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We investigate 𝑞-shift analogue of the lemma on logarithmic derivative of several variables. Let 𝑓 be a meromorphic function inC𝑛
of zero order such that 𝑓(0) ̸= 0,∞, and let 𝑞 ∈ C𝑛\{0}. Then we have𝑚(𝑟, 𝑓(𝑞𝑧)/𝑓(𝑧)) = 𝑜(𝑇(𝑟, 𝑓)) on a set of logarithmic density
1. The 𝑞-shift analogue of the first and the second main theorems of Nevanlinna theory of several variables and their applications
is also shown.

1. Introduction

The lemma on logarithmic derivative is a basic tool of Nevan-
linna theory; see [1]. It is widely used in value distribution
of meromorphic functions [2], differential equations in the
complex plane [3], and so forth. The first generalization of
the lemma on the logarithmic derivative to several complex
variables is given by Vitter [4]. Another proof is given by
Biancofiore and Stoll in [5]. Ye obtains a sharp bound for
the lemma on logarithmic derivative of several complex
variables in [6]. In [7], Li improves the lemma on logarithmic
derivative of several variables without exceptional intervals,
which makes a significant difference from other estimates.

Essentially prompted by the recent interest in discrete
Painlevé equations, difference analogues of the lemma on
logarithmic derivative appeared to be useful in a number of
applications, in particular in complex difference equations;
see [8–10]. Later, Korhonen studies the difference analogues
of the lemma on logarithmic derivative of several variables
in [11]. For 𝑞-difference version, Barnett et al. obtain 𝑞-
difference analogue of the lemma on logarithmic derivative
in the complex plane in [12].

In this paper, our aim is to generalize the result in [12]
to several variables. For any two constants 𝑧 and 𝑧󸀠 in C𝑛, if
𝑧 = (𝑧

1
, . . . , 𝑧

𝑛
) and 𝑧󸀠 = (𝑧

󸀠

1
, . . . , 𝑧

󸀠

𝑛
), then we denote 𝑧

1
𝑧
󸀠

1
=

(𝑧
1
𝑧
󸀠

1
, . . . , 𝑧

𝑛
𝑧
󸀠

𝑛
). Let us state one of themain results as follows,

which is 𝑞-difference analogue of the lemma on logarithmic
derivative of several variables.

Theorem 1. Let 𝑓 be a meromorphic function in C𝑛 of zero
order such that 𝑓(0) ̸= 0,∞, and let 𝑞 ∈ C𝑛 \ {0}. Then

𝑚(𝑟,
𝑓 (𝑞𝑧)

𝑓 (𝑧)
) = 𝑜 (𝑇 (𝑟, 𝑓)) (1)

on a set of logarithmic density 1.

Concerning the sharpness of Theorem 1, there is an
example in [12, page 459] to show that zero order cannot be
replaced by any positive order in the statement ofTheorem 1.

The remainder of the paper is organized as follows. In
Section 2, we prove the theorem of 𝑞-difference analogue of
the lemma on logarithmic derivative of several variables. In
Section 3, we present the 𝑞-shift analogue of the first and
the second main theorems of Nevanlinna theory of several
variables. In Section 4, we give three important theorems:
uniqueness theoremofmeromorphic functionwith its 𝑞-shift
of several variables, 𝑞-shift analogues of the Clunie lemma,
and Mohon’ho lemma of several variables.

2. 𝑞-Difference Logarithmic
Derivative Analogue

The purpose of this section is to present 𝑞-difference ana-
logues of the lemmaon logarithmic derivative in several com-
plex variables. Let us recall some of the standard notations of
Nevanlinna theory in C𝑛.
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Let𝑀 be a connected complex manifold of dimension 𝑛
and let

𝐴 (𝑀) =

2𝑚

∑

𝑛=0

𝐴
𝑛

(𝑀) (2)

be the graded ring of complex valued differential forms on𝑀.
Each set 𝐴𝑛(𝑀) can be split into a direct sum

𝐴
𝑛

(𝑀) = ∑

𝑝+𝑞=𝑛

𝐴
𝑝,𝑞

(𝑀) , (3)

where 𝐴𝑝,𝑞(𝑀) is the forms of type (𝑝, 𝑞). The differential
operators 𝑑 and 𝑑𝑐 on 𝐴(𝑀) are defined as

𝑑 := 𝜕 + 𝜕, 𝑑
𝑐

:=
1

4𝜋𝑖
(𝜕 − 𝜕) , (4)

where

𝜕 : 𝐴
𝑝,𝑞

(𝑀) 󳨀→ 𝐴
𝑝+1,𝑞

(𝑀) ,

𝜕 : 𝐴
𝑝,𝑞

(𝑀) 󳨀→ 𝐴
𝑝,𝑞+1

(𝑀) .

