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Let 𝐿 be the infinitesimal generator of an analytic semigroup on 𝐿
2
(R𝑛

)with Gaussian kernel bounds, and let 𝐿−𝛼/2 be the fractional
integrals of 𝐿 for 0 < 𝛼 < 𝑛. For any locally integrable function 𝑏, the commutators associated with 𝐿

−𝛼/2 are defined by
[𝑏, 𝐿

−𝛼/2
](𝑓)(𝑥) = 𝑏(𝑥)𝐿

−𝛼/2
(𝑓)(𝑥) − 𝐿

−𝛼/2
(𝑏𝑓)(𝑥). When 𝑏 ∈ BMO(𝜔) (weighted BMO space) or 𝑏 ∈ BMO, the authors obtain the

necessary and sufficient conditions for the boundedness of [𝑏, 𝐿−𝛼/2
] on weighted Morrey spaces, respectively.

1. Introduction and Main Results

Morrey [1] introduced the classical Morrey spaces to inves-
tigate the local behavior of solutions to second order
elliptic partial differential equations. Chiarenza and Frasca
[2] established the boundedness of the Hardy-Littlewood
maximal operator, the fractional operator, and a singular
integral operator on the Morrey spaces. On the other hand,
Coifman and Fefferman [3] and Muckenhoupt [4] studied
the boundedness of these operators on weighted 𝐿

𝑝 spaces.
Motivated by these works, Komori and Shirai [5] introduced
the following weighted Morrey space and investigated the
boundedness of classical operators in harmonic analysis,
that is, the Hardy-Littlewood maximal operator, a Calderón-
Zygmund operator, the fractional integral operator, and so
forth.

Let 1 ≤ 𝑝 < ∞ and 0 ≤ 𝑘 < 1. Then for two weights 𝜇
and ], the weighted Morrey space is defined by

𝐿
𝑝,𝑘

(𝜇, ]) = {𝑓 ∈ 𝐿
𝑝

loc (𝜇) :
𝑓

𝐿
𝑝,𝑘

(𝜇,])
< ∞} , (1)

where

𝑓
𝐿
𝑝,𝑘

(𝜇,])
= sup

𝑄

(
1

](𝑄)
𝑘
∫

𝑄

𝑓(𝑥)


𝑝

𝜇(𝑥)𝑑𝑥)

1/𝑝

, (2)

and the supremum is taken over all balls 𝑄 in R𝑛.

If 𝜇 = ], then we have the classical Morrey space 𝐿
𝑝,𝑘

(𝜇)

with measure 𝜇. When 𝑘 = 0, then 𝐿
𝑝,𝑘

(𝜇, ]) = 𝐿
𝑝
(𝜇) is the

Lebesgue space with measure 𝜇.
Suppose that 𝐿 is a linear operator on 𝐿

2
(R𝑛

) which
generates an analytic semigroup 𝑒

−𝑡𝐿 with a kernel 𝑝
𝑡
(𝑥, 𝑦)

satisfying a Gaussian upper bound, that is,

𝑝𝑡
(𝑥, 𝑦)

 ≤
𝐶

𝑡𝑛/2
𝑒

−𝑐(|𝑥−𝑦|
2
/𝑡) (3)

for 𝑥, 𝑦 ∈ R𝑛 and all 𝑡 > 0.
For 0 < 𝛼 < 𝑛, the fractional integral 𝐿−𝛼/2 of the operator

𝐿 is defined by

𝐿
−𝛼/2

𝑓 (𝑥) =
1

Γ (𝛼/2)
∫

∞

0

𝑒
−𝑡𝐿

(𝑓)
𝑑𝑡

𝑡−𝛼/2+1
(𝑥) . (4)

Note that if 𝐿 = −Δ is the Laplacian on R𝑛, then 𝐿
−𝛼/2 is the

classical fractional integral 𝐼
𝛼
which plays important roles in

many fields. It is well known that 𝐼
𝛼
is bounded from 𝐿

𝑝
(R𝑛

)

to 𝐿
𝑞
(R𝑛

) for all 𝑝 > 1, 1/𝑞 = 1/𝑝 − 𝛼/𝑛 > 0 and is also of
weak type (1, 𝑛/(𝑛 − 𝛼)).

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 413716, 8 pages
http://dx.doi.org/10.1155/2014/413716

http://dx.doi.org/10.1155/2014/413716


2 Abstract and Applied Analysis

Let 1 ≤ 𝑝 < ∞ and 𝜔 be a weight function. A locally
integrable function 𝑏 is said to be in BMO

𝑝
(𝜔) if

‖𝑏‖BMO𝑝(𝜔)
= sup

𝑄

(
1

𝜔 (𝑄)
∫

𝑄

𝑏 (𝑥) − 𝑏
𝑄



𝑝

𝜔(𝑥)
1−𝑝

𝑑𝑥)

1/𝑝

≤ 𝐶 < ∞,

(5)

where 𝑏
𝑄

= (1/|𝑄|) ∫
𝑄
𝑏(𝑦)𝑑𝑦 and the supremum is taken

over all balls 𝑄 ∈ R𝑛.
Let 𝜔 ∈ 𝐴

1
; Garćıa-Cuerva [6] proved that the spaces

BMO
𝑝
(𝜔) coincide, and the norms of ‖ ⋅ ‖BMO𝑝(𝜔)

are equiva-
lent with respect to different values provided that 1 ≤ 𝑝 < ∞.

Let 𝑏 be a locally integrable function on R𝑛; we consider
the commutator [𝑏, 𝐿−𝛼/2

] defined by

[𝑏, 𝐿
−𝛼/2

] (𝑓) (𝑥) = 𝑏 (𝑥) 𝐿
−𝛼/2

(𝑓) (𝑥) − 𝐿
−𝛼/2

(𝑏𝑓) (𝑥) .

(6)

Chanillo [7] proved that the commutator [𝑏, 𝐼
𝛼
] of the

multiplication operator by 𝑏 ∈ BMO is bounded on 𝐿
𝑝 for

1 < 𝑝 < ∞.
Duong andYan [8] proved that [𝑏, 𝐿−𝛼/2

] is bounded from
𝐿

𝑝 to𝐿
𝑞, where 𝑏 ∈ BMO, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 = 1/𝑝−𝛼/𝑛, 0 <

𝛼 < 𝑛.
Mo and Lu [9] proved that the multilinear commutator

generated by �⃗� and 𝐿
−𝛼/2 is bounded from 𝐿

𝑝 to 𝐿
𝑞, where 1 <

𝑝 < 𝑛/𝛼, 1/𝑞 = 1/𝑝 − 𝛼/𝑛, 0 < 𝛼 < 1, �⃗� = (𝑏
1
, . . . , 𝑏

𝑚
), 𝑏

𝑖
∈

BMO, for 𝑖 = 1, . . . , 𝑚.
Lu et al. [10] proved that [𝑏, 𝐼

𝛼
] is bounded from 𝐿

𝑝 to 𝐿
𝑞

if and only if 𝑏 ∈ BMO.
Wang [11] proved that [𝑏, 𝐼

𝛼
] is bounded from 𝐿

𝑝,𝑘
(𝜔) to

𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
1−(1−𝛼/𝑛)𝑞

, 𝜔), where 𝑏 ∈ BMO(𝜔), 0 < 𝛼 < 𝑛, 1 <

𝑝 < 𝑛/𝛼, 1/𝑞 = 1/𝑝 − 𝛼/𝑛, 0 < 𝑘 < 𝑝/𝑞, and 𝜔
𝑞/𝑝

∈ 𝐴
1
.

