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A linearized compact difference scheme is provided for a class of variable coefficient parabolic systems with delay. The unique
solvability, unconditional stability, and convergence of the difference scheme are proved, where the convergence order is four in
space and two in time. A numerical test is presented to illustrate the theoretical results.

1. Introduction

From the twentieth century, more and more scholars have
been attracted into the research on the theory of delay
differential equations (DDEs) [1–4]. As we know, most DDEs
have no analytical solutions; efficient numerical methods
solving for DDEs and delay partial differential equations
(DPDEs) need to be considered deeply. Recently, many
scholars consider the numerical investigation on DPDEs. For
instance, Marzban and Tabrizidooz [5] considered a hybrid
approximation method for solving Hutchinson’s equation;
Jackiewicz and Zubik-Kowal [6] considered Chebyshev spec-
tral collocation and waveform relaxation methods for non-
linear DPDEs and finite difference methods were considered
to solve delay parabolic partial differential equations in [7–
9]; Li et al. [10–12] constructed finite element methods to
solve reaction-diffusion equations with delay. The numerical
research of DPDEs focused on stability analysis can be
referred to in [13].

The following variable coefficient parabolic systems with
delay are considered in this paper:

𝑟 (𝑥, 𝑡) 𝑢
𝑡
− 𝑑𝑢
𝑥𝑥
= 𝑓 (𝑢 (𝑥, 𝑡) , 𝑢 (𝑥, 𝑡 − 𝑠) , 𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ (0, 1) × (0, 𝑇] ,

(1)

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥, 𝑡) , 𝑥 ∈ [0, 1] , 𝑡 ∈ [−𝑠, 0] , (2)

𝑢 (0, 𝑡) = 𝛼 (𝑡) , 𝑢 (1, 𝑡) = 𝛽 (𝑡) , 𝑡 ∈ (0, 𝑇] , (3)

where 𝑑 > 0 is a constant and 𝑠 > 0 is the delay term,
𝑟(𝑥, 𝑡) ∈ 𝐶((0, 1) × (0, 𝑇]), 0 < 𝑐

0
≤ 𝑟(𝑥, 𝑡) ≤ 𝑐

1
.

In the special case of 𝑟(𝑥, 𝑡) = 1, numerical solutions of
(1)–(3) have been considered in [14–17]. Ferreira and da
Silva considered a backward Euler scheme and proved the
stability and convergence by the energy method in [14]. A
Crank-Nicolson scheme and a linearized compact difference
scheme were proposed by Zhang and Sun in [15] and Sun
and Zhang in [16], respectively. Q. Zhang and C. Zhang
considered a new linearized compact multisplitting scheme
in [17]. Gu and Wang constructed a Crank-Nicolson scheme
in [18] to solve a special case of (1), where 𝑓 = 𝑓(𝑢(𝑥, 𝑡 −

𝑠)). In this paper, a linearized compact difference scheme
solving for (1)–(3) will be constructed.The unique solvability,
unconditional stability, and convergence of the difference
scheme are proved, where the convergence order is four in
space and two in time. A numerical test is presented to
illustrate the theoretical results.

The paper is organized as follows. In Section 2, a
linearized compact difference scheme is constructed to
solve (1)–(3). Section 3 considers the solvability, stabil-
ity, and convergence of the provided difference scheme.
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In Section 4, a numerical test is presented to illustrate the
theoretical results. Section 5 gives a brief discussion of this
paper.

2. The Compact Difference Scheme and
Local Truncation Error

Throughout this paper, the following assumptions are
assumed to be true.

(H1) Let 𝑚 be an integer satisfying 𝑚𝑠 ≤ 𝑇 < (𝑚 + 1)𝑠,
denote 𝐼

𝑙
= (𝑙𝑠, 𝑙𝑠 + 𝑠), 𝑙 = −1, 0, . . . , 𝑚 − 1, 𝐼

𝑚
=

(𝑚𝑠, 𝑇), and 𝐼 = ∪𝑚
𝑝=−1

𝐼
𝑝
, assume that (1)–(3) has a

unique solution 𝑢 ∈ 𝐶6,4(𝐼 × (0, 𝑇]) and that 𝑢 and its
partial derivatives are all bounded by a constant 𝑐

2
;

(H2) 𝑓(𝜇, ], 𝑥, 𝑡) has bounded first-order continuous par-
tial derivatives, and we denote

𝑐
3
= max
|𝜀1|≤𝜀0 , |𝜀2|≤𝜀0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝜇
(𝑢 (𝑥, 𝑡) + 𝜀

1
, 𝑢 (𝑥, 𝑡 − 𝑠) + 𝜀

2
, 𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑐
4
= max
|𝜀1|≤𝜀0 , |𝜀2|≤𝜀0

󵄨
󵄨
󵄨
󵄨
𝑓] (𝑢 (𝑥, 𝑡) + 𝜀1, 𝑢 (𝑥, 𝑡 − 𝑠) + 𝜀2, 𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
,

(4)

where 𝜀
0
> 0, 𝑐
3
, and 𝑐

4
are constants, (𝑥, 𝑡) ∈ (0, 1) ×

(0, 𝑇].

First let𝑀 and 𝑗 be two positive integers; then, we take
ℎ = 1/𝑀, 𝜏 = 𝑠/𝑗, 𝑥

𝑖
= 𝑖ℎ, 𝑡

𝑘
= 𝑘𝜏, 𝑡

𝑘+1/2
= (𝑡
𝑘
+ 𝑡
𝑘+1
)/2.