(5)

Let 𝑧 = (𝑧
1
, . . . , 𝑧

𝑛
) ∈ C𝑛, and let 𝑟 > 0 and fix 𝑎 =

(𝑎
1
, . . . , 𝑎

𝑛
) ∈ C𝑛; an exhaustion function 𝜏

𝑎,C𝑛 of C
𝑛 is

defined by

𝜏
𝑎,C𝑛 (𝑧) = |𝑧 − 𝑎|

2

=

𝑚

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
− 𝑎
𝑗

󵄨󵄨󵄨󵄨󵄨

2

. (6)

Usually, we let 𝑎 = 0 be the origin and set 𝜏
𝑚
(𝑧) = 𝜏

0,C𝑛(𝑧).
Let us define a positive measure 𝜎

𝑛
(𝑧)with total measure one

on the boundary 𝜕𝐵
𝑛
(𝑟) := {𝑧 ∈ C𝑛 : |𝑧| = 𝑟} of the ball

𝐵
𝑛
(𝑟) := {𝑧 ∈ C𝑛 : |𝑧| < 𝑟} as

𝜔
𝑛
(𝑧) := 𝑑𝑑

𝑐 log 𝜏
𝑛
, 𝜎

𝑛
(𝑧) := 𝑑

𝑐 log 𝜏
𝑛
∧ 𝜔
𝑛−1

𝑛
(𝑧) . (7)

In addition, we define

𝜐
𝑛
(𝑧) := 𝑑𝑑

𝑐

𝜏
𝑛
(𝑧) , 𝜌

𝑛
(𝑧) : 𝜐

𝑛

𝑛
(𝑧) . (8)

It follows that 𝜌
𝑛
(𝑧) is the Lebesgue measure on C𝑛 normal-

ized such that the ball 𝐵
𝑛
(𝑟) has measure 𝑟2𝑛.

Let us start with the one-dimensional case at first, the
following result is based on the proof of [12, Lemma 5.1].

Lemma 2. Let 𝑓 be a meromorphic function in C such that
𝑓(0) ̸= 0,∞, and let 𝑞 ∈ C \ {0}. Then

∫
𝜕𝐵
1
(𝑟)

log+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑞𝑧)

𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎
1
(𝑧)

≤ (

󵄨󵄨󵄨󵄨𝑞 − 1
󵄨󵄨󵄨󵄨
𝛿

(
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝛿

+ 1)

𝛿 (1 − 𝛿)
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
𝛿

+

󵄨󵄨󵄨󵄨𝑞 − 1
󵄨󵄨󵄨󵄨 𝑟

𝜆 −
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑟

+

󵄨󵄨󵄨󵄨𝑞 − 1
󵄨󵄨󵄨󵄨 𝑟

𝜆 − 𝑟
)

× (𝑛 (𝜆, 𝑓) + 𝑛(𝜆,
1

𝑓
))

+
2
󵄨󵄨󵄨󵄨𝑞 − 1

󵄨󵄨󵄨󵄨 𝑟𝜆

(𝜆 − 𝑟) (𝜆 −
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑟)

(𝑚 (𝜆, 𝑓) + 𝑚(𝜆,
1

𝑓
)) ,

(9)

where 𝑧 = 𝑟𝑒
𝑖𝜙, 𝜆 > max{𝑟, |𝑞|𝑟}, and 0 < 𝛿 < 1.

Let 𝜏
𝑚

= 𝜏
0,C𝑛 be the parabolic exhaustion of C𝑛 and

define a function on 𝐵
𝑛−1

(𝑟) by

𝑝
𝑟
(𝜔) = √𝑟2 − 𝜏

𝑛−1
(𝜔) = √𝑟2 − |𝜔|

2

. (10)

For the following discussion, we will need two lemmas from
Stoll.

Lemma 3 (see [13, Lemma 1.29]). Let 𝑟 > 0, and let ℎ be a
function on 𝜕𝐵

𝑛
(𝑟) such that ℎ𝜎

𝑛
is integrable over 𝜕𝐵

𝑛
(𝑟).Then

∫
𝜕𝐵
𝑛
(𝑟)

ℎ (𝑧) 𝜎
𝑛
(𝑧)

=
1

𝑟2𝑛−2
∫
𝐵
𝑛−1
(𝑟)

∫
𝜕𝐵
1
(𝑝
𝑟
(𝑤))

ℎ (𝜔, 𝜁) 𝜎
1
(𝜁) 𝜌
𝑛−1

(𝜔) .