Inspired by the above results, we study the boundedness
properties of the commutator [𝑏, 𝐿−𝛼/2

] on weighted Morrey
spaces in this work. The main theorems are stated as follows.

Theorem 1. Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 = 1/𝑝 −

𝛼/𝑛, 0 ≤ 𝑘 < 𝑝/𝑞, 𝜔
𝑞/𝑝

∈ 𝐴
1
, and 𝑟

𝜔
> ((1 − 𝑘)/(𝑝/𝑞 − 𝑘)),

where 𝑟
𝜔
denotes the critical index of 𝜔 for the reverse Hölder

condition. Then the following conditions are equivalent.

(a) 𝑏 ∈ BMO(𝜔).
(b) [𝑏, 𝐿−𝛼/2

] is bounded from 𝐿
𝑝,𝑘

(𝜔) to
𝐿

𝑞,𝑘𝑞/𝑝
(𝜔

1−(1−𝛼/𝑛)𝑞
, 𝜔).

In particular, when 𝑘 = 0 in Theorem 1, we get the
following.

Corollary 2. Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 = 1/𝑝 −

𝛼/𝑛, 𝜔
𝑞/𝑝

∈ 𝐴
1
, and 𝑟

𝜔
> 𝑞/𝑝, where 𝑟

𝜔
denotes the critical

index of 𝜔 for the reverse Hölder condition. Then the following
conditions are equivalent.

(a) 𝑏 ∈ BMO(𝜔).
(b) [𝑏, 𝐿−𝛼/2

] is bounded from 𝐿
𝑝
(𝜔) to 𝐿

𝑞
(𝜔

1−(1−𝛼/𝑛)𝑞
).

Furthermore, if 𝐿 = −Δ is the Laplacian, then the following
conditions are equivalent.

(a
) 𝑏 ∈ BMO(𝜔).

(b
) [𝑏, 𝐼

𝛼
] is bounded from 𝐿

𝑝
(𝜔) to 𝐿

𝑞
(𝜔

1−(1−𝛼/𝑛)𝑞
).

Theorem 3. Let 0 < 𝛼 < 𝑛, 0 ≤ 𝑘 < 𝑝/𝑞, 1/𝑞 = 1/𝑝 − 𝛼/𝑛,
and 1 < 𝑟, 𝑠 < ∞ such that 1 < 𝑟𝑠 < 𝑝 < 𝑛/𝛼, 𝜔𝑟𝑠

∈ 𝐴
𝑝/𝑟𝑠, 𝑞/𝑟𝑠

.
Then the following conditions are equivalent.

(a) 𝑏 ∈ BMO.
(b) [𝑏, 𝐿−𝛼/2

] is bounded from 𝐿
𝑝,𝑘

(𝜔
𝑝
, 𝜔

𝑞
) to 𝐿

𝑞,𝑘𝑞/𝑝
(𝜔

𝑞
).

In particular, when 𝑘 = 0 in Theorem 3, we obtain the
following.

Corollary 4. Let 0 < 𝛼 < 𝑛, 1/𝑞 = 1/𝑝 − 𝛼/𝑛, and 1 < 𝑟, 𝑠 <

∞ such that 1 < 𝑟𝑠 < 𝑝 < 𝑛/𝛼, 𝜔𝑟𝑠
∈ 𝐴

𝑝/𝑟𝑠,𝑞/𝑟𝑠
. Then the

following conditions are equivalent.

(a) 𝑏 ∈ BMO.
(b) [𝑏, 𝐿−𝛼/2

] is bounded from 𝐿
𝑝
(𝜔

𝑝
) to 𝐿

𝑞
(𝜔

𝑞
).

Furthermore, if 𝐿 = −Δ is the Laplacian, then the following
conditions are equivalent.

(a
) 𝑏 ∈ BMO.

(b
) [𝑏, 𝐼

𝛼
] is bounded from 𝐿

𝑝
(𝜔

𝑝
) to 𝐿

𝑞
(𝜔

𝑞
).

Remark 5. It is easy to see that our results extend the results
in [7, 8, 10, 11] significantly.

2. Prerequisite Material

Let us first recall some definitions.

Definition 6. The Hardy-Littlewood maximal operator 𝑀 is
defined by

𝑀(𝑓) (𝑥) = sup
𝑥∈𝑄

1

|𝑄|
∫

𝑄

𝑓 (𝑦)
 𝑑𝑦. (7)

Let 𝜔 be a weight. The weighted maximal operator 𝑀
𝜔
is

defined by

𝑀
𝜔
(𝑓) (𝑥) = sup

𝑥∈𝑄

1

𝜔 (𝑄)
∫

𝑄

𝑓 (𝑦)
 𝜔 (𝑦) 𝑑𝑦. (8)

A variant of this maximal operator will become the main tool
in our scheme; for 1 < 𝑟 < ∞,

𝑀
𝑟,𝜔

(𝑓) (𝑥) = 𝑀
𝜔
(
𝑓



𝑟

)
1/𝑟

(𝑥) . (9)

For 0 < 𝛼 < 𝑛, 𝑟 ≥ 1, the fractional maximal operator𝑀
𝛼,𝑟

is
defined by

𝑀
𝛼,𝑟

(𝑓) (𝑥) = sup
𝑥∈𝑄

(
1

|𝑄|
1−𝛼𝑟/𝑛

∫
𝑄

𝑓 (𝑦)


𝑟

𝑑𝑦)

1/𝑟

, (10)



Abstract and Applied Analysis 3

and the fractional weighted maximal operator 𝑀
𝛼,𝑟,𝜔

is
defined by

𝑀
𝛼,𝑟,𝜔

(𝑓) (𝑥) = sup
𝑥∈𝑄

(
1

𝜔(𝑄)
1−𝛼𝑟/𝑛

∫
𝑄

𝑓 (𝑦)


𝑟

𝜔 (𝑦) 𝑑𝑦)

1/𝑟

.

(11)

For any 𝑓 ∈ 𝐿
𝑝
(R𝑛

), 𝑝 ≥ 1, the sharp maximal function
𝑀

♯

𝐿
𝑓 associated with the generalized approximations to the

identity {𝑒
−𝑡𝐿

}
𝑡>0

is given by

𝑀
♯

𝐿
𝑓 (𝑥) = sup

𝑥∈𝑄

1

|𝑄|
∫

𝑄


𝑓 (𝑦) − 𝑒

−𝑡𝑄𝐿
𝑓 (𝑦)


𝑑𝑦, (12)

where 𝑡
𝑄
= 𝑟

2

𝑄
and 𝑟

𝑄
is the radius of the ball 𝑄.