Define Ω
ℎ𝜏
= Ω
ℎ
× Ω
𝜏
, where Ω

ℎ
= {𝑥
𝑖
| 0 ≤ 𝑖 ≤ 𝑀},

Ω
𝜏
= {𝑡
𝑘
| −𝑗 ≤ 𝑘 ≤ 𝑁}, 𝑁 = [𝑇/𝜏]. Denote 𝑈𝑘

𝑖
= 𝑢(𝑥

𝑖
, 𝑡
𝑘
),

0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 𝑁, throughout this paper. Let

W = {V𝑘
𝑖
| 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 𝑁} (5)

be the grid function space defined on Ω
ℎ𝜏
. The following

notations are made:

V𝑘+(1/2)
𝑖

=

V𝑘
𝑖
+ V𝑘+1
𝑖

2

,

𝛿
𝑡
V𝑘+(1/2)
𝑖

=

V𝑘+1
𝑖
− V𝑘
𝑖

𝜏

,

𝛿
𝑥
V𝑘
𝑖+(1/2)

=

V𝑘
𝑖+1
− V𝑘
𝑖

ℎ

,

𝛿
2

𝑥
V𝑘
𝑖
=

V𝑘
𝑖+1
− 2V𝑘
𝑖
+ V𝑘
𝑖−1

ℎ
2

,

AV𝑘
𝑖
=

1

12

(V𝑘
𝑖−1
+ 10V𝑘
𝑘
+ V𝑘
𝑖+1
) .

(6)

Considering (1) at the point (𝑥
𝑖
, 𝑡
𝑘+(1/2)

), we have

𝑟 (𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

𝜕𝑢

𝜕𝑡

(𝑥
𝑖
, 𝑡
𝑘+(1/2)

) − 𝑑

𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

= 𝑓 (𝑢 (𝑥
𝑖
, 𝑡
𝑘+(1/2)

) , 𝑢 (𝑥
𝑖
, 𝑡
𝑘+(1/2)−𝑗

) , 𝑥
𝑖
, 𝑡
𝑘+(1/2)

) ,

0 ≤ 𝑖 ≤ 𝑀, 0 ≤ 𝑘 ≤ 𝑁 − 1.

(7)

From Taylor expansion, we have

𝜕𝑢

𝜕𝑡

(𝑥
𝑖
, 𝑡
𝑘+(1/2)

) = 𝛿
𝑡
𝑈
𝑘+(1/2)

𝑖
−

𝜏
2

24

𝜕
3
𝑢

𝜕𝑡
3
(𝑥
𝑖
, 𝜂
𝑘

𝑖
) ,

𝜂
𝑘

𝑖
∈ (𝑡
𝑘
, 𝑡
𝑘+1
) ,

𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

=

1

2

[

𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘
) +

𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘+1
)]

−

𝜏
2

8

𝜕
4
𝑢

(𝜕𝑥
2
𝜕𝑡
2
)

(𝑥
𝑖
, 𝛾
𝑘

𝑖
)

=

1

2

(𝛿
2

𝑥
𝑈
𝑘

𝑖
+ 𝛿
2

𝑥
𝑈
𝑘+1

𝑖
)

−

ℎ
2

24

[

𝜕
4
𝑢

𝜕𝑥
4
(𝜉
𝑘

𝑖
, 𝑡
𝑘
) +

𝜕
4
𝑢

𝜕𝑥
4
(𝜉
𝑘+1

𝑖
, 𝑡
𝑘+1
)]

−

𝜏
2

8

𝜕
4
𝑢

𝜕𝑥
2
𝜕𝑡
2
(𝑥
𝑖
, 𝛾
𝑘

𝑖
) ,

𝜉
𝑘

𝑖
, 𝜉
𝑘+1

𝑖
∈ (𝑥
𝑖−1
, 𝑥
𝑖+1
) , 𝛾

𝑘

𝑖
∈ (𝑡
𝑘
, 𝑡
𝑘+1
) ,

𝑓 (𝑢 (𝑥
𝑖
, 𝑡
𝑘+(1/2)

) , 𝑢 (𝑥
𝑖
, 𝑡
𝑘+(1/2)−𝑗

) , 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

= 𝑓(

3

2

𝑈
𝑘

𝑖
−

1

2

𝑈
𝑘−1

𝑖
,

1

2

𝑈
𝑘+1−𝑗

𝑖
+

1

2

𝑈
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

+

3𝜏
2

8

𝜕
2
𝑢 (𝑥
𝑖
, 𝜌
𝑘
)

𝜕𝑡
2

𝑓
𝜇
(𝜁
𝑘

𝑖
, 𝜍
𝑘

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

−

𝜏
2

8

𝜕
2
𝑢 (𝑥
𝑖
, 󰜚
𝑘
)

𝜕𝑡
2

𝑓] (𝜁
𝑘

𝑖
, 𝜍
𝑘

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

) ,

(8)

where 𝜌𝑘 ∈ (𝑡
𝑘−1
, 𝑡
𝑘+1/2

), 󰜚𝑘 ∈ (𝑡
𝑘−𝑗
, 𝑡
𝑘+1−𝑗

), 𝜁𝑘
𝑖
is between

𝑢(𝑥
𝑖
, 𝑡
𝑘+(1/2)

) and (3/2)𝑈𝑘
𝑖
− (1/2)𝑈

𝑘−1

𝑖
, and 𝜍𝑘

𝑖
is between

𝑢(𝑥
𝑖
, 𝑡
𝑘+(1/2)−𝑗

) and (1/2)𝑈𝑘+1−𝑗
𝑖

+ (1/2)𝑈
𝑘−𝑗

𝑖
. Substituting (8)

into (7), denote 𝑟𝑘+(1/2)
𝑖

= 𝑟(𝑥
𝑖
, 𝑡
𝑘+(1/2)

); we obtain

𝑟
𝑘+(1/2)

𝑖
𝛿
𝑡
𝑈
𝑘+(1/2)

𝑖
−

𝑑

2

[

𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘
) +

𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘+1
)]