(11)

Let 𝑓 be a nonconstant meromorphic function on C𝑛,
take 𝜔 ∈ C𝑛−1, and define the holomorphic map 𝑗

𝑚
: C →

C𝑛 by 𝑗
𝑤
(𝑧) = (𝑤, 𝑧); thus 𝑓

𝜔
(𝑧) = 𝑓(𝜔, 𝑧).

Lemma 4 (see [13, Lemma 1.30]). Let 𝑓 be a nonconstant
meromorphic function in C𝑛 and take 𝑎 ∈ P1. If r > 0, then

1

𝑟2𝑛−2
∫
𝜕𝐵
𝑛
(𝑟)

𝑛(𝑝
𝑟
(𝜔) ,

1

𝑓
𝜔
− 𝑎

)𝜎
𝑛−1

(𝜔) ≤ 𝑛(𝑟,
1

𝑓 − 𝑎
) ,

1

𝑟2𝑛−2
∫
𝜕𝐵
𝑛
(𝑟)

𝑚(𝑝
𝑟
(𝜔) ,

1

𝑓
𝜔
− 𝑎

)𝜎
𝑛−1

(𝜔) = 𝑚(𝑟,
1

𝑓 − 𝑎
) .

(12)

We proceed to generalize Lemma 2 to several complex
variables by using Lemmas 3 and 4.

Lemma 5. Let 𝑓 be a meromorphic function in C𝑛 such that
𝑓(0) ̸= 0,∞, and let 𝑞

𝑗
:= (1, . . . , 𝑞

𝑗
, . . . , 1). Then

∫
𝜕𝐵
𝑛
(𝑟)

log+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑞
𝑗
𝑧)

𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎
𝑛
(𝑧)

≤ (

󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗
− 1

󵄨󵄨󵄨󵄨󵄨

𝛿

(
󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗

󵄨󵄨󵄨󵄨󵄨

𝛿

+ 1)

𝛿 (1 − 𝛿)
󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗

󵄨󵄨󵄨󵄨󵄨

𝛿

+

󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗
− 1

󵄨󵄨󵄨󵄨󵄨
𝑟

𝑅 −
󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑟
+

󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗
− 1

󵄨󵄨󵄨󵄨󵄨
𝑟

𝑅 − 𝑟
)

× (𝑛 (𝑅, 𝑓) + 𝑛(𝑅,
1

𝑓
))

+
2
󵄨󵄨󵄨󵄨𝑞 − 1

󵄨󵄨󵄨󵄨 𝑟𝑅

(𝑅 − 𝑟) (𝑅 −
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑟)

(𝑚 (𝑅, 𝑓) + 𝑚(𝑅,
1

𝑓
)) ,

(13)

where 𝑅 > max{𝑟, |𝑞
𝑗
|𝑟} and 0 < 𝛿 < 1.
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Proof. By applying Lemma 3 with ℎ(𝑧) = log+|𝑓(𝑞
𝑗
𝑧)/𝑓(𝑧)|,

we obtain

∫
𝜕𝐵
𝑛
(𝑟)

log+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑞
𝑗
𝑧)

𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎
𝑛
(𝑧)

=
1

𝑟2𝑛−2
∫
𝐵
𝑛−1
(𝑟)

∫
𝜕𝐵
1
(𝑝
𝑟
(𝑤))

log+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
𝜔
(𝑞
𝑗
𝑧)

𝑓
𝜔
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎
1
(𝜁) 𝜌
𝑛−1

(𝜔)

≤
1

𝑟2𝑛−2
∫
𝐵
𝑛−1
(𝑟)

(

󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗
− 1

󵄨󵄨󵄨󵄨󵄨

𝛿

(
󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗

󵄨󵄨󵄨󵄨󵄨

𝛿

+ 1)

𝛿 (1 − 𝛿)
󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗

󵄨󵄨󵄨󵄨󵄨

𝛿

+

󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗
− 1

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑟
(𝜔)

𝑝
𝑅
(𝜔) −

󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑟
(𝜔)

+

󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗
− 1

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑟
(𝜔)

𝑝
𝑅
(𝜔) − 𝑝

𝑟
(𝜔)

)

× (𝑛 (𝑝
𝑅
(𝜔) , 𝑓

𝜔
(𝑧)) + 𝑛 (𝑝

𝑅
(𝜔) ,

1

𝑓
𝜔
(𝑧)

