝑖 = 0, 1, 2, 3, 4) of

system (25) by the improved predictor-corrector algorithm.
Therefore, the approximate random responses of the stochas-
tic system (18) can be expressed as

𝑥 (𝑡, 𝑢) ≈

4

∑

𝑖=0

𝑥
𝑖
(𝑡)𝐻
𝑖
(𝑢)

𝑦 (𝑡, 𝑢) ≈

4

∑

𝑖=0

𝑦
𝑖
(𝑡)𝐻
𝑖
(𝑢) .

(26)

The ensemble mean responses (EMRs for short) of the
stochastic fractional-order system are described as

𝐸 [𝑥 (𝑡, 𝑢)] ≈

4

∑

𝑖=0

𝑥
𝑖
(𝑡) 𝐸 [𝐻

𝑖
(𝑢)] = 𝑥

0
(𝑡)

𝐸 [𝑦 (𝑡, 𝑢)] ≈

4

∑

𝑖=0

𝑦
𝑖
(𝑡) 𝐸 [𝐻

𝑖
(𝑢)] = 𝑦

0
(𝑡) .

(27)

Especially for 𝑢 = 0, namely, 𝜇 = 𝜇, this sample system is
significant for reference. It is usually called a mean parameter
system, of which the responses (SRMs for short) may be
approximated as

𝑥 (𝑡, 0) ≈

4

∑

𝑖=0

𝑥
𝑖
(𝑡)𝐻
𝑖
(0) = 𝑥

0
(𝑡) − 𝑥

2
(𝑡) + 𝑥

4
(𝑡)

𝑦 (𝑡, 0) ≈

4

∑

𝑖=0

𝑦
𝑖
(𝑡)𝐻
𝑖
(0) = 𝑦

0
(𝑡) − 𝑦

2
(𝑡) + 𝑦

4
(𝑡) .

(28)

5. Hopf Bifurcations

A Hopf bifurcation occurs when a periodic solution or limit
cycle, surrounding an equilibrium point, arises or goes away
as a parameter varies. In this section, the Hopf bifurcation for
the stochastic fractional-order VDP system will be studied
with theoretical and numerical computations. Obviously,

both the stochastic VDP and equivalent deterministic sys-
tems (18) and (25) only have one equilibrium point, namely,
the origin (0,0). The Jacobian matrix 𝐽 for the linearized
system evaluated at the origin is

𝐽 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 −1 0 0 0 0 0 0 0 0

𝑏 𝜇 0
1

2
𝛿 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

1

2
𝛿 0 𝑏 𝜇 0

1

2
𝛿 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0
1

2
𝛿 𝑏 𝜇 0

1

2
𝛿 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0
1

2
𝛿 𝑏 𝜇 0

1

2
𝛿

0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0
1

2
𝛿 𝑏 𝜇

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (29)

The corresponding characteristic equation is

𝑓 (𝜆) = 𝑎
0
𝜆
10

+ 𝑎
1
𝜆
9

+ 𝑎
2
𝜆
8

+ 𝑎
3
𝜆
7

+ 𝑎
4
𝜆
6

+ 𝑎
5
𝜆
5

+ 𝑎
6
𝜆
4

+ 𝑎
7
𝜆
3

+ 𝑎
8
𝜆
2

+ 𝑎
9
𝜆 + 𝑎
10
,

(30)

where 𝑎
0
, 𝑎
1
, . . . , 𝑎

10
are the coefficients of (30) and can be

obtained by computing via Maple or MATLAB. According to
the bifurcation theory of nonlinear dynamical systems and
taking 𝑤 as a bifurcation parameter [22], we can obtain the
existence conditions of Hopf bifurcation for the system.

(1) The eigenvalues of the linearized system about the
fixed point are 𝛼(𝑤) ± 𝑖𝛽(𝑤).

(2) The real and image parts of the eigenvalues satisfy
𝛼(𝑤
𝑐
) = 0, 𝛽(𝑤

𝑐
) > 0, 𝛼(𝑤

𝑐
) ̸= 0, when 𝑤 = 𝑤

𝑐
.

(3) The real parts of other eigenvalues are not equal to
zeros.