= 𝑓(

3

2

𝑈
𝑘

𝑖
−

1

2

𝑈
𝑘−1

𝑖
,

1

2

𝑈
𝑘+1−𝑗

𝑖
+

1

2

𝑈
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

+ 𝜏
2
𝑅

𝑘

𝑖
, 1 ≤ 𝑖 ≤ 𝑀, 0 ≤ 𝑘 ≤ 𝑁 − 1,

(9)

where

𝑅

𝑘

𝑖
=

𝑟
𝑘+(1/2)

𝑖

24

𝜕
3
𝑢

𝜕𝑡
3
(𝑥
𝑖
, 𝜂
𝑘

𝑖
) −

𝑑

8

𝜕
4
𝑢

𝜕𝑥
2
𝜕𝑡
2
(𝑥
𝑖
, 𝛾
𝑘

𝑖
)

+

3

8

𝜕
2
𝑢 (𝑥
𝑖
, 𝜌
𝑘
)

𝜕𝑡
2

𝑓
𝜇
(𝜁
𝑘

𝑖
, 𝜍
𝑘

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

−

1

8

𝜕
2
𝑢 (𝑥
𝑖
, 󰜚
𝑘
)

𝜕𝑡
2

𝑓] (𝜁
𝑘

𝑖
, 𝜍
𝑘

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

) .

(10)
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Acting operatorA on both sides of (9), we have

A𝑟
𝑘+(1/2)

𝑖
𝛿
𝑡
𝑈
𝑘+(1/2)

𝑖

−

𝑑

2

[A
𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘
) +A

𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘+1
)]

= A𝑓(
3

2

𝑈
𝑘

𝑖
−

1

2

𝑈
𝑘−1

𝑖
,

1

2

𝑈
𝑘+1−𝑗

𝑖
+

1

2

𝑈
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

+ 𝜏
2
A𝑅
𝑘

𝑖
, 1 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1.

(11)

Resorting to the following Lemma, we can obtain the estima-
tion of the operatorA.

Lemma 1 (see [19, 20]). Suppose that 𝑞(𝑥) ∈ 𝐶6[𝑥
𝑖−1
, 𝑥
𝑖+1
];

then, we have
1

12

[𝑞
󸀠󸀠
(𝑥
𝑖−1
) + 10𝑞

󸀠󸀠
(𝑥
𝑖
) + 𝑞
󸀠󸀠
(𝑥
𝑖+1
)]

−

1

ℎ
2
[𝑞 (𝑥
𝑖−1
) − 2𝑞 (𝑥

𝑖
) + 𝑞 (𝑥

𝑖+1
)]

=

ℎ
4

240

𝑞
(6)
(𝜔
𝑖
) ,

(12)

where 𝜔
𝑖
∈ (𝑥
𝑖−1
, 𝑥
𝑖+1
).

From Lemma 1 and Taylor expansion, we obtain

A
𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘
) = 𝛿
2

𝑥
𝑈
𝑘

𝑖
+

ℎ
4

240

𝜕
6
𝑢

𝜕𝑥
6
(𝜃
𝑘

𝑖
, 𝑡
𝑘
) ,

𝜃
𝑘

𝑖
∈ (𝑥
𝑖−1
, 𝑥
𝑖+1
) ,

A
𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘+1
) = 𝛿
2

𝑥
𝑈
𝑘+1

𝑖
+

ℎ
4

240

𝜕
6
𝑢

𝜕𝑥
6
(𝜃
𝑘+1

𝑖
, 𝑡
𝑘+1
) ,

𝜃
𝑘+1

𝑖
∈ (𝑥
𝑖−1
, 𝑥
𝑖+1
) .

(13)

Inserting (13) into (11), we have

A𝑟
𝑘+(1/2)

𝑖
𝛿
𝑡
𝑈
𝑘+(1/2)

𝑖
− 𝑑𝛿
2

𝑥
𝑈
𝑘+1/2

𝑖

= A𝑓(
3

2

𝑈
𝑘

𝑖
−

1

2

𝑈
𝑘−1

𝑖
,

1

2

𝑈
𝑘+1−𝑗

𝑖
+

1

2

𝑈
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

+ 𝑅
𝑘

𝑖
, 1 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1,

(14)

where

𝑅
𝑘

𝑖
= 𝜏
2
A𝑅
𝑘

𝑖
+

𝑑ℎ
4

480

[

𝜕
6
𝑢

𝜕𝑥
6
(𝜃
𝑘

𝑖
, 𝑡
𝑘
) +

𝜕
6
𝑢

𝜕𝑥
6
(𝜃
𝑘+1

𝑖
, 𝑡
𝑘+1
)] .

(15)

From 0 < 𝑐
0
≤ 𝑟
𝑘+1/2

𝑖
≤ 𝑐
1
and assumptions (H1) and

(H2), we have
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑅

𝑘

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑐
5
, 1 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1, (16)

such that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑅
𝑘

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑐
6
(𝜏
2
+ ℎ
4
) , 1 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1. (17)

Discretizing the initial and boundary conditions of (2)
and (3), we obtain

𝑈
𝑘

𝑖
= 𝜙 (𝑥

𝑖
, 𝑡
𝑘
) , 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 0, (18)

𝑈
𝑘

0
= 𝛼 (𝑡

𝑘
) , 𝑈

𝑘

𝑀
= 𝛽 (𝑡

𝑘
) , 1 ≤ 𝑘 ≤ 𝑁. (19)

Replacing 𝑈𝑘
𝑖
by 𝑢𝑘
𝑖
in (14) and omitting 𝑅𝑘

𝑖
, we obtain the

following compact difference scheme:

A𝑟
𝑘+(1/2)

𝑖
𝛿
𝑡
𝑢
𝑘+(1/2)

𝑖
− 𝑑𝛿
2

𝑥
𝑢
𝑘+1/2

𝑖

= A𝑓(
3

2

𝑢
𝑘

𝑖
−

1

2

𝑢
𝑘−1

𝑖
,

1

2

𝑢
𝑘+1−𝑗

𝑖
+

1

2

𝑢
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

) ,

1 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1,

(20)