)) 𝜌
𝑛−1

(𝜔)

+
1

𝑟2𝑛−2
∫
𝐵
𝑛−1
(𝑟)

2
󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗
− 1

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑟
(𝜔) 𝑝
𝑅
(𝜔)

(𝑝
𝑅
(𝜔) − 𝑝

𝑟
(𝜔)) (𝑝

𝑅
(𝜔) −

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑝𝑟 (𝜔))

× (𝑚 (𝑝
𝑅
(𝜔) , 𝑓

𝜔
(𝑧)) + 𝑚(𝑝

𝑅
(𝜔) ,

1

𝑓
𝜔
(𝑧)

)) 𝜌
𝑛−1

(𝜔)

:= 𝑆
𝑛
+ 𝑆
𝑚
,

(14)

for 𝑅 > max{𝑟, |𝑞
𝑗
|𝑟} and 0 < 𝛿 < 1. Now we will estimate

terms 𝑆
𝑚
and 𝑆
𝑛
, respectively. Note that

𝑝
𝑟
(𝜔)

𝑝
𝑅
(𝜔)

≤
𝑟

𝑅
(15)

for 𝑅 > 𝑟 and the fact that 𝑥/(𝑥 − 1)(𝑥 − 𝑡) is decreasing with
𝑥 for 𝑥 > max{1, 𝑡}. By using Lemma 4, it follows that

𝑆
𝑛
≤ (

𝑅

𝑟
)

2𝑛−2

(𝐶(𝑞
𝑗
, 𝛿) +

󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗
− 1

󵄨󵄨󵄨󵄨󵄨
𝑟

𝑅 −
󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑟
+

󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗
− 1

󵄨󵄨󵄨󵄨󵄨
𝑟

𝑅 − 𝑟
)

× 𝑛
𝑓
(𝑅, 0,∞) ,

𝑆
𝑚
≤ (

𝑅

𝑟
)

2𝑛−2 2
󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗
− 1

󵄨󵄨󵄨󵄨󵄨
𝑟𝑅

(𝑅 − 𝑟) (𝑅 −
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑟)

𝑚
𝑓
(𝑅, 0,∞) ,

(16)

where

𝐶 (𝑞
𝑗
, 𝛿) =

󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗
− 1

󵄨󵄨󵄨󵄨󵄨

𝛿

(
󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗

󵄨󵄨󵄨󵄨󵄨

𝛿

+ 1)

𝛿 (1 − 𝛿)
󵄨󵄨󵄨󵄨󵄨
𝑞
𝑗

󵄨󵄨󵄨󵄨󵄨

𝛿

,

𝑛
𝑓
(𝑅, 0,∞) = (𝑛 (𝑅, 𝑓) + 𝑛(𝑅,

1

𝑓
)) ,

𝑚
𝑓
(𝑅, 0,∞) = (𝑚 (𝑅, 𝑓) + 𝑚(𝑅,

1

𝑓
)) .

(17)

It implies the assertion.

To deal with𝑚
𝑓
(𝑅, 0,∞), we need the following lemma.

Lemma6 (see [14, Lemma 4]). If𝑇 : R+ → R+ is a piecewise
continuous increasing function such that

lim
𝑟→∞

log𝑇 (𝑟)
log 𝑟

= 0, (18)

then the set

𝐸 := {𝑟 : 𝑇 (𝐶
1
𝑟) ≥ 𝐶

2
𝑇 (𝑟)} (19)

has logarithmic density 0 for all 𝐶
1
> 1 and 𝐶

2
> 1.

To show that 𝑛
𝑓
(𝑅, 0,∞) is small, we need the following

two lemmas.

Lemma 7 (see [12, Lemma 5.4]). Let 𝑇 : R+ → R+ be an
increasing function, and let 𝑈 : R+ → R+. If there exists a
decreasing sequence {𝑐

𝑛
}
𝑛∈N such that 𝑐

𝑛
→ 0 as 𝑛 → ∞ and

for all 𝑛 ∈ N, the set

𝐹
𝑛
:= {𝑟 ≥ 1 : 𝑈 (𝑟) < 𝑐

𝑛
𝑇 (𝑟)} (20)

has logarithmic density 1, then

𝑈 (𝑟) = 𝑜 (𝑇 (𝑟)) (21)

on a set of logarithmic density 1.

The following lemma is based on the proof of Lemma 5.3
in [12], which is the case of one dimension.

