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Using the minimax methods in critical point theory, we study the multiplicity of solutions for a class of Neumann problems in the
case near resonance. The results improve and generalize some of the corresponding existing results.

1. Introduction

The aim of this paper is to study the following semilinear
Neumann problem:

−Δ𝑢 + 𝛽 (𝑥) 𝑢 = 𝜆𝑢 + 𝑓 (𝑥, 𝑢) , 𝑥 ∈ Ω,

𝜕𝑢

𝜕𝑛

= 0, 𝑥 ∈ 𝜕Ω.

(1)

Here Ω ⊂ 𝑅

𝑁
(𝑁 ≥ 3) is a bounded domain with a 𝐶1

boundary 𝜕Ω and 𝑛(⋅) denotes the outward unit normal on
𝜕Ω. Also 𝛽 ∈ 𝐿

𝑠
(Ω) with 𝑠 > 𝑁/2 and it may change sign.

The reaction 𝑓(𝑥, 𝑢) is a Carathéodory function and satisfies
the following assumptions:

(𝑓

0
) for every𝑀 > 0, there exists a function 𝐿

𝑀
∈ 𝐿

2
(Ω)

such that |𝑓(𝑥, 𝑡)| ≤ 𝐿

𝑀
(𝑥) for all |𝑡| ≤ 𝑀 and a.e.

𝑥 ∈ Ω;
(𝑓

∞
) lim

|𝑡|→∞
(𝑓(𝑥, 𝑡)/𝑡) = 0 uniformly for 𝑥 ∈ Ω.

Recently, there have been many papers concerned with
the Neumann problems; see [1–5] and the references therein.
Or, more specifically, in Li [1] and Qian [2], the left hand
side differential operator is −Δ𝑢 + 𝛽𝑢, with 𝛽 ∈ 𝑅,
𝛽 > 0. In Motreanu et al. [3], Tang and Wu [4], and
Motreanu et al. [5], the differential operator is −Δ𝑢 (i.e.,
𝛽 = 0). Semilinear Neumann problems with unbounded and
indefinite potential, especially, were studied by Gasiński and

Papageorgiou [6]. They obtained two multiplicity theorems.
In addition, the same problemswere studied by Papageorgiou
and Rădulescu [7]. They dealt with equations in which the
reaction 𝑓(𝑥, 𝑢) exhibits an asymmetric behavior at +∞ and
at −∞ (jumping nonlinearity) and they proved multiplicity
theorems providing sign information for all the solutions.

On the other hand, for the perturbed problem, Mawhin
and Schmitt [8] first considered the two-point boundary
value problem

−𝑢


− 𝜆𝑢 = 𝑓 (𝑥, 𝑢) + ℎ (𝑥) , 𝑢 (0) = 𝑢 (𝜋) = 0.

(2)

Under the assumption that 𝑓 is bounded and satisfies a sign
condition, if the parameter 𝜆 is sufficiently close to 𝜆

1
from

left, problem (2) has at least three solutions; if 𝜆
1
≤ 𝜆 < 𝜆

2
,

problem (2) has at least one solution, where 𝜆
1
, 𝜆

2
are the first

and second eigenvalues of the corresponding linear problem.
Ma et al. [9] considered the boundary value problem Δ𝑢 +

𝜆𝑢 + 𝑓(𝑥, 𝑢) = ℎ(𝑥) defined on a bounded open set Ω ⊂ 𝑅

𝑁,
no matter whether the boundary conditions are Dirichlet
or Neumann condition; as the parameter 𝜆 approaches 𝜆

1

from left, there exist three solutions. Moreover, existence of
three solutions was obtained for the quasilinear problem in
bounded domains as the parameter 𝜆 approaches 𝜆

1
from

left. In [10, 11], these results were extended to the perturbed
𝑝-Laplacian equation in 𝑅𝑁. In [12], Ou and Tang extended
above some results to some elliptic systems with the Dirichlet
boundary conditions. de Paiva and Massa in [13], especially,

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 360581, 11 pages
http://dx.doi.org/10.1155/2014/360581

http://dx.doi.org/10.1155/2014/360581


2 Abstract and Applied Analysis

studied the semilinear elliptic boundary value problem in
any spatial dimension and using variational techniques; they
showed that a suitable perturbation will turn the almost
resonant situation (𝜆 near to 𝜆

𝑘
, i.e., near resonance with a

nonprincipal eigenvalue) in a situation where the solutions
are at least two. In [14], those results were extended to the
degenerate elliptic equations in the bounded domain.