In the above definitions, the supremum is taken over all
balls 𝑄 containing 𝑥.

Definition 7. A weight function 𝜔 is said to be in the
Muckenhoupt class𝐴

𝑝
with 1 < 𝑝 < ∞ if, for every ball𝑄 in

R𝑛, there exists a positive constant𝐶which is independent of
𝑄 such that

(
1

|𝑄|
∫

𝑄

𝜔 (𝑥) 𝑑𝑥)(
1

|𝑄|
∫

𝑄

𝜔(𝑥)
−1/(𝑝−1)

𝑑𝑥)

𝑝−1

≤ 𝐶. (13)

When 𝑝 = 1, 𝜔 ∈ 𝐴
1
, if

(
1

|𝑄|
∫

𝑄

𝜔 (𝑥) 𝑑𝑥) ≤ 𝐶 ess inf
𝑥∈𝑄

𝜔 (𝑥) . (14)

When 𝑝 = ∞, 𝜔 ∈ 𝐴
∞
, if there exist positive constants

𝛿 and 𝐶 such that, given a ball 𝑄 and a measurable subset 𝐸
of 𝑄,

𝜔 (𝐸)

𝜔 (𝑄)
≤ 𝐶(

|𝐸|

|𝑄|
)

𝛿

. (15)

Definition 8. A weight function 𝜔 belongs to 𝐴
𝑝,𝑞

for 1 <

𝑝 < 𝑞 < ∞ if, for every ball 𝑄 in R𝑛, there exists a positive
constant 𝐶 which is independent of 𝑄 such that

(
1

|𝑄|
∫

𝑄

𝜔(𝑥)
𝑞
𝑑𝑥)

1/𝑞

(
1

|𝑄|
∫

𝑄

𝜔(𝑥)
−𝑝


𝑑𝑥)

1/𝑝


≤ 𝐶, (16)

where 𝑝
 denotes the conjugate exponent of 𝑝 > 1, that is,

1/𝑝 + 1/𝑝


= 1.

Definition 9. A weight function 𝜔 belongs to the reverse
Hölder class RH

𝑟
if there exist two constants 𝑟 > 1 and 𝐶 > 0

such that the reverse Hölder inequality

(
1

|𝑄|
∫

𝑄

𝜔(𝑥)
𝑟
𝑑𝑥)

1/𝑟

≤ 𝐶(
1

|𝑄|
∫

𝑄

𝜔 (𝑥) 𝑑𝑥) (17)

holds for every ball 𝑄 in R𝑛.

It is well known that if 𝜔 ∈ 𝐴
𝑝
with 1 ≤ 𝑝 < ∞, then

there exists 𝑟 > 1 such that 𝜔 ∈ RH
𝑟
. It follows from Hölder’s

inequality that 𝜔 ∈ RH
𝑟
implies 𝜔 ∈ RH

𝑠
for all 1 < 𝑠 < 𝑟.

Moreover, if 𝜔 ∈ RH
𝑟
, 𝑟 > 1, then we have 𝜔 ∈ RH

𝑟+𝜖

for some 𝜖 > 0. We thus write 𝑟
𝑤

= sup{𝑟 > 1 : 𝜔 ∈

RH
𝑟
} to denote the critical index of 𝜔 for the reverse Hölder

condition.
We will make use of the following lemmas. We first

provide a weighted version of the local good 𝜆 inequality
for 𝑀

♯

𝐿
which allows us to obtain an analog of the classical

Fefferman-Stein (see [3, 12]) estimate on weighted Morrey
spaces.

Lemma 10 (see [13]). Assume that the semigroup 𝑒
−𝑡𝐿 has a

kernel 𝑝
𝑡
(𝑥, 𝑦) which satisfies the upper bound (3). Take 𝜆 >

0, 𝑓 ∈ 𝐿
1

0
(R𝑛

), and a ball 𝑄
0
such that there exists 𝑥

0
∈ 𝑄

0

with𝑀𝑓(𝑥
0
) ≤ 𝜆. Then, for every 𝜔 ∈ 𝐴

∞
, 0 < 𝜂 < 1, one can

find 𝛾 > 0 (independent of 𝜆, 𝑄
0
, 𝑓, 𝑥

0
) and constant 𝐶

𝜔
, 𝑟 >

0 (which only depend on 𝜔), such that

𝜔 {𝑥 ∈ 𝑄
0
: 𝑀𝑓 (𝑥) > 𝐴𝜆, 𝑀

♯

𝐿
𝑓 (𝑥) ≤ 𝛾𝜆} ≤ 𝐶

𝜔
𝜂

𝑟
𝜔 (𝑄

0
) ,

(18)

where 𝐴 > 1 is a fixed constant which depends only on 𝑛.

As a consequence, by using the standard arguments, we
have the following estimates.

For every 𝑓 ∈ 𝐿
𝑝,𝑘

(𝜇, ]), with 1 < 𝑝 < ∞. if 𝜇, ] ∈

𝐴
∞
, 1 < 𝑝 < ∞, 0 ≤ 𝑘 < 1, then

𝑓
𝐿
𝑝,𝑘

(𝜇,])
≤

𝑀𝑓
𝐿
𝑝,𝑘

(𝜇,])
≤ 𝐶


𝑀

♯

𝐿
𝑓
𝐿
𝑝,𝑘

(𝜇,])
. (19)

In particular, when 𝜇 = ] = 𝜔 and 𝜔 ∈ 𝐴
∞
, we have

𝑓
𝐿
𝑝,𝑘

(𝜔)
≤

𝑀𝑓
𝐿
𝑝,𝑘

(𝜔)
≤ 𝐶


𝑀

♯

𝐿
𝑓
𝐿
𝑝,𝑘

(𝜔)
. (20)

Lemma 11 (see [11]). Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 =

1/𝑝 − 𝛼/𝑛, and 𝜔
𝑞/𝑝

∈ 𝐴
1
. Then if 0 < 𝑘 < 𝑝/𝑞 and 𝑟

𝜔
>

(1 − 𝑘)/(𝑝/𝑞 − 𝑘), one has
𝑀𝛼,1

𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞/𝑝

,𝜔)
≤ 𝐶

𝑓
𝐿
𝑝,𝑘

(𝜔)
. (21)

The same conclusion still holds for 𝐼
𝛼
.