Lemma 8. If 𝑓 is a nonconstant meromorphic function in C𝑛

of zero order, then the set

𝐸
𝑛
:= {𝑟 ≥: 𝑛 (𝑟, 𝑓) <

𝑇 (𝑟, 𝑓)

2𝑛
} (22)

has logarithmic density 1 for all 𝑛 ∈ N.

If we take 𝑅 = 𝑘𝑟 in Lemma 5, and by using Lemmas 6, 7,
and 8, then we have

∫
𝜕𝐵
𝑛
(𝑟)

log+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑞
𝑗
𝑧)

𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎
𝑛
(𝑧) = 𝑜 (𝑇 (𝑟, 𝑓)) (23)
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on a set of logarithmic density 1, since 𝑓 is a meromorphic
function inC𝑛 of zero order. According to (23), it follows that

∫
𝜕𝐵
𝑛
(𝑟)

log+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑞𝑧)

𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎
𝑛
(𝑧)

= ∫
𝜕𝐵
𝑛
(𝑟)

log+
𝑛

∏

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑧∏
𝑘

𝑗=0
𝑞
𝑗
)

𝑓 (𝑧∏
𝑘−1

𝑗=0
𝑞
𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎
𝑛
(𝑧)

≤

𝑛

∑

𝑘=1

∫
𝜕𝐵
𝑛
(𝑟)

log+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑧∏
𝑘

𝑗=0
𝑞
𝑗
)

𝑓 (𝑧∏
𝑘−1

𝑗=0
𝑞
𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎
𝑛
(𝑧) = 𝑜 (𝑇 (𝑟, 𝑓))

(24)

on a set of logarithmic density 1. Therefore, we have 𝑞-
difference analogue of the lemma on logarithmic derivative
of several variables, which is the proof of Theorem 1.

3. First and Second Main Theorems

We will discuss the relation of 𝑇(𝑟, 𝑓(𝑞𝑧)) and 𝑇(𝑟, 𝑓(𝑧)),
which is the 𝑞-shift analogue of the firstmain theory of several
variables.

Theorem 9. Let 𝑓 be a meromorphic function in C𝑛 of zero
order such that 𝑓(0) ̸= 0,∞, and let 𝑞 ∈ C𝑛 \ {0}. Then

𝑇 (𝑟, 𝑓 (𝑞𝑧)) = 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑜 (𝑇 (𝑟, 𝑓)) (25)

on a set of logarithmic density 1.

Proof. By using Lemma 6 andTheorem 1, we have

𝑇 (𝑟, 𝑓 (𝑞𝑧))

= 𝑚 (𝑟, 𝑓 (𝑞𝑧)) + 𝑁 (𝑟, 𝑓 (𝑞𝑧))

= 𝑚 (𝑟, 𝑓 (𝑧)) + 𝑁 (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑟, 𝑓 (𝑧)) + 𝑚(𝑟,

𝑓 (𝑞𝑧)

𝑓 (𝑧)
)

≤ 𝑇 (𝑟, 𝑓) + 𝑜 (𝑇 (𝑟, 𝑓)) ,

(26)

on a set of logarithmic density 1. We have the assertion.

Let us discuss the 𝑞-shift analogue of the second main
theory of several variables.

Theorem 10. Let 𝑓 be a meromorphic function in C𝑛 of zero
order such that 𝑓(0) ̸= 0,∞, and let 𝑞 ∈ C𝑛 \ {0}. If 𝑎

𝑖
(𝑖 =

1, . . . , 𝑞) ∈ P1 are distinct finite constants, then

𝑚(𝑟, 𝑓) +

𝑞

∑

𝑗=1

𝑚(𝑟,
1

𝑓 − 𝑎
𝑗

)

≤ 2𝑇 (𝑟, 𝑓) − 𝑁pair (𝑟, 𝑓) + 𝑆𝑞 (𝑟, 𝑓) ,

(27)

where

𝑁pair (𝑟, 𝑓) := 2𝑁 (𝑟, 𝑓) − 𝑁(𝑟, Δ
𝑞
𝑓) + 𝑁(𝑟,

1

Δ
𝑞
𝑓
) .