𝑢
𝑘

𝑖
= 𝜙 (𝑥

𝑖
, 𝑡
𝑘
) , 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 0, (21)

𝑢
𝑘

0
= 𝛼 (𝑡

𝑘
) , 𝑢

𝑘

𝑀
= 𝛽 (𝑡

𝑘
) , 1 ≤ 𝑘 ≤ 𝑁. (22)

3. The Solvability, Convergence, and Stability
of the Compact Difference Scheme

Define the following grid function space onΩ
ℎ
:

𝑉 = {V | V = (V
0
, V
1
, . . . , V

𝑀
) , V
0
= V
𝑀
= 0} . (23)

If V ∈ 𝑉, we introduce the following notations:

‖V‖ = √ℎ
𝑀−1

∑

𝑖=1

(V
𝑖
)
2

,

|V|
1
= √ℎ

𝑀

∑

𝑖=1

(

V
𝑖
− V
𝑖−1

ℎ

)

2

,

‖V‖
∞
= max
0≤𝑖≤𝑀

󵄨
󵄨
󵄨
󵄨
V
𝑖

󵄨
󵄨
󵄨
󵄨
.

(24)

By [16, 17, 19], we have the following two inequalities:

‖V‖
∞
≤

1

2

|V|
1
, (25)

‖V‖ ≤
1

√6

|V|
1
. (26)

For the analysis of the difference scheme, the following
Lemma is introduced.

Lemma 2 (see [16, 17, 19]). Assume that {𝐹𝑘 | 𝑘 ≥ 0} to be
nonnegative sequence and satisfies

𝐹
𝑘+1
≤ 𝐴 + 𝐵𝜏

𝑘

∑

𝑖=1

𝐹
𝑙
, 𝑘 = 0, 1, . . . ; (27)

then

𝐹
𝑘+1
≤ 𝐴 exp (𝐵𝑘𝜏) , 𝑘 = 0, 1, 2, . . . , (28)

where 𝐴 and 𝐵 are nonnegative constants.
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Theorem 3. Under the condition that 5𝑐
0
−𝑐
1
> 0, the compact

difference scheme (20)–(22) has a unique solution.

Proof. Denote that 𝜆 = 𝑑𝜏/ℎ2; then, difference scheme (20)–
(22) can be reformed as

(

1

12

𝑟
𝑘+1/2

𝑖−1
−

𝜆

2

) 𝑢
𝑘+1

𝑖−1
+ (

10

12

𝑟
𝑘+1/2

𝑖
+ 𝜆) 𝑢

𝑘+1

𝑖

+ (

1

12

𝑟
𝑘+1/2

𝑖+1
−

𝜆

2

) 𝑢
𝑘+1

𝑖+1

= (

1

12

𝑟
𝑘+1/2

𝑖−1
+

𝜆

2

)𝑢
𝑘

𝑖−1

+ (

10

12

𝑟
𝑘+1/2

𝑖
− 𝜆) 𝑢

𝑘

𝑖
+ (

1

12

𝑟
𝑘+1/2

𝑖+1
+

𝜆

2

) 𝑢
𝑘

𝑖+1

+

𝜏

12

𝑓(

3

2

𝑢
𝑘

𝑖−1
−

1

2

𝑢
𝑘−1

𝑖−1
,

1

2

𝑢
𝑘+1−𝑗

𝑖−1

+

1

2

𝑢
𝑘−𝑗

𝑖−1
, 𝑥
𝑖−1
, 𝑡
𝑘+(1/2)

)

+

10𝜏

12

𝑓(

3

2

𝑢
𝑘

𝑖
−

1

2

𝑢
𝑘−1

𝑖
,

1

2

𝑢
𝑘+1−𝑗

𝑖

+

1

2

𝑢
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

+

𝜏

12

𝑓(

3

2

𝑢
𝑘

𝑖+1
−

1

2

𝑢
𝑘−1

𝑖+1
,

1

2

𝑢
𝑘+1−𝑗

𝑖+1

+

1

2

𝑢
𝑘−𝑗

𝑖+1
, 𝑥
𝑖+1
, 𝑡
𝑘+(1/2)

) .

(29)

The mathematical induction method will be used in the
proof of this theorem. Denote

𝑢
𝑘
= (𝑢
𝑘

0
, 𝑢
𝑘

1
, . . . , 𝑢

𝑘

𝑀
) . (30)

Notice that 𝑢𝑘 (−𝑗 ≤ 𝑘 ≤ 0) is determined by the initial
condition (21). Suppose that 𝑢𝑙 has been determined.

Let 𝑘 = 𝑙 in (20); the linear algebraic equations with
respect to 𝑢𝑙+1 can be obtained. Under the condition that
5𝑐
0
− 𝑐
1
> 0, we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

10

12

𝑟
𝑙+1/2

𝑖
+ 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

12

𝑟
𝑙+1/2

𝑖−1
−

𝜆

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

12

𝑟
𝑙+1/2

𝑖+1
−

𝜆

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥

10

12

𝑟
𝑙+1/2

𝑖
−

1

12

𝑟
𝑙+1/2

𝑖−1
−

1

12

𝑟
𝑙+1/2

𝑖+1

≥

10𝑐
0
− 2𝑐
1

12

> 0.

(31)

Thus, the coefficient matrix of the linear algebraic system is
strictly diagonally dominant and then there exists a unique
solution 𝑢𝑙+1. By the inductive principle, the proof ends.