For the high order of equivalent system (25), so it is hard
to get the threshold value of bifurcation parameter directly.
Therefore, we can get the threshold via the following theorem.

Theorem 1. Let 𝑓(𝜆) = 𝑎
0
𝜆
𝑛

+ 𝑎
1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑛

= 0 be the
characteristic equation evaluated at the equilibrium point, Δ

𝑛

the n-dimensional Routh-Hurwitz determinant, and 𝑎
𝑖
, (𝑖 =

0, 1, . . . , 𝑛) the coefficient of the characteristic equation. If there
exists a threshold of bifurcation parameter 𝑤

𝑐
which conforms

to the following terms, then the first two existence conditions of
Hopf bifurcation are satisfied:

(1) Δ
𝑛−1

(𝑤
𝑐
) = 0, Δ

𝑛−2
(𝑤
𝑐
) ̸= 0, Δ

𝑛−3
(𝑤
𝑐
) ̸= 0;

(2) 𝑎
𝑖
(𝑤
𝑐
) > 0, (0, 1, . . . , 𝑛);

(3) Δ


𝑛−1
(𝑤
𝑐
) ̸= 0.
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Figure 2: The time trajectories and phase diagrams for 𝑢 = −0.09.

According to Theorem 1, the following parameter rela-
tions which can make the equality Δ

9
= 0 are derived:

𝜇 = 0, 𝜇 = ±
𝛿

2
, 𝜇 = ±

𝛿

4
, 𝜇 = ±

√3𝛿

2
,

𝜇 = ±
√3𝛿

4
, 𝜇 =

𝛿

4
±

√3𝛿

4
, 𝜇 = −

𝛿

4
±

√3𝛿

4
.

(31)

Then, (31) is substituted into the 8-dimensional and 7-
dimensional Routh-Hurwitz determinants Δ

8
, Δ
7
, and only

the following parameters can make Δ
8

̸= 0, Δ
7

̸= 0 satisfied:

𝜇 = ±
𝛿

2

𝜇 = ±
√3𝛿

2
.

(32)

Meanwhile, the relations which can make all the coefficients
satisfied 𝑎

𝑖
> 0 (𝑖 = 0, 1, . . . , 10) are

𝜇 = ±
√3𝛿

2
. (33)

We substitute the relations (33) intoΔ


9
(𝜇) andfind thatΔ

9
(𝜇)

is not equal to 0; therefore, according to Theorem 1, the first
two existence conditions of Hopf bifurcation are satisfied.
When (33) is substituted into the characteristic equation, all
the eigenvalues of it can be obtained:

𝜆
1,2

= ±√𝑏𝑖,

𝜆
3,4

=
𝛿

4
−

√3𝛿

4
±

1

4

√4𝛿2 − 2√3𝛿2 − 16𝑏

𝜆
5,6

= −
√3𝛿

4
±

1

4

√3𝛿2 − 16𝑏
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Figure 3: The time trajectories and phase diagrams for 𝑢 = −0.01.

𝜆
7,8

= −
𝛿

4
−

√3𝛿

4
±

1

4

√4𝛿2 − 2√3𝛿2 − 16𝑏

𝜆
9,10

= −
√3𝛿

2
±

1

2

√3𝛿2 − 4𝑏.

(34)

Obviously, when the intensity of random parameter 𝛿 ̸= 0, the
real parts of all the other eigenvalues are less than 0 except
𝜆
1
and 𝜆

2
. The characteristic equation does not have zero

solution for 𝑏 ̸= 0. Therefore, all the existence conditions of
Hopf bifurcation are satisfied. When 𝜇

𝑐
= −√3𝛿/2, the Hopf

bifurcation occurs around the equilibrium (0, 0).
The parameters are taken as 𝑎 = 1, 𝑏 = 1, and 𝛿 =

0.1, and the derivative order is 𝑞 = 0.995. And initial
conditions are [𝑥

0
(0), . . . , 𝑥

4
(0)] = (0.2, 0.2, 0.2, 0.2)

𝑇 and
[𝑦
0
(0), . . . , 𝑦

4
(0)] = (−0.2, −0.2, −0.2, −0.2)