(28)

Proof. By using the first main theorem, we obtain
𝑞

∑

𝑗=1

𝑚(𝑟,
1

𝑓 − 𝑎
𝑗

) =

𝑞

∑

𝑗=1

𝑇(𝑟,
1

𝑓 − 𝑎
𝑗

) −

𝑞

∑

𝑗=1

𝑁(𝑟,
1

𝑓 − 𝑎
𝑗

)

= 𝑞𝑇 (𝑟, 𝑓) − 𝑁(𝑟,
1

𝑃 (𝑓)
) + 𝑆
𝑞
(𝑟, 𝑓) ,

(29)

where

𝑃 (𝑟, 𝑓) =

𝑞

∏

𝑗=1

(𝑓 − 𝑎
𝑗
) . (30)

Since there exist 𝛼
𝑗
∈ P1 such that

1

𝑃 (𝑓)
=

𝑞

∑

𝑗=1

𝛼
𝑗

𝑓 − 𝑎
𝑗

(31)

then

𝑚(𝑟,
1

𝑃 (𝑓)
) ≤ 𝑚(𝑟,

Δ
𝑞
𝑓

𝑃 (𝑓)
) + 𝑚(𝑟,

1

Δ
𝑞
𝑓
)

≤ 𝑚(𝑟,
1

Δ
𝑞
𝑓
) +

𝑞

∑

𝑗=1

𝑚(𝑟,
Δ
𝑞
𝑓

𝑓 − 𝑎
𝑗

)

= 𝑚(𝑟,
1

Δ
𝑞
𝑓
) + 𝑆
𝑞
(𝑟, 𝑓) .

(32)

By applying (29), (32), and the fact 𝑇(𝑟, 𝑃(𝑓)) = 𝑞𝑇(𝑟, 𝑓) +

𝑂(1), we have
𝑞

∑

𝑗=1

𝑚(𝑟,
1

𝑓 − 𝑎
𝑗

)

= 𝑇 (𝑟, 𝑃 (𝑓)) − 𝑁(𝑟,
1

𝑃 (𝑓)
) + 𝑆
𝑞
(𝑟, 𝑓)

= 𝑚(𝑟,
1

𝑃 (𝑓)
) + 𝑆
𝑞
(𝑟, 𝑓)

≤ 𝑚(𝑟,
1

Δ
𝑞
𝑓
) + 𝑆
𝑞
(𝑟, 𝑓)

= 𝑇 (𝑟, Δ
𝑞
𝑓) − 𝑁(𝑟,

1

Δ
𝑞
𝑓
) + 𝑆
𝑞
(𝑟, 𝑓) .

(33)

Therefore, we have

𝑚(𝑟, 𝑓) +

𝑞

∑

𝑗=1

𝑚(𝑟,
1

𝑓 − 𝑎
𝑗

)

≤ 𝑇 (𝑟, 𝑓) + 𝑁(𝑟, Δ
𝑞
𝑓) + 𝑚(𝑟, Δ

𝑞
𝑓)

− 𝑁(𝑟,
1

Δ
𝑞
𝑓
) − 𝑁(𝑟, 𝑓) + 𝑆

𝑞
(𝑟, 𝑓) .

(34)
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Since

𝑚(𝑟, Δ
𝑞
𝑓) ≤ 𝑚 (𝑟, 𝑓) + 𝑚(𝑟,

Δ
𝑞
𝑓

𝑓
)

= 𝑚 (𝑟, 𝑓) + 𝑆
𝑞
(𝑟, 𝑓) ,

(35)

we have the assertion.

4. Application

Let 𝑓 and 𝑔 be two meromorphic functions in C𝑛, and let
𝑎 ∈ C𝑛, if 𝑓 − 𝑎 and 𝑔 − 𝑎 have the same zeros (counting
multiplicities), then we say 𝑓 and 𝑔 share 𝑎 CM in C𝑛.

Theorem11. Let𝑓 : C𝑛 → P1 be a nonconstantmeromorphic
function of zero order and let 𝑞 ∈ C𝑛 \ {0}. If 𝑓(𝑧) and 𝑓(𝑞𝑧)
share three distinct values CM, then 𝑓(𝑧) = 𝑓(𝑞𝑧).

Proof. Let us suppose that𝑓(𝑧) and𝑓(𝑞𝑧) share {0, 1,∞}CM,
if not, let us make a linearly transformation. Suppose that
Δ
𝑞
𝑓 ̸≡ 0, Theorem 10 yields

𝑚(𝑟, 𝑓) + 𝑚(𝑟,
1

𝑓
) + 𝑚(𝑟,

1

𝑓 − 1
)

≤ 2𝑇 (𝑟, 𝑓) + 𝑁(𝑟, Δ
𝑞
𝑓) − 2𝑁 (𝑟, 𝑓) − 𝑁(𝑟,

1

Δ
𝑞
𝑓
)

+ 𝑆
𝑞
(𝑟, 𝑓) .