Motivated by the above idea, we have the goal in this
paper of extending these results in [6, 12–14] to some elliptic
equations with the Neumann boundary conditions. Here,
it is worth pointing out that (𝑓

∞
) is weaker than (𝑓

1
) in

[13] (or (𝐴) in [14]). More to the point, there are functions
satisfying the assumptions of our main results in Section 2
and not satisfying the assumptions in [13, 14]. For example,
let 𝑓(𝑥, 𝑡) = 𝑡/ ln(1+ |𝑡|).Then 𝑓 satisfies the assumptions for
our Theorem 5 in Section 2 and does not satisfy (𝑓

1
) in [13]

(or (𝐴) in [14]).
The rest of our paper is organized as follows. In Section 2

we give some preliminary lemmas and our main results.
Section 3 gives the detailed proofs of our main results based
on several estimates, whose proof will be presented in
Sections 4 and 5.

2. Preliminaries and Main Results

Let the Sobolev space𝑋 = 𝐻

1
(Ω). Denote

‖𝑢‖1,2
= (∫

Ω

(|∇𝑢|

2
+ 𝑢

2
) 𝑑𝑥)

1/2

(3)

to be the normof 𝑢 in𝑋 and ‖𝑢‖
𝑝
the norm of 𝑢 in 𝐿𝑝(Ω).The

space 𝑋 is a Hilbert space. For a discussion about the space
setting, we refer to [15] and the references therein.

Again, we recall the properties of the eigenvalue problem
as follows (see [6]):

−Δ𝑢 + 𝛽 (𝑥) 𝑢 = 𝜆𝑢, 𝑥 ∈ Ω,

𝜕𝑢

𝜕𝑛

= 0, 𝑥 ∈ 𝜕Ω.

(4)

The eigenvalue problems in (4) have a sequence {𝜆
𝑘
}

𝑘≥1
of

eigenvalues, such that

−∞ < 𝜆

1
< 𝜆

2
≤ 𝜆

3
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑘
≤ ⋅ ⋅ ⋅ → +∞

as 𝑘 → +∞.

(5)

There is also a corresponding sequence {𝜙
𝑘
}

𝑘≥1
⊂ 𝐻

1
(Ω) of

eigenfunctions which form an orthonormal basis of 𝐿2(Ω)
and an orthogonal basis of 𝐻1

(Ω). Moreover, we know that
𝜙

𝑘
∈ 𝐶

1,𝛼
(Ω) for some 𝛼 ∈ (0, 1) and all 𝑘 ≥ 1.

We denote by 𝐸
𝑘
the eigenspace corresponding to an

eigenvalue 𝜆
𝑘
, and we can decompose𝐻1

(Ω) = ⨁

∞

𝑘=1
𝐸

𝑘
. We

set

𝜎 (𝑢) = ∫

Ω

(|∇𝑢|

2
+ 𝛽 (𝑥) 𝑢

2
) 𝑑𝑥. (6)

The eigenvalues admit the following variational characteri-
zations in terms of the Rayleigh quotient 𝜎(𝑢)/‖𝑢‖2

2
for all

𝑢 ∈ 𝐻

1
(Ω):

𝜆

1
= inf {𝜎 (𝑢)

‖𝑢‖

2

2

: 𝑢 ∈ 𝐻

1
(Ω) \ {0}} , (7)

𝜆

𝑘
= inf {𝜎 (𝑢)

‖𝑢‖

2

2

: 𝑢 ∈

∞

⨁

𝑖=𝑘

𝐸

𝑖
, 𝑢 ̸= 0}

= sup{𝜎 (𝑢)
‖𝑢‖

2

2

: 𝑢 ∈

𝑘

⨁

𝑖=1

𝐸

𝑖
, 𝑢 ̸= 0} .