Lemma 12 (see [11]). Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 =

1/𝑝 − 𝛼/𝑛, and 𝜔
𝑞/𝑝

∈ 𝐴
1
. Then if 0 < 𝑘 < 𝑝/𝑞, 1 < 𝑟 < 𝑝,

and 𝑟
𝜔
> (1 − 𝑘)/(𝑝/𝑞 − 𝑘), one has

𝑀𝑟,𝜔
𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞/𝑝

,𝜔)
≤ 𝐶

𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞/𝑝

,𝜔)
. (22)

Lemma 13 (see [11]). Consider 0 < 𝛼 < 𝑛, 1 < 𝑝 <

𝑛/𝛼, 1/𝑞 = 1/𝑝 − 𝛼/𝑛, 0 < 𝑘 < 𝑝/𝑞, and 𝜔 ∈ 𝐴
∞
. For any

1 < 𝑟 < 𝑝, one has
𝑀𝛼,𝑟,𝜔

𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔)
≤ 𝐶

𝑓
𝐿
𝑝,𝑘

(𝜔)
. (23)

Remark 14. By checking the proof of Lemmas 11–13, we know
that the three lemmas above still hold when 𝑘 = 0.

Lemma 15. Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 = 1/𝑝−𝛼/𝑛, and
𝜔

𝑞/𝑝
∈ 𝐴

1
. Then if 0 ≤ 𝑘 < 𝑝/𝑞 and 𝑟

𝜔
> (1 − 𝑘)/(𝑝/𝑞 − 𝑘),

one has

𝐿

−𝛼/2
𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞/𝑝

,𝜔)
≤ 𝐶

𝑓
𝐿
𝑝,𝑘

(𝜔)
. (24)
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Proof. Since the semigroup 𝑒
−𝑡𝐿 has a kernel 𝑝

𝑡
(𝑥, 𝑦) which

satisfies the upper bound (3), it is easy to check that
𝐿

−𝛼/2
(𝑓)(𝑥) ≤ 𝐶𝐼

𝛼
(|𝑓|)(𝑥) for all 𝑥 ∈ R𝑛. Using the

boundedness property of 𝐼
𝛼
on weighted Morrey space (see

Lemma 11), we have


𝐿

−𝛼/2
𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞/𝑝

,𝜔)
≤

𝐼𝛼
𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞/𝑝

,𝜔)
≤ 𝐶

𝑓
𝐿
𝑝,𝑘

(𝜔)
, (25)

where 1 < 𝑝 < 𝑛/𝛼 and 1/𝑞 = 1/𝑝 − 𝛼/𝑛.

Remark 16. Since 𝐼
𝛼
is of weak type (1, 𝑛/(𝑛 − 𝛼)). from the

proof of Lemma 15, we can get that 𝐿−𝛼/2 is also of weak type
(1, 𝑛/(𝑛 − 𝛼)).

Lemma 17 (see [8, 14]). Assume that the semigroup 𝑒
−𝑡𝐿 has

a kernel 𝑝
𝑡
(𝑥, 𝑦) which satisfies the upper bound (3). Then for

0 < 𝛼 < 𝑛, the difference operator 𝐿
−𝛼/2

− 𝑒
−𝑡𝐿

𝐿
−𝛼/2 has an

associated kernel 𝐾
𝛼,𝑡

(𝑥, 𝑦) which satisfies

𝐾𝛼,𝑡
(𝑥, 𝑦)

 ≤
𝐶

𝑥 − 𝑦


𝑛−𝛼

𝑡

𝑥 − 𝑦


2
, (26)

for some positive constant 𝐶.

Lemma 18. Assume that the semigroup 𝑒
−𝑡𝐿 has a kernel

𝑝
𝑡
(𝑥, 𝑦) which satisfies the upper bound (3), and let 𝑏 ∈

BMO(𝜔), 𝜔 ∈ 𝐴
1
. Then, for every function 𝑓 ∈ 𝐿

𝑝
(R𝑛

), 𝑝 >

1, and for all 𝑥 ∈ R𝑛, one has

sup
𝑥∈𝑄

1

|𝑄|
∫

𝑄


𝑒

−𝑡𝑄𝐿
(𝑏 (𝑦) − 𝑏

𝑄
) 𝑓 (𝑦)


𝑑𝑦

≤ 𝐶‖𝑏‖BMO(𝜔)
𝜔 (𝑥)𝑀

𝑟,𝜔
(𝑓) (𝑥) ,

(27)

where 𝑡
𝑄
= 𝑟

2

𝑄
, 𝑟

𝑄
being the radius of 𝑄.

Proof. For any 𝑓 ∈ 𝐿
𝑝
(R𝑛

), 1 < 𝑝 < ∞ and 𝑥 ∈ 𝑄. We have

1

|𝑄|
∫

𝑄


𝑒

−𝑡𝑄𝐿
((𝑏 (⋅) − 𝑏

𝑄
) 𝑓) (𝑦)


𝑑𝑦

≤
1

|𝑄|
∫

𝑄

∫
R𝑛


𝑝

𝑡𝑄
(𝑦, 𝑧)



(𝑏 (𝑧) − 𝑏
𝑄
) 𝑓 (𝑧)

 𝑑𝑧 𝑑𝑦

≤
1

|𝑄|
∫

𝑄

∫
2𝑄


𝑝

𝑡𝑄
(𝑦, 𝑧)



(𝑏 (𝑧) − 𝑏
𝑄
) 𝑓 (𝑧)

 𝑑𝑧 𝑑𝑦

+
1

|𝑄|
∫

𝑄

∞

∑

𝑘=1

∫
2
𝑘+1

𝑄\2
𝑘
𝑄


𝑝

𝑡𝑄
(𝑦, 𝑧)



×
(𝑏 (𝑧) − 𝑏

𝑄
) 𝑓 (𝑧)

 𝑑𝑧 𝑑𝑦

≐ M + N.

(28)

For any 𝑦 ∈ 𝑄 and 𝑧 ∈ 2𝑄. We have


𝑝

𝑡𝑄
(𝑦, 𝑧)


≤ 𝐶𝑡

−𝑛/2

𝑄
≤ 𝐶

1

|2𝑄|
. (29)

Thus,

M ≤ 𝐶
1

|2𝑄|
∫

2𝑄

(𝑏 (𝑧) − 𝑏
𝑄
) 𝑓 (𝑧)

 𝑑𝑧

≤ 𝐶
1

|2𝑄|
(∫

2𝑄

𝑏 (𝑧) − 𝑏
𝑄



𝑟


𝜔(𝑧)
1−𝑟


𝑑𝑧)

1/𝑟


× (∫
2𝑄

𝑓 (𝑧)


𝑟

𝜔 (𝑧) 𝑑𝑧)

1/𝑟

≤ 𝐶‖𝑏‖BMO(𝜔)

𝜔 (2𝑄)

|2𝑄|
(

1

𝜔 (2𝑄)
∫

2𝑄

𝑓 (𝑧)


𝑟

𝜔 (𝑧) 𝑑𝑧)

1/𝑟

≤ 𝐶‖𝑏‖BMO(𝜔)
𝜔 (𝑥)𝑀

𝑟,𝜔
𝑓 (𝑥) .