(36)

Since 𝑓(𝑧) and 𝑓(𝑞𝑧) share {0, 1,∞} CM, then

𝑁(𝑟, 𝑓) + 𝑁(𝑟,
1

𝑓
) + 𝑁(𝑟,

1

𝑓 − 1
) ≤ 𝑁(𝑟,

1

Δ
𝑞
𝑓
) .

(37)

In addition, Lemma 6 implies that 𝑁(𝑟, Δ
𝑞
𝑓) ≤ 2𝑁(𝑟, 𝑓) +

𝑆
𝑞
(𝑟, 𝑓), by combining (36) and (37), it follows that

𝑇 (𝑟, 𝑓) = 𝑆
𝑞
(𝑟, 𝑓) (38)

which is impossible.

The 𝑞-difference polynomials of𝑓(𝑧) inC𝑛 are said by the
functions which are polynomials in 𝑓(𝑞

𝑗
𝑧), where 𝑞

𝑗
∈ C𝑛,

with coefficients 𝑎
𝜆
(𝑧) such that 𝑇(𝑟, 𝑎

𝜆
(𝑧)) = 𝑜(𝑇(𝑟, 𝑓)) on a

set of logarithmic density 1.
The following theorem is 𝑞-shift analogue of Clunie

lemma [15] of several variables.

Theorem 12. Let 𝑓 : C𝑛 → P1 be a nonconstant zero order
meromorphic solution in C𝑛 of

𝑓(𝑧)
𝑛

𝑃 (𝑧, 𝑓) = 𝑄 (𝑧, 𝑓) , (39)

where 𝑃(𝑧, 𝑓) and 𝑄(𝑧, 𝑓) are 𝑞-difference polynomials in
𝑓(𝑧). If the degree of 𝑄(𝑧, 𝑓) as a polynomial in 𝑓(𝑧) and its
𝑞-shift is at most 𝑛, then

𝑚(𝑟, 𝑃 (𝑧, 𝑓)) = 𝑆
𝑞
(𝑟, 𝑓) . (40)

Proof. In calculating the proximity function of 𝑃(𝑧, 𝑓), we
split the region of integration into two parts. By defining

𝐸
1
:= {𝑧 ∈ 𝜕𝐵

𝑛
(𝑟) |

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 < 1} , 𝐸

2
:= 𝜕𝐵
𝑛
(𝑟) \ 𝐸

1
,

(41)

we have

𝑚(𝑟, 𝑃 (𝑧, 𝑓)) = ∫
𝐸
1

log+ 󵄨󵄨󵄨󵄨𝑃 (𝑧, 𝑓)
󵄨󵄨󵄨󵄨 𝜎𝑛 (𝑧)

+ ∫
𝐸
2

log+ 󵄨󵄨󵄨󵄨𝑃 (𝑧, 𝑓)
󵄨󵄨󵄨󵄨 𝜎𝑛 (𝑧) .

(42)

First, we consider 𝐸
1
; we can write 𝑃(𝑧, 𝑓) as

𝑃 (𝑧, 𝑓) = ∑𝑐
𝑖
(𝑧) 𝑓(𝑧)

𝑖
0𝑓(𝑞𝑧)

𝑖
1

⋅ ⋅ ⋅ 𝑓(𝑞]𝑧)
𝑙]
. (43)

Thus, we have

󵄨󵄨󵄨󵄨𝑃 (𝑧, 𝑓)
󵄨󵄨󵄨󵄨 ≤ ∑

󵄨󵄨󵄨󵄨𝑐𝑖 (𝑧)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓(𝑞𝑧)
𝑖
1

𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙
1

⋅ ⋅ ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓(𝑞]𝑧)
𝑙]

𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (44)

Therefore, we obtain

∫
𝐸
1

log+ 󵄨󵄨󵄨󵄨𝑃 (𝑧, 𝑓)
󵄨󵄨󵄨󵄨 𝜎𝑛 (𝑧)

≤ ∑𝑚(𝑟, 𝑐
𝑖
) + 𝑂(

𝑞

∑

𝑖=1

𝑚(𝑟,
𝑓 (𝑞𝑧)

𝑓 (𝑧)
)) ,

(45)

together withTheorem 1 implies that

∫
𝐸
1

log+ 󵄨󵄨󵄨󵄨𝑃 (𝑧, 𝑓)
󵄨󵄨󵄨󵄨 𝜎𝑛 (𝑧) = 𝑆

𝑞
(𝑟, 𝑓) . (46)