Denote 𝑒𝑘
𝑖
= 𝑈
𝑘

𝑖
−𝑢
𝑘

𝑖
, 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 𝑁; subtracting

(20)–(22) from (14), (18), and (19), respectively, the following
error equations can be obtained:

A𝑟
𝑘+(1/2)

𝑖
𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖
− 𝑑𝛿
2

𝑥
𝑒
𝑘+1/2

𝑖

= A [𝑓(
3

2

𝑈
𝑘

𝑖
−

1

2

𝑈
𝑘−1

𝑖
,

1

2

𝑈
𝑘+1−𝑗

𝑖
+

1

2

𝑈
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

−𝑓(

3

2

𝑢
𝑘

𝑖
−

1

2

𝑢
𝑘−1

𝑖
,

1

2

𝑢
𝑘+1−𝑗

𝑖
+

1

2

𝑢
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)]

+ 𝑅
𝑘

𝑖
, 1 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1,

(32)

𝑒
𝑘

𝑖
= 0, 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 0, (33)

𝑒
𝑘

0
= 0, 𝑒

𝑘

𝑀
= 0, 1 ≤ 𝑘 ≤ 𝑁. (34)

Theorem 4. Denote

𝐶 = 𝑐
6
√

3𝑇

𝑑 (9𝑐
0
− 𝑐
1
)

exp(
2 (5𝑐
2

3
+ 𝑐
2

4
)

𝑑 (9𝑐
0
− 𝑐
1
)

𝑇) . (35)

If the following conditions are satisfied:

𝜏 ≤ (

𝜖
0

4𝐶

)

1/2

, ℎ ≤ (

𝜖
0

4𝐶

)

1/4

, (36)

then we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘󵄩󵄩
󵄩
󵄩
󵄩∞
≤ 𝐶 (𝜏

2
+ ℎ
4
) , 0 ≤ 𝑘 ≤ 𝑁, (37)

where 𝜖
0
> 0 is a constant.

Proof. Acting ℎ𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖
on (32) and summing up for 𝑖 from

1 to𝑀− 1, we obtain

ℎ

𝑀−1

∑

𝑖=1

(A𝑟
𝑘+(1/2)

𝑖
𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖
) 𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖

− 𝑑ℎ

𝑀−1

∑

𝑖=1

(𝛿
2

𝑥
𝑒
𝑘+1/2

𝑖
) 𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖

= ℎ

𝑀−1

∑

𝑖=1

{A [𝑓(
3

2

𝑈
𝑘

𝑖
−

1

2

𝑈
𝑘−1

𝑖
,

1

2

𝑈
𝑘+1−𝑗

𝑖

+

1

2

𝑈
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

− 𝑓(

3

2

𝑢
𝑘

𝑖
−

1

2

𝑢
𝑘−1

𝑖
,

1

2

𝑢
𝑘+1−𝑗

𝑖

+

1

2

𝑢
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)]} 𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖

+ ℎ

𝑀−1

∑

𝑖=1

(𝑅
𝑘

𝑖
) 𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖
, 1 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1.

(38)

Mathematical induction will be used to prove this theo-
rem. Notice that ‖𝑒𝑘‖

∞
= 0 (−𝑗 ≤ 𝑘 ≤ 0) and suppose that
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(37) is true for 0 ≤ 𝑘 ≤ 𝑙; we will show that (37) is also true
for 𝑘 = 𝑙 + 1.

In the following, each term of (38) will be estimated:

ℎ

𝑀−1

∑

𝑖=1

(A𝑟
𝑘+(1/2)

𝑖
𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖
) 𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖

≥

ℎ

12

𝑀−1

∑

𝑖=1

[9𝑟
𝑘+(1/2)

𝑖
−

(𝑟
𝑘+(1/2)

𝑖−1
+ 𝑟
𝑘+(1/2)

𝑖+1
)

2

] (𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖
)

2

≥

9𝑐
0
− 𝑐
1

12

󵄩
󵄩
󵄩
󵄩
󵄩
𝛿
𝑡
𝑒
𝑘+(1/2)󵄩󵄩

󵄩
󵄩
󵄩

2

,

−𝑑ℎ

𝑀−1

∑

𝑖=1

(𝛿
2

𝑥
𝑒
𝑘+(1/2)

𝑖
) 𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖
=

𝑑

2𝜏

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑘+1󵄨󵄨
󵄨
󵄨
󵄨

2

1
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑘󵄨󵄨
󵄨
󵄨
󵄨

2

1
) ,

ℎ

𝑀−1

∑

𝑖=1

(𝑅
𝑘

𝑖
) 𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖

≤

6

9𝑐
0
− 𝑐
1

ℎ

𝑀−1

∑

𝑖=1

(𝑅
𝑘

𝑖
)

2

+

9𝑐
0
− 𝑐
1

24

ℎ

𝑀−1

∑

𝑖=1

(𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖
)

2

≤

6

9𝑐
0
− 𝑐
1

𝑐
2

6
(𝜏
2
+ ℎ
4
)

2

+

9𝑐
0
− 𝑐
1

24

󵄩
󵄩
󵄩
󵄩
󵄩
𝛿
𝑡
𝑒
𝑘+(1/2)󵄩󵄩

󵄩
󵄩
󵄩

2

.

(39)

From the inductive assumption and (36), we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘󵄩󵄩
󵄩
󵄩
󵄩∞
≤ 𝐶 (𝜏

2
+ ℎ
4
) ≤

𝜖
0

2

, 0 ≤ 𝑘 ≤ 𝑙. (40)

From (H2), we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (

3

2

𝑈
𝑘

𝑖
−

1

2

𝑈
𝑘−1

𝑖
,

1

2

𝑈
𝑘+1−𝑗

𝑖
+

1

2

𝑈
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

−𝑓(

3

2

𝑢
𝑘

𝑖
−

1

2

𝑢
𝑘−1

𝑖
,

1

2

𝑢
𝑘+1−𝑗

𝑖
+

1

2

𝑢
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑐
3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

3

2

𝑒
𝑘

𝑖
−

1

2

𝑒
𝑘−1

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑐
4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

2

𝑒
𝑘+1−𝑗

𝑖
+

1

2

𝑒
𝑘−𝑗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

1 ≤ 𝑖 ≤ 𝑀, 0 ≤ 𝑘 ≤ 𝑙.