(30)

Moreover, for any𝑦 ∈ 𝑄 and 𝑧 ∈ 2
𝑘+1

𝑄\2
𝑘
𝑄, we have |𝑦−𝑧| ≥

2
𝑘−1

𝑟
𝑄
and |𝑝

𝑡𝑄
| ≤ 𝐶(𝑒

−𝑐2
2(𝑘−1)

2
(𝑘+1)𝑛

/|2
𝑘+1

𝑄|):

N

=
1

|𝑄|
∫

𝑄

∞

∑

𝑘=1

∫
2
𝑘+1

𝑄\2
𝑘
𝑄


𝑝

𝑡𝑄
(𝑦, 𝑧)



(𝑏 (𝑧) − 𝑏
𝑄
) 𝑓 (𝑧)

 𝑑𝑧 𝑑𝑦

≤ 𝐶

∞

∑

𝑘=1

𝑒
−𝑐2
2(𝑘−1)

2
(𝑘+1)𝑛

2
𝑘+1𝑄



∫
2
𝑘+1

𝑄

(𝑏 (𝑧) − 𝑏
𝑄
) 𝑓 (𝑧)

 𝑑𝑧

≤ 𝐶

∞

∑

𝑘=1

𝑒
−𝑐2
2(𝑘−1)

2
(𝑘+1)𝑛

2
𝑘+1𝑄



∫
2
𝑘+1

𝑄


(𝑏 (𝑧) − 𝑏

2
𝑘+1

𝑄
) 𝑓 (𝑧)


𝑑𝑧

+ 𝐶

∞

∑

𝑘=1

𝑒
−𝑐2
2(𝑘−1)

2
(𝑘+1)𝑛

2
𝑘+1𝑄



∫
2
𝑘+1

𝑄


(𝑏

2
𝑘+1

𝑄
− 𝑏

𝑄
) 𝑓 (𝑧)


𝑑𝑧

≐ N
1
+ N

2
.

(31)

We estimate each term in turn. For N
1
, we apply Hölder’s

inequalities with exponent 𝑟. Then we have

N
1
≤ 𝐶

∞

∑

𝑘=1

𝑒
−𝑐2
2(𝑘−1)

2
(𝑘+1)𝑛

2
𝑘+1𝑄



× (∫
2
𝑘+1

𝑄


𝑏 (𝑧) − 𝑏

2
𝑘+1

𝑄



𝑟


𝜔(𝑧)
1−𝑟


𝑑𝑧)

1/𝑟


× (∫
2
𝑘+1

𝑄

𝑓 (𝑧)


𝑟

𝜔 (𝑧) 𝑑𝑧)

1/𝑟

≤ 𝐶

∞

∑

𝑘=1

2
(𝑘+1)𝑛

𝑒
−𝑐2
2(𝑘−1)

‖𝑏‖BMO(𝜔)

𝜔 (2
𝑘+1

𝑄)

2
𝑘+1𝑄



× (
1

𝜔 (2𝑘+1𝑄)
∫

2
𝑘+1

𝑄

𝑓 (𝑧)


𝑟

𝜔 (𝑧) 𝑑𝑧)

1/𝑟

≤ 𝐶‖𝑏‖BMO(𝜔)
𝜔 (𝑥)𝑀

𝑟,𝜔
𝑓 (𝑥) .

(32)
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Since 𝜔 ∈ 𝐴
1
, then |𝑏

2
𝑘+1𝑄 − 𝑏

𝑄
| ≤ 𝐶𝑘𝜔(𝑥)‖𝑏‖BMO(𝜔)

. This
fact together with Hölder’s inequality implies

N
2
≤ 𝐶

∞

∑

𝑘=1

2
(𝑘+1)𝑛

𝑒
−𝑐2
2(𝑘−1) 𝑘

2
𝑘+1𝑄



𝜔 (𝑥)

× ‖𝑏‖BMO(𝜔)
∫

𝑄

𝑓 (𝑧)
 𝑑𝑧

≤ 𝐶

∞

∑

𝑘=1

𝑘2
(𝑘+1)𝑛

𝑒
−𝑐2
2(𝑘−1)

𝜔 (𝑥)

× ‖𝑏‖BMO(𝜔)
(

1

2
𝑘+1𝑄



∫
2
𝑘+1

𝑄

𝑓 (𝑧)


𝑟

𝑑𝑧)

1/𝑟

= 𝐶

∞

∑

𝑘=1

𝑘2
(𝑘+1)𝑛

𝑒
−𝑐2
2(𝑘−1)

𝜔 (𝑥)

× ‖𝑏‖BMO(𝜔)
(

𝜔(2
𝑘+1

𝑄)

2
𝑘+1𝑄



1

𝜔 (2𝑘+1𝑄)
∫

2
𝑘+1

𝑄

𝑓 (𝑧)


𝑟

𝑑𝑧)

1/𝑟

≤ 𝐶

∞

∑

𝑘=1

𝑘2
(𝑘+1)𝑛

𝑒
−𝑐2
2(𝑘−1)

𝜔 (𝑥)

× ‖𝑏‖BMO(𝜔)
(

1

𝜔 (2𝑘+1𝑄)
∫

2
𝑘+1

𝑄

𝑓 (𝑧)


𝑟

𝜔 (𝑥) 𝑑𝑧)

1/𝑟

≤ 𝐶‖𝑏‖BMO(𝜔)
𝜔 (𝑥)𝑀

𝑟,𝜔
𝑓 (𝑥) .

(33)

Then Lemma 18 is proved.

Lemma 19. Let 0 < 𝛼 < 𝑛, 𝜔 ∈ 𝐴
1
, and 𝑏 ∈ BMO(𝜔). Then

for all 𝑟 > 1 and for all 𝑥 ∈ R𝑛, one has

𝑀
♯

𝐿
([𝑏, 𝐿

−𝛼/2
] 𝑓) (𝑥)

≤ 𝐶‖𝑏‖BMO(𝜔)
(𝜔 (𝑥)𝑀

𝑟,𝜔
(𝐿

−𝛼/2
𝑓) (𝑥) + 𝜔(𝑥)

1−𝛼/𝑛

×𝑀
𝛼,𝑟,𝜔

(𝑓) (𝑥) + 𝜔 (𝑥)𝑀
𝛼,1

(𝑓) (𝑥) ) .

(34)

Proof. For any given 𝑥 ∈ R𝑛, fix a ball 𝑄 = 𝑄(𝑥
0
, 𝑟

𝑄
) which

contains 𝑥. We decompose 𝑓 = 𝑓
1
+ 𝑓

2
, where 𝑓

1
= 𝑓𝜒

2𝑄
.

Observe that

[𝑏, 𝐿
−𝛼/2

] 𝑓 (𝑥) = (𝑏 − 𝑏
𝑄
) 𝐿

−𝛼/2
𝑓

− 𝐿
−𝛼/2

(𝑏 − 𝑏
𝑄
) 𝑓

1

− 𝐿
−𝛼/2

(𝑏 − 𝑏
𝑄
) 𝑓

2
,

𝑒
−𝑡𝑄𝐿

([𝑏, 𝐿
−𝛼/2

] 𝑓) = 𝑒
−𝑡𝑄𝐿

[(𝑏 − 𝑏
𝑄
) 𝐿

−𝛼/2
𝑓

− 𝐿
−𝛼/2

(𝑏 − 𝑏
𝑄
) 𝑓

1

−𝐿
−𝛼/2

(𝑏 − 𝑏
𝑄
) 𝑓

2
] .