𝑇. According to
the above analysis, we can get that the critical parameter value
of the bifurcation is 𝜇

𝑐
= −√3𝛿/2 ≈ −0.0866, which implies

that if 𝜇 < 𝜇
𝑐
, the system will converge to the equilibrium;

otherwise, it will converge to a limit cycle. The parameter
values are chosen as 𝜇 = −0.09 and 𝑢 = −0.01, respectively.
Then we obtain the time trajectories and phase diagrams for
the EMR and SRM of the stochastic system by simulation
computations; see Figures 2 and 3. It is clearly seen that the
system converges to the fixed point (0, 0) for 𝜇 = −0.09 and
to a limit cycle for 𝑢 = −0.01, which implies that the Hopf
bifurcation occurs in the stochastic system (18). Meanwhile,
the SRM and EMR of phase plots coincide well enough.
It means that the Chebyshev polynomial approximation
method is effective for the stochastic fractional-order system
(18).

When the others parameters are fixed and 𝜇 = −0.02, we
also found that Hopf bifurcation occurs with the variation
of the derivative order. The stochastic system converges to
the equilibrium when 𝑞 ≤ 0.98 and to a limit cycle for 𝑞 ≥

0.99, which means that the Hopf bifurcation occurs when
the derivative order 𝑞 = 0.99; see Figure 4, from which it



8 Abstract and Applied Analysis

0 0.05 0.1 0.15 0.2 0.25

0

0.05

0.1

0.15

0.2

y
0

x0

−0.15

−0.1

−0.05

−0.2
−0.15 −0.1 −0.05

(a) 𝑞 = 0.98

0 0.05 0.1

0

0.02

0.04

0.06

0.08

0.1

−0.02

−0.04

−0.06

−0.08

−0.05

y
0

x0

−0.1
−0.1

(b) 𝑞 = 0.99

Figure 4: The phase diagrams for different values of order 𝑞.
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is obtained that the derivative order can also be taken as a
bifurcation parameter for fractional-order system.

The simulation time is taken as 𝑡 = 800, one integration
step of time is taken as Δ𝑡 = 0.001, derivative order 𝑞 = 0.97,
and divide the time interval [0, 800] into 8 equal parts. The
time trajectory and phase diagram for 𝑡 = 800 are shown
in Figure 5, from which it appears that the 𝑥

0
converges to a

fixed point as 𝑡 ≥ 300. However, the time trajectory is zoomed
in when 𝑡 belongs to the interval [300, 400]; see Figure 6(a),
fromwhich we can see that the trajectory gradually decreases
but does not converge to a point directly. Secondly, the time
trajectory is zoomed in when 𝑡 ∈ [400, 500]; see Figure 6(b).
Meanwhile, we also obtain the trajectories for 𝑡 ∈ [500, 600],
𝑡 ∈ [600, 700], and 𝑡 ∈ [700, 800] which are shown in Figures
6(c)–6(e), respectively. Comparing these figures, it is seen
that the amplitude of 𝑥

0
decreases as the time 𝑡 increases.

Based on these observations, we can suggest that the EMRs
of the stochastic system (18) have an extremely long transient
process while converging to the equilibrium as 𝑡 → ∞.

6. Conclusions

In this paper, the Hopf bifurcation of a fractional-order VDP
system with a random parameter is analyzed. An equivalent
deterministic system is obtained with the approximation
principle of Chebyshev orthogonal polynomials. Based on
bifurcation theory of nonlinear dynamic systems, the critical
parameter value of the bifurcation is obtained by theoretical
analysis. Meanwhile, numerical simulations are performed
to verify the theoretical results. Besides, the derivative order
can also be taken as a bifurcation parameter, and the Hopf
bifurcation is observed with the variation of the order.
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It is worth mentioning that the orthogonal polyno-
mial approximation is an effective method for integer-order
stochastic systems, but the universality of the method for
fractional-order ones still remains an open question. Due to
the absences of analytical methods, the threshold value of
bifurcation when the derivative order is taken as a bifurcation
parameter cannot be obtained by theoretical analysis but only
the numerical experiments.
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[29] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequal-
ities, Springer, New York, NY, USA, 1995.