(41)

It then follows that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

A [𝑓(
3

2

𝑈
𝑘

𝑖
−

1

2

𝑈
𝑘−1

𝑖
,

1

2

𝑈
𝑘+1−𝑗

𝑖
+

1

2

𝑈
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

−𝑓(

3

2

𝑢
𝑘

𝑖
−

1

2

𝑢
𝑘−1

𝑖
,

1

2

𝑢
𝑘+1−𝑗

𝑖
+

1

2

𝑢
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ A(𝑐
3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

3

2

𝑒
𝑘

𝑖
−

1

2

𝑒
𝑘−1

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑐
4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

2

𝑒
𝑘+1−𝑗

𝑖
+

1

2

𝑒
𝑘−𝑗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

) ,

1 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝑙.

(42)

From the inequality above, we obtain

ℎ

𝑀−1

∑

𝑖=1

{A [𝑓(
3

2

𝑈
𝑘

𝑖
−

1

2

𝑈
𝑘−1

𝑖
,

1

2

𝑈
𝑘+1−𝑗

𝑖
+

1

2

𝑈
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)

−𝑓(

3

2

𝑢
𝑘

𝑖
−

1

2

𝑢
𝑘−1

𝑖
,

1

2

𝑢
𝑘+1−𝑗

𝑖
+

1

2

𝑢
𝑘−𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

)]}

× 𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖

≤ ℎ

𝑀−1

∑

𝑖=1

{A(𝑐
3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

3

2

𝑒
𝑘

𝑖
−

1

2

𝑒
𝑘−1

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑐
4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

2

𝑒
𝑘+1−𝑗

𝑖
+

1

2

𝑒
𝑘−𝑗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

)}

× 𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖

≤

6

9𝑐
0
− 𝑐
1

ℎ

×

𝑀−1

∑

𝑖=1

{A(𝑐
3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

3

2

𝑒
𝑘

𝑖
−

1

2

𝑒
𝑘−1

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑐
4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

2

𝑒
𝑘+1−𝑗

𝑖
+

1

2

𝑒
𝑘−𝑗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

)}

2

+

9𝑐
0
− 𝑐
1

24

󵄩
󵄩
󵄩
󵄩
󵄩
𝛿
𝑡
𝑒
𝑘+(1/2)

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

6

9𝑐
0
− 𝑐
1

ℎ

×

𝑀−1

∑

𝑖=1

(𝑐
3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

3

2

𝑒
𝑘

𝑖
−

1

2

𝑒
𝑘−1

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑐
4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

2

𝑒
𝑘+1−𝑗

𝑖
+

1

2

𝑒
𝑘−𝑗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

)

2

+

9𝑐
0
− 𝑐
1

24

󵄩
󵄩
󵄩
󵄩
󵄩
𝛿
𝑡
𝑒
𝑘+(1/2)󵄩󵄩

󵄩
󵄩
󵄩

2

≤

12

9𝑐
0
− 𝑐
1

× [𝑐
2

3
ℎ

𝑀−1

∑

𝑖=1

(

3

2

𝑒
𝑘

𝑖
−

1

2

𝑒
𝑘−1

𝑖
)

2

+𝑐
2

4
ℎ

𝑀−1

∑

𝑖=1

(

1

2

𝑒
𝑘+1−𝑗

𝑖
+

1

2

𝑒
𝑘−𝑗

𝑖
)

2

]

+

9𝑐
0
− 𝑐
1

24

󵄩
󵄩
󵄩
󵄩
󵄩
𝛿
𝑡
𝑒
𝑘+(1/2)󵄩󵄩

󵄩
󵄩
󵄩

2

≤

12

9𝑐
0
− 𝑐
1

× [

5

2

𝑐
2

3
ℎ

𝑀−1

∑

𝑖=1

((𝑒
𝑘

𝑖
)

2

+ (𝑒
𝑘−1

𝑖
)

2

)

+

1

2

𝑐
2

4
ℎ

𝑀−1

∑

𝑖=1

((𝑒
𝑘+1−𝑗

𝑖
)

2

+ (𝑒
𝑘−𝑗

𝑖
)

2

)]

+

9𝑐
0
− 𝑐
1

24

󵄩
󵄩
󵄩
󵄩
󵄩
𝛿
𝑡
𝑒
𝑘+(1/2)󵄩󵄩

󵄩
󵄩
󵄩

2

=

30

9𝑐
0
− 𝑐
1

𝑐
2

3
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘−1󵄩󵄩
󵄩
󵄩
󵄩

2

)
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+

6

9𝑐
0
− 𝑐
1

𝑐
2

4
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘+1−𝑗󵄩󵄩

󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘−𝑗󵄩󵄩
󵄩
󵄩
󵄩

2

)

+

9𝑐
0
− 𝑐
1

24

󵄩
󵄩
󵄩
󵄩
󵄩
𝛿
𝑡
𝑒
𝑘+(1/2)󵄩󵄩

󵄩
󵄩
󵄩

2

, 0 ≤ 𝑘 ≤ 𝑙.

(43)

Inserting (39)–(43) into (38), we obtain
𝑑

2𝜏

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑘+1󵄨󵄨
󵄨
󵄨
󵄨

2

1
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑘󵄨󵄨
󵄨
󵄨
󵄨

2

1
)

≤

30

9𝑐
0
− 𝑐
1

𝑐
2

3
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘−1󵄩󵄩
󵄩
󵄩
󵄩

2

)

+

6

9𝑐
0
− 𝑐
1

𝑐
2

4
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘+1−𝑗󵄩󵄩

󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘−𝑗󵄩󵄩
󵄩
󵄩
󵄩

2

)

+

6

9𝑐
0
− 𝑐
1

𝑐
2

6
(𝜏
2
+ ℎ
4
)

2

, 0 ≤ 𝑘 ≤ 𝑙.