(35)

Then

1

|𝑄|
∫

𝑄


[𝑏, 𝐿

−𝛼/2
] 𝑓 (𝑦) − 𝑒

−𝑡𝑄𝐿
[𝑏, 𝐿

−𝛼/2
] 𝑓 (𝑦)


𝑑𝑦

≤
1

|𝑄|
∫

𝑄


(𝑏 (𝑦) − 𝑏

𝑄
) 𝐿

−𝛼/2
𝑓 (𝑦)


𝑑𝑦

+
1

|𝑄|
∫

𝑄


𝐿

−𝛼/2
(𝑏 − 𝑏

𝑄
) 𝑓

1
(𝑦)


𝑑𝑦

+
1

|𝑄|
∫

𝑄


𝑒

−𝑡𝑄𝐿
((𝑏 − 𝑏

𝑄
) 𝐿

−𝛼/2
𝑓) (𝑦)


𝑑𝑦

+
1

|𝑄|
∫

𝑄


𝑒

−𝑡𝑄𝐿
𝐿

−𝛼/2
((𝑏 − 𝑏

𝑄
) 𝑓

1
(𝑦))


𝑑𝑦

+
1

|𝑄|
∫

𝑄


(𝐿

−𝛼/2
− 𝑒

−𝑡𝑄𝐿
𝐿

−𝛼/2
) ((𝑏 − 𝑏

𝑄
) 𝑓

2
) (𝑦)


𝑑𝑦

≐ I + II + III + IV + V.

(36)

We estimate each term separately.
Since 𝜔 ∈ 𝐴

1
, then it follows from Hölder’s inequality

that

I ≤ 1

|𝑄|
∫

𝑄


(𝑏 (𝑦) − 𝑏

𝑄
) 𝐿

−𝛼/2
𝑓 (𝑦)


𝑑𝑦

≤
1

|𝑄|
(∫

𝑄

𝑏 (𝑦) − 𝑏
𝑄



𝑟


𝜔(𝑦)
1−𝑟


𝑑𝑦)

1/𝑟


× (∫
𝑄


𝐿

−𝛼/2
𝑓 (𝑦)



𝑟

𝜔 (𝑦) 𝑑𝑦)

1/𝑟

≤ 𝐶‖𝑏‖BMO(𝜔)

𝜔 (𝑄)

|𝑄|
(

1

𝜔 (𝑄)
∫

𝑄


𝐿

−𝛼/2
𝑓 (𝑦)



𝑟

𝜔 (𝑦) 𝑑𝑦)

1/𝑟

≤ 𝐶‖𝑏‖BMO(𝜔)
𝜔 (𝑥)𝑀

𝑟,𝜔
(𝐿

−𝛼/2
𝑓) (𝑥) .

(37)

Applying Kolmogorov’s inequality (see [15, page 485]),
Hölder’s inequality, and the continuity of 𝐿−𝛼/2, we thus have

II = 1

|𝑄|
∫

𝑄


𝐿

−𝛼/2
(𝑏 − 𝑏

𝑄
) 𝑓

1
(𝑦)


𝑑𝑦

≤ 𝐶
1

|𝑄|
1−𝛼/𝑛


𝐿

−𝛼/2
(𝑏 − 𝑏

𝑄
)𝑓

1

𝐿
𝑛/(𝑛−𝛼),∞

≤ 𝐶
1

|𝑄|
1−𝛼/𝑛

∫
𝑄

(𝑏 − 𝑏
𝑄
) 𝑓

1
(𝑦) 𝑑𝑦

≤ 𝐶
1

|𝑄|
1−𝛼/𝑛

(∫
𝑄

𝑏 (𝑦) − 𝑏
𝑄



𝑟


𝜔(𝑦)
1−𝑟


𝑑𝑦)

1/𝑟
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× (∫
𝑄

𝑓 (𝑦)


𝑟

𝜔(𝑦)𝑑𝑦)

1/𝑟

≤ 𝐶‖𝑏‖BMO(𝜔)

𝑤(𝑄)
1−𝛼/𝑛

|𝑄|
1−𝛼/𝑛

× (
1

𝑤(𝑄)
1−𝑟𝛼/𝑛

∫
𝑄

𝑓 (𝑦)


𝑟

𝜔 (𝑦) 𝑑𝑦)

1/𝑟

≤ 𝐶‖𝑏‖BMO(𝜔)
𝜔(𝑥)

1−𝛼/𝑛
𝑀

𝛼,𝑟,𝜔
(𝑓) (𝑥) .

(38)

By Lemma 18, we have

III ≤ 𝐶‖𝑏‖BMO(𝜔)
𝜔 (𝑥)𝑀

𝑟,𝜔
(𝐿

−𝛼/2
𝑓) (𝑥) . (39)

For IV, using the estimate obtained in II, we get

IV ≤
1

|𝑄|
∫

𝑄

∫
2𝑄


𝑝

𝑡𝑄
(𝑦, 𝑧)



𝑏 (𝑧) − 𝑏
𝑄



𝑓 (𝑧)
 𝑑𝑧 𝑑𝑦

≤
1

|2𝑄|
∫

2𝑄


𝐿

−𝛼/2
((𝑏 (𝑧) − 𝑏

𝑄
)) 𝑓 (𝑧)


𝑑𝑧

≤ 𝐶‖𝑏‖BMO(𝜔)
𝜔(𝑥)

1−𝛼/𝑛
𝑀

𝛼,𝑟,𝜔
(𝑓) (𝑥) .

(40)

By virtue of Lemma 17, we have

V ≤
1

|𝑄|
∫

𝑄

∫
(2𝑄)
𝑐


𝐾

𝛼,𝑡𝑄
(𝑦, 𝑧)



(𝑏 (𝑧) − 𝑏
𝑄
) 𝑓 (𝑧)

 𝑑𝑧 𝑑𝑦

≤ 𝐶

∞

∑

𝑘=1

∫
2
𝑘

𝑟𝑄≤|𝑥0−𝑧|<2
𝑘+1

𝑟𝑄

1

𝑥0
− 𝑧



𝑛−𝛼

𝑡
𝑄

𝑥0
− 𝑧



2

×
(𝑏 (𝑧) − 𝑏

𝑄
) 𝑓 (𝑧)

 𝑑𝑧

≤ 𝐶

∞

∑

𝑘=1

2
−2𝑘 1

2
𝑘+1𝑄



1−𝛼/𝑛
∫

2
𝑘+1

𝑄

(𝑏 (𝑧) − 𝑏
𝑄
) 𝑓 (𝑧)

 𝑑𝑧

≤ 𝐶

∞

∑

𝑘=1

2
−2𝑘 1

2
𝑘+1𝑄



1−𝛼/𝑛
∫

2
𝑘+1

𝑄


(𝑏 (𝑧) − 𝑏

2
𝑘+1

𝑄
) 𝑓 (𝑧)


𝑑𝑧

+ 𝐶

∞

∑

𝑘=1

2
−2𝑘

(𝑏
2
𝑘+1

𝑄
− 𝑏

𝑄
)

1

2
𝑘+1𝑄



1−𝛼/𝑛
∫

2
𝑘+1

𝑄

𝑓 (𝑧)
 𝑑𝑧

≐ VI + VII.