Now let us consider 𝐸
2
; we note that

𝑄 (𝑧, 𝑓) = ∑𝑏
𝛾
(𝑧) 𝑓(𝑞

0
𝑧)
𝛾
0

⋅ ⋅ ⋅ 𝑓(𝑞
𝜇
𝑧)
𝛾
𝜇

. (47)

Hence, we have

󵄨󵄨󵄨󵄨𝑃 (𝑧, 𝑓)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑓(𝑧)
𝑛
∑𝑏
𝛾
(𝑧) 𝑓(𝑞

0
𝑧)
𝛾
0

⋅ ⋅ ⋅ 𝑓(𝑞
𝜇
𝑧)
𝛾
𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∑
󵄨󵄨󵄨󵄨󵄨
𝑏
𝛾
(𝑧)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑞
1
𝑧)

𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾
1

⋅ ⋅ ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑞
𝜇
𝑧)

𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾
𝜇

,

(48)

byTheorem 1 again, it follows that

∫
𝐸
2

log+ 󵄨󵄨󵄨󵄨𝑃 (𝑧, 𝑓)
󵄨󵄨󵄨󵄨 𝜎𝑛 (𝑧) = 𝑆

𝑞
(𝑟, 𝑓) . (49)

The assertion follows by combining (42)–(49).

Let𝛼 and𝑓 bemeromorphic functions of zero order inC𝑛
such that 𝑇(𝑟, 𝛼) = 𝑜(𝑇(𝑟, 𝑓)) on a set of logarithmic density
1. Then 𝛼 is called a small function with respect to 𝑓 of zero
order in C𝑛.

The following theorem is 𝑞-shift analogue of Mohon’ho
lemma [16] of several variables.
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Theorem 13. Let 𝑓(𝑧) be a nonconstant zero-order meromor-
phic solution in C𝑛 of

𝑃 (𝑧, 𝑓) = 0, (50)

where𝑃(𝑧, 𝑓) is a 𝑞-difference polynomial in𝑓(𝑧). If𝑃(𝑧, 𝛼) ̸≡

0 for a small function 𝛼 in C𝑛 of 𝑓(𝑧), then

𝑚(𝑟,
1

𝑓 − 𝛼
) = 𝑆
𝑞
(𝑟, 𝑓) . (51)

Proof. By substituting 𝑓 = 𝑔 + 𝛼 into (50), we obtain

𝑄 (𝑧, 𝑔) + 𝐷 (𝑧) = 0, (52)

where

𝑄 (𝑧, 𝑔) = ∑

𝛾=(𝑗
0
,...,𝑗])∈𝐽

𝑏] (𝑧) 𝑔(𝑧)
𝑗
0 ⋅ ⋅ ⋅ 𝑔(𝑞]𝑧)

𝑗]

(53)

is a 𝑞-difference polynomial in 𝑔 such that all of its terms are
at least degree 1, and 𝑇(𝑟, 𝐷) = 𝑆

𝑞
(𝑟, 𝑔), 𝑇(𝑟, 𝑏](𝑧)) = 𝑆

𝑞
(𝑟, 𝑔)

for each ] ∈ 𝐽. Also 𝐷 ̸≡ 0, since 𝛼 does not satisfy (50). By
using (52), we have

𝑚(𝑟,
1

𝑔
) ≤ 𝑚(𝑟,

𝐷

𝑔
) + 𝑚(𝑟,

1

𝐷
)

= 𝑚(𝑟,
𝑄 (𝑧, 𝑔)

𝑔
) + 𝑚(𝑟,

1

𝐷
) .

(54)

Note that since the integral𝑚(𝑟, 1/𝑔) vanishes on the part of
𝜕𝐵
𝑛
(𝑟) where |𝑔| > 1, it is sufficient to consider only the case

|𝑔| ≤ 1. Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑄 (𝑧, 𝑔)

𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1
󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝛾∈𝐽

𝑏] (𝑧) 𝑔(𝑧)
𝑗
0 ⋅ ⋅ ⋅ 𝑔(𝑞]𝑧)

𝑗]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∑

𝛾∈𝐽

󵄨󵄨󵄨󵄨𝑏] (𝑧)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔 (𝑞
1
𝑧)

𝑔 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗
1

⋅ ⋅ ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔 (𝑞]𝑧)

𝑔 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗]

,

(55)

byTheorem 1, (54), and (55), it shows

𝑚(𝑟,
1

𝑔
) = 𝑆
𝑞
(𝑟, 𝑔) . (56)

Since 𝑔 = 𝑓 − 𝛼, the assertion follows.
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