(44)

The above inequality has the following form:
󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑘+1󵄨󵄨
󵄨
󵄨
󵄨

2

1
≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑘󵄨󵄨
󵄨
󵄨
󵄨

2

1
+

2𝜏

𝑑

30

9𝑐
0
− 𝑐
1

𝑐
2

3
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘󵄩󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘−1󵄩󵄩
󵄩
󵄩
󵄩

2

)

+

2𝜏

𝑑

6

9𝑐
0
− 𝑐
1

𝑐
2

4
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘+1−𝑗󵄩󵄩

󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑘−𝑗󵄩󵄩
󵄩
󵄩
󵄩

2

)

+

2𝜏

𝑑

6

9𝑐
0
− 𝑐
1

𝑐
2

6
(𝜏
2
+ ℎ
4
)

2

, 0 ≤ 𝑘 ≤ 𝑙.

(45)

Summing up (45) for 𝑘, noticing (33), and exploiting (26), we
have
󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑘+1󵄨󵄨
󵄨
󵄨
󵄨

2

1
≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
0󵄨󵄨
󵄨
󵄨
󵄨

2

1
+

2𝜏

𝑑

30

9𝑐
0
− 𝑐
1

𝑐
2

3

×

𝑘

∑

𝑚=0

(
󵄩
󵄩
󵄩
󵄩
𝑒
𝑚󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑚−1󵄩󵄩
󵄩
󵄩
󵄩

2

) +

2𝜏

𝑑

6

9𝑐
0
− 𝑐
1

𝑐
2

4

×

𝑘

∑

𝑚=0

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑚+1−𝑗󵄩󵄩

󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑚−𝑗󵄩󵄩
󵄩
󵄩
󵄩

2

)

+

2𝜏

𝑑

6

9𝑐
0
− 𝑐
1

𝑐
2

6

𝑙

∑

𝑚=0

(𝜏
2
+ ℎ
4
)

2

≤

24 (5𝑐
2

3
+ 𝑐
2

4
)

𝑑 (9𝑐
0
− 𝑐
1
)

𝜏

𝑘

∑

𝑚=1

󵄩
󵄩
󵄩
󵄩
𝑒
𝑚󵄩
󵄩
󵄩
󵄩

2

+

12𝑐
2

6
(𝑙 + 1) 𝜏

𝑑 (9𝑐
0
− 𝑐
1
)

(𝜏
2
+ ℎ
4
)

2

≤

4 (5𝑐
2

3
+ 𝑐
2

4
)

𝑑 (9𝑐
0
− 𝑐
1
)

𝜏

×

𝑘

∑

𝑚=1

󵄨
󵄨
󵄨
󵄨
𝑒
𝑚󵄨
󵄨
󵄨
󵄨

2

+

12𝑐
2

6
𝑇

𝑑 (9𝑐
0
− 𝑐
1
)

(𝜏
2
+ ℎ
4
)

2

, 0 ≤ 𝑘 ≤ 𝑙.

(46)

By Lemma 2, we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑙+1󵄨󵄨
󵄨
󵄨
󵄨

2

1
≤

12𝑐
2

6
𝑇

𝑑 (9𝑐
0
− 𝑐
1
)

exp(
4 (5𝑐
2

3
+ 𝑐
2

4
)

𝑑 (9𝑐
0
− 𝑐
1
)

𝑇) (𝜏
2
+ ℎ
4
)

2

.

(47)

Table 1: Numerical results of (54) when ℎ = 1/10, 𝜏 = 1/100.

(𝑥, 𝑡) Numerical
solution

Exact
solution |𝑢(𝑥

𝑖
, 𝑡
𝑘
) − 𝑢
𝑘

𝑖
|

(0.5, 0.1) 0.667184 0.667184 8.652𝑒 − 009

(0.5, 0.2) 0.727837 0.727837 1.623𝑒 − 008

(0.5, 0.3) 0.788490 0.788490 2.258𝑒 − 008

(0.5, 0.4) 0.849143 0.849143 2.805𝑒 − 008

(0.5, 0.5) 0.909796 0.909796 3.288𝑒 − 008

(0.5, 0.6) 0.970449 0.970449 3.725𝑒 − 008

(0.5, 0.7) 1.031102 1.031102 4.129𝑒 − 008

(0.5, 0.8) 1.091755 1.091755 4.509𝑒 − 008

(0.5, 0.9) 1.152408 1.152408 4.870𝑒 − 008

(0.5, 1.0) 1.213061 1.213061 5.218𝑒 − 008

From (25), we obtain

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑙+1󵄩󵄩
󵄩
󵄩
󵄩∞
≤ 𝑐
6
√

3𝑇

𝑑 (9𝑐
0
− 𝑐
1
)

exp(
2 (5𝑐
2

3
+ 𝑐
2

4
)

𝑑 (9𝑐
0
− 𝑐
1
)

𝑇) (𝜏
2
+ ℎ
4
) .

(48)

By the inductive principle, this completes the proof.