(41)

For VI, applying the same arguments as in II, we get

VI ≤ 𝐶‖𝑏‖BMO(𝜔)

∞

∑

𝑘=1

2
−2𝑘

𝜔(𝑥)
1−𝛼/𝑛

𝑀
𝛼,𝑟,𝜔

(𝑓) (𝑥)

≤ 𝐶‖𝑏‖BMO(𝜔)
𝜔(𝑥)

1−𝛼/𝑛
𝑀

𝛼,𝑟,𝜔
(𝑓) (𝑥) .

(42)

Since𝜔 ∈ 𝐴
1
, then |𝑏

2
𝑘+1𝑄 −𝑏

𝑄
| ≤ 𝐶𝑘𝜔(𝑥)‖𝑏‖BMO(𝜔)

.Thus,

VII ≤ 𝐶‖𝑏‖BMO(𝜔)

∞

∑

𝑘=1

2
−2𝑘

𝑘𝜔 (𝑥)𝑀
𝛼,1

(𝑓) (𝑥)

≤ 𝐶‖𝑏‖BMO(𝜔)
𝜔 (𝑥)𝑀

𝛼,1
(𝑓) (𝑥) .

(43)

Then

V ≤ 𝐶‖𝑏‖BMO(𝜔)

× (𝜔(𝑥)
1−𝛼/𝑛

𝑀
𝛼,𝑟,𝜔

(𝑓) (𝑥) + 𝜔 (𝑥)𝑀
𝛼,1

(𝑓) (𝑥)) .

(44)

Combining the above estimates I–V, we get (34). The proof
of Lemma 19 is complete.

3. Proofs of the Main Results

In this section we prove our main results. We start with the
proof of Theorem 1.

Proof. (a)⇒(b): Applying Lemmas 10 and 19, we get


[𝑏, 𝐿

−𝛼/2
] 𝑓

𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
1−(1−𝛼/𝑛)𝑞

,𝜔)

≤

𝑀

♯

𝐿
([𝑏, 𝐿

−𝛼/2
] 𝑓)

𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
1−(1−𝛼/𝑛)𝑞

,𝜔)

≤ 𝐶‖𝑏‖BMO(𝜔)

× (

𝜔𝑀

𝑟,𝜔
(𝐿

−𝛼/2
𝑓)

𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
1−(1−𝛼/𝑛)𝑞

,𝜔)

+

𝜔

1−𝛼/𝑛
𝑀

𝛼,𝑟,𝜔
𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
1−(1−𝛼/𝑛)𝑞

,𝜔)

+
𝜔𝑀𝛼,1

𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
1−(1−𝛼/𝑛)𝑞

,𝜔)
)

≤ 𝐶‖𝑏‖BMO(𝜔)

× (

𝑀

𝑟,𝜔
(𝐿

−𝛼/2
𝑓)

𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞/𝑝

,𝜔)

+
𝑀𝛼,𝑟,𝜔

𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔)

+
𝑀𝛼,1

𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞/𝑝

,𝜔)
) .

(45)

Since 0 ≤ 𝑘 < 𝑝/𝑞, 𝜔
𝑞/𝑝

∈ 𝐴
1
, and 𝑟

𝜔
> (1−𝑘)/(𝑝/𝑞−𝑘),

by making use of Lemmas 11–13, then we obtain


[𝑏, 𝐿

−𝛼/2
] 𝑓

𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
1−(1−𝛼/𝑛)𝑞

,𝜔)

≤ 𝐶‖𝑏‖BMO(𝜔)
(

𝐿

−𝛼/2
𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞/𝑝

,𝜔)
+
𝑓

𝐿
𝑝,𝑘

(𝜔)
)

≤ 𝐶‖𝑏‖BMO(𝜔)

𝑓
𝐿
𝑝,𝑘

(𝜔)
.

(46)

The last inequality follows from Lemma 15. This completes
the proof of (a)⇒(b).

(b)⇒(a): Let 𝐿 = −Δ be the Laplacian on R𝑛; then 𝐿
−𝛼/2

is the classical fractional integral 𝐼
𝛼
. Choose 𝑍

0
∈ R𝑛 so that

|𝑍
0
| = 3. For 𝑥 ∈ 𝑄(𝑍

0
, 2), |𝑥|−𝛼+𝑛 can be written as the abso-

lutely convergent Fourier series |𝑥|
−𝛼+𝑛

= ∑
𝑚∈𝑍𝑛

𝑎
𝑚
𝑒

𝑖⟨]𝑚,𝑥⟩
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with ∑
𝑚
|𝑎

𝑚
| < ∞ since |𝑥|

−𝛼+𝑛
∈ 𝐶

∞
(𝑄(𝑍

0
, 2)). For any

𝑥
0
∈ R𝑛 and𝜌 > 0, let𝑄 = 𝑄(𝑥

0
, 𝜌) and𝑄

𝑍0
= 𝑄(𝑥

0
+𝑍

0
𝜌, 𝜌),

∫
𝑄


𝑏 (𝑥) − 𝑏

𝑄𝑍0


𝑑𝑥

=
1


𝑄

𝑍0



∫
𝑄



∫
𝑄𝑍0

(𝑏 (𝑥) − 𝑏 (𝑦)) 𝑑𝑦



𝑑𝑥

=
1

𝜌𝑛
∫

𝑄

𝑠 (𝑥) (∫
𝑄𝑍0

(𝑏 (𝑥) − 𝑏 (𝑦))
𝑥 − 𝑦



𝛼−𝑛𝑥 − 𝑦


𝑛−𝛼

𝑑𝑦)𝑑𝑥,

(47)

where 𝑠(𝑥) = sgn(∫
𝑄𝑍0

(𝑏(𝑥)−𝑏(𝑦))𝑑𝑦). Fix𝑥 ∈ 𝑄 and𝑦 ∈ 𝑄
𝑍0

and we have (𝑦 − 𝑥)/𝜌 ∈ 𝑄(𝑍
0
, 2); hence, we have

𝜌
−𝛼+𝑛

𝜌𝑛
∫

𝑄

𝑠 (𝑥) (∫
𝑄𝑍0

(𝑏 (𝑥) − 𝑏 (𝑦))
𝑥 − 𝑦



𝛼−𝑛

(

𝑥 − 𝑦


𝜌
)

𝑛−𝛼

𝑑𝑦)𝑑𝑥

= 𝜌
−𝛼

∑

𝑚∈𝑍
𝑛

𝑎
𝑚

× ∫
𝑄

𝑠 (𝑥) (∫
𝑄𝑍0

(𝑏 (𝑥) − 𝑏 (𝑦))

×
𝑥 − 𝑦



𝛼−𝑛

𝑒
𝑖⟨]𝑚 ,𝑦/𝜌⟩

𝑑𝑦) 𝑒
−𝑖⟨]𝑚 ,𝑥/𝜌⟩

𝑑𝑥

≤ 𝜌
−𝛼



∑

𝑚∈𝑍
𝑛

𝑎𝑚

 ∫
𝑄

𝑠 (𝑥) [𝑏, 𝐿
−𝛼/2

]

× (𝜒
𝑄𝑍0

𝑒
𝑖⟨]𝑚 ,⋅/𝜌⟩

) 𝜒
𝑄
(𝑥) 𝑒

−𝑖⟨]𝑚 ,𝑥/𝜌⟩
𝑑𝑥



≤ 𝜌
−𝛼

∑

𝑚∈𝑍
𝑛

𝑎𝑚




[𝑏, 𝐿

−𝛼/2
] (𝜒

𝑄𝑍0

𝑒
𝑖⟨]𝑚 ,⋅/𝜌⟩

)
𝐿
𝑞,0

(𝜔
1−(1−(𝛼/𝑛))𝑞

,𝜔)

× (∫
𝑄

𝜔(𝑥)
𝑞

[(1−(𝛼/𝑛))−1/𝑞]

𝑑𝑥)

1/𝑞


≤ 𝐶𝜌
−𝛼

∑

𝑚∈𝑍
𝑛

𝑎𝑚




𝜒

𝑄𝑍0

𝐿
𝑝,0

(𝜔)

(∫
𝑄

𝜔(𝑥)
𝑞

(1/𝑞

−𝛼/𝑛)

𝑑𝑥)

1/𝑞


≤ 𝐶𝜔(𝑄)
1/𝑝+1/𝑞


−𝛼/𝑛

= 𝐶𝜔 (𝑄) .

(48)

This implies 𝑏 ∈ BMO(𝜔).ThusTheorem 1 is proved.

Similarly, to prove Theorem 3, we need the following
lemmas.

Lemma 20. Let 0 < 𝛼 < 𝑛, 1 < 𝑟, 𝑠 < ∞ such that 𝑟𝑠 < 𝑝 <

𝑛/𝛼 and 𝑏 ∈ BMO. Then for all 𝑟 > 1 and for all 𝑥 ∈ R𝑛, one
has

𝑀
♯

𝐿
([𝑏, 𝐿

−𝛼/2
] 𝑓) (𝑥)

≤ 𝐶‖𝑏‖BMO (𝑀
𝑟
(𝐿

−𝛼/2
𝑓) (𝑥) + 𝑀

𝛼,𝑟𝑠
(𝑓) (𝑥)) ,

(49)

where𝑀
𝑟
(𝑓)(𝑥) = 𝑀(|𝑓|

𝑟
)

1/𝑟
(𝑥).

Proof. The case 0 < 𝛼 < 1 was proved by Duong and Yan
(see [8] for details). The general case 0 < 𝛼 < 𝑛 follows by
repeating the same steps as in Lemma 19. Since themain steps
and the ideas are almost the same, herewe omit the proof.

Lemma 21 (see [5]). If 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 = 1/𝑝 −

𝛼/𝑛, 0 < 𝑘 < 𝑝/𝑞, and 𝜔 ∈ 𝐴
𝑝,𝑞
, then the fractional maximal

operator𝑀
𝛼,1

is bounded from 𝐿
𝑝,𝑘

(𝜔
𝑝
, 𝜔

𝑞
) to 𝐿

𝑞,𝑘𝑞/𝑝
(𝜔

𝑞
).

Lemma 22 (see [5]). If 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 = 1/𝑝 −

𝛼/𝑛, 0 < 𝑘 < 𝑝/𝑞, and 𝜔 ∈ 𝐴
𝑝,𝑞
, then the fractional maximal

operator 𝐼
𝛼
is bounded from 𝐿

𝑝,𝑘
(𝜔

𝑝
, 𝜔

𝑞
) to 𝐿

𝑞,𝑘𝑞/𝑝
(𝜔

𝑞
).

Lemma 23 (see [5]). If 1 < 𝑝 < ∞, 0 < 𝑘 < 1, and 𝜔 ∈ 𝐴
𝑝
,

then𝑀 is bounded on 𝐿
𝑝,𝑘

(𝜔).

Remark 24. By applying the same argument as in Lemma 15,
we know that the conclusion in Lemma 22 still holds for
𝐿

−𝛼/2. We omit the proof here.

Remark 25. By checking the proof of Lemmas 21–23, we
know that the three lemmas above still hold when 𝑘 = 0.

Now we proveTheorem 3.

Proof. (a)⇒(b): Since 𝜔𝑟𝑠
∈ 𝐴

𝑝/𝑟𝑠,𝑞/𝑟𝑠
, then we get 𝜔𝑞

∈ 𝐴
𝑞/𝑟𝑠

and 𝜔
𝑝
∈ 𝐴

𝑝/𝑟𝑠
. Applying Lemmas 10 and 20–23, we get


[𝑏, 𝐿

−𝛼/2
] 𝑓

𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞

)

≤

𝑀

♯

𝐿
([𝑏, 𝐿

−𝛼/2
] 𝑓)

𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞

)

≤ 𝐶‖𝑏‖BMO (

𝑀

𝑟
(𝐿

−𝛼/2
𝑓)

𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞

)
+
𝑀𝛼,𝑟𝑠

(𝑓)
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞

)
)

≤ 𝐶‖𝑏‖BMO (

𝐿

−𝛼/2
𝑓
𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞

)
+
𝑓

𝐿
𝑝,𝑘

(𝜔
𝑝

,𝜔
𝑞

)
)

≤ 𝐶‖𝑏‖BMO
𝑓

𝐿
𝑝,𝑘

(𝜔
𝑝

,𝜔
𝑞

)
.

(50)

In the last inequality, we used the fact that 𝐿−𝛼/2 is bounded
from 𝐿

𝑝,𝑘
(𝜔

𝑝
, 𝜔

𝑞
) to 𝐿

𝑞,𝑘𝑞/𝑝
(𝜔

𝑞
) (see Remark 24).

(b)⇒(a): Let 𝐿 = −Δ be the Laplacian on R𝑛; then 𝐿
−𝛼/2

is the classical fractional integral 𝐼
𝛼
. Let 𝑘 = 0 and weight

𝜔 ≡ 1, and then 𝐿
𝑝,𝑘

(𝜔
𝑝
, 𝜔

𝑞
) = 𝐿

𝑝 and 𝐿
𝑞,𝑘𝑞/𝑝

(𝜔
𝑞
) = 𝐿

𝑞.
From [10] we deduce that the (𝐿𝑝

, 𝐿
𝑞
) boundedness of [𝑏, 𝐼

𝛼
]

implies 𝑏 ∈ BMO.ThusTheorem 3 is proved.
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