To discuss the stability of the difference scheme (20)–(22),
we consider the following problem:

𝑟 (𝑥, 𝑡) V
𝑡
− 𝑑V
𝑥𝑥
= 𝑓 (V (𝑥, 𝑡) , V (𝑥, 𝑡 − 𝑠) , 𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ (0, 1) × (0, 𝑇] ,

V (𝑥, 𝑡) = 𝜙 (𝑥, 𝑡) + 𝜓 (𝑥, 𝑡) , 𝑥 ∈ [0, 1] , 𝑡 ∈ [−𝑠, 0] ,

V (0, 𝑡) = 𝛼 (𝑡) , V (1, 𝑡) = 𝛽 (𝑡) , 𝑡 ∈ (0, 𝑇] ,

(49)

where 𝜓(𝑥, 𝑡) is the perturbation caused by 𝜙(𝑥, 𝑡). The
following difference scheme solving for (49) can be obtained:

A𝑟
𝑘+(1/2)

𝑖
𝛿
𝑡
V𝑘+(1/2)
𝑖

− 𝑑𝛿
2

𝑥
V𝑘+1/2
𝑖

= A𝑓(
3

2

V𝑘
𝑖
−

1

2

V𝑘−1
𝑖
,

1

2

V𝑘+1−𝑗
𝑖

+

1

2

V𝑘−𝑗
𝑖
, 𝑥
𝑖
, 𝑡
𝑘+(1/2)

) ,

1 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1,

V𝑘
𝑖
= 𝜙 (𝑥

𝑖
, 𝑡
𝑘
) + 𝜓
𝑘

𝑖
, 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 0,

V𝑘
0
= 𝛼 (𝑡

𝑘
) , V𝑘

𝑀
= 𝛽 (𝑡

𝑘
) , 1 ≤ 𝑘 ≤ 𝑁.

(50)

Similar to the proof of Theorem 4, the following stability
result can be obtained

Theorem 5. Denote

𝜂
𝑘

𝑖
= V𝑘
𝑖
− 𝑢
𝑘

𝑖
, 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 𝑁. (51)

Then, there exist constants 𝑐
7
and 𝑐
8
such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝜂
𝑘󵄩󵄩
󵄩
󵄩
󵄩∞
≤ 𝑐
7
√𝜏ℎ

0

∑

𝑚=−𝑗

𝑀−1

∑

𝑖=𝑙

(𝜓
𝑘

𝑖
)

2 (52)

under the condition that h and 𝜏 are small enough and
max
−𝑗≤𝑘≤0, 0≤𝑖≤𝑀

|𝜓
𝑘

𝑖
| ≤ 𝑐
8
.
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Table 2: Maximum norm errors of (54) with different step-sizes.

ℎ 𝜏 𝐸
∞
(ℎ, 𝜏) 𝐸

∞
(ℎ, 𝜏)/𝐸

∞
(ℎ/2, 𝜏/2)

1/10 1/100 5.220𝑒 − 008 ∗

1/20 1/400 3.295𝑒 − 009 15.842
1/40 1/1600 2.059𝑒 − 010 15.999
1/80 1/6400 1.283𝑒 − 011 16.046
1/160 1/25600 6.566𝑒 − 013 19.546

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

x

×10
−8

|U
(x
,1
)
−
U
h
t(
x
,1
)|

h = 1/10, 𝜏 = 1/100

h = 1/20, 𝜏 = 1/400

h = 1/40, 𝜏 = 1/1600

h = 1/80, 𝜏 = 1/6400

Figure 1: Error curves of difference scheme (20)–(22) solving for
problem (54) with different step-sizes when 𝑡 = 1.

4. Numerical Test

In this section, a numerical test is considered to validate
the algorithms provided in this paper, and the numerical
solutions 𝑢𝑘

𝑖
of the example are obtained by exploiting scheme

(20)–(22).
Define

𝐸
∞
(ℎ, 𝜏) = max

0≤𝑖≤𝑀, 0≤𝑘≤𝑁

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑥
𝑖
, 𝑡
𝑘
) − 𝑢
𝑘

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
. (53)

Example 1. Consider the following problem:

𝑟 (𝑥, 𝑡) 𝑢
𝑡
− 2𝑢
𝑥𝑥
= 𝑢 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡 − 0.1) + 2𝑒

−𝑥
,

𝑥 ∈ (0, 1) , 𝑡 ∈ (0, 1] ,

𝑢 (𝑥, 𝑡) = 𝑒
−𝑥
(1 + 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 ∈ [−0.1, 0] ,

𝑢 (0, 𝑡) = 1 + 𝑡, 𝑢 (1, 𝑡) = 𝑒
−1
(1 + 𝑡) , 𝑡 ∈ (0, 1] ,

(54)

where 𝑟(𝑥, 𝑡) = 4𝑡+ 5.9. The exact solution of (54) is 𝑢(𝑥, 𝑡) =
𝑒
−𝑥
(1 + 𝑡).

Table 1 provides some numerical results of difference
scheme (20)–(22) solving for (54) with step-sizes ℎ = 1/10
and 𝜏 = 1/100. Table 2 gives the maximum absolute
errors between numerical solutions and exact solutions with

0
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1
0

1

2
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4

5

tx

×10
−8

|U
(x
,t
)
−
U
h
t(
x
,t
)|

1

h = 1/10, 𝜏 = 1/100

Figure 2: Error surfacemaps of difference scheme (20)–(22) solving
for problem (54) with step-size ℎ = 1/10; 𝜏 = 1/100.
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×10
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h = 1/20, 𝜏 = 1/400

Figure 3: Error surfacemaps of difference scheme (20)–(22) solving
for problem (54) with step-size ℎ = 1/20; 𝜏 = 1/400.

different step-sizes. From Table 2, we can see that when the
space step-size and the time step-size are reduced by a factor
of 1/2 and 1/4, respectively, then themaximumabsolute errors
are reduced by a factor of approximately 1/16.

Figure 1 provides us the error curves of numerical solu-
tions for (54) at 𝑡 = 1 by using scheme (20)–(22). Figures 2
and 3 give the error surface of the numerical solutions with
step-sizes ℎ = 1/10, 𝜏 = 1/100, and ℎ = 1/20, 𝜏 = 1/400,
respectively.

Generally speaking, from the results of the tables and the
figures provided, we can see that the numerical results are
coincident with the theoretical results.
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5. Conclusion

In this paper, a compact difference scheme is constructed to
solve a type of variable coefficient delay partial differential
equations, and the difference scheme is proved to be uncon-
ditionally stable and convergent. Finally, a numerical test is
presented to illustrate the theoretical results.
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