(8)

In (7), the infimum is realized on 𝐸

1
. Also, in (8), both

the infimum and the supremum are realized on 𝐸
𝑘
. All the

eigenspaces have the so-called unique continuation property.
Thefirst eigenvalue𝜆

1
is simple and it is clear from (7) that the

corresponding eigenfunctions do not change sign. Namely,
we can suppose that 𝜙

1
is strictly positive on Ω. We mention

that all the other eigenvalues have nodal eigenfunctions. For
more properties to the eigenvalue problem (4), see [6, 7].

By the presence of function 𝛽, weak solutions of (1) must
be found in a suitable space. To this purpose, letting 𝜃 >

max{−𝜆
1
, 0}, we introduce a new inner product on𝐻1

(Ω) by

⟨𝑢, V⟩ = ∫
Ω

(∇𝑢∇V + 𝛽 (𝑥) 𝑢V + 𝜃𝑢V) 𝑑𝑥 (9)

for 𝑢, V ∈ 𝐻1
(Ω) and the associated norm

‖𝑢‖ = (∫

Ω

(|∇𝑢|

2
+ 𝛽(𝑥)𝑢

2
+ 𝜃𝑢

2
) 𝑑𝑥)

1/2

, 𝑢 ∈ 𝐻

1
(Ω) .

(10)

Lemma 1. Let 𝛽 ∈ 𝐿

𝑠
(Ω) with 𝑠 > 𝑁/2 and it may change

sign, if 𝜃 > max{−𝜆
1
, 0}; then ‖ ⋅ ‖ is equivalent to the usual

Sobolev norm ‖ ⋅ ‖

1,2
.

Proof. By virtue of Hölder’s inequality, we have

∫

Ω

(|∇𝑢|

2
+ 𝛽 (𝑥) 𝑢

2
+ 𝜃𝑢

2
) 𝑑𝑥

≤ ∫

Ω

(|∇𝑢|

2
+ 𝜃𝑢

2
) 𝑑𝑥 +









𝛽







𝑠
‖𝑢‖

2

2𝑠


≤ max {1, 𝜃} ‖𝑢‖2
1,2
+









𝛽







𝑠
‖𝑢‖

2

2𝑠


≤ max {1, 𝜃} ‖𝑢‖2
1,2
+ 𝐾

2






𝛽







𝑠
‖𝑢‖

2

1,2

≤ 𝜉

2‖
𝑢‖

2

1,2
,

(11)

where 𝐾 is the constant of Sobolev imbedding from
𝐻

1
(Ω) → 𝐿

2𝑠


(Ω), 𝑠 = 𝑠/(𝑠 − 1), 𝜉
2
= max{1, 𝜃, 𝐾2

‖𝛽‖

𝑠
}.

On the other hand, if 𝜃 > max{−𝜆
1
, 0}, then there exists

𝜉

1
> 0 such that

∫

Ω

(|∇𝑢|

2
+ 𝛽 (𝑥) 𝑢

2
+ 𝜃𝑢

2
) 𝑑𝑥 ≥ 𝜉

1‖
𝑢‖

2

1,2
. (12)
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If not, it is clear from (7) that

𝜒 (𝑢) = ∫

Ω

(|∇𝑢|

2
+ 𝛽 (𝑥) 𝑢

2
+ 𝜃𝑢

2
) 𝑑𝑥 ≥ 0. (13)

Exploiting the 2-homogeneity of 𝜒 we can find a sequence
{𝑢

𝑛
}

𝑛≥1
⊂ 𝐻

1
(Ω), such that









𝑢

𝑛







1,2
= 1, ∀𝑛 ≥ 1, 𝜒 (𝑢

𝑛
) → 0

+
. (14)

Passing to a subsequence if necessary, we may assume that

𝑢

𝑛
⇀ 𝑢 weakly in 𝐻1

(Ω) ,
(15)

𝑢

𝑛
→ 𝑢 strongly in 𝐿2𝑠



(Ω) .

(16)

The sequential weak lower semicontinuity of 𝜎 and (15) imply
that

𝜎 (𝑢) ≤ −∫

Ω

𝜃𝑢

2
𝑑𝑥 ≤ 𝜆

1‖
𝑢‖

2

2
. (17)

So 𝜎(𝑢) = 𝜆
1
‖𝑢‖

2

2
and thus 𝑢 = 𝛾𝜙

1
, with some 𝛾 ∈ 𝑅.

If 𝛾 = 0, then 𝑢
𝑛
→ 0 in 𝐻1

(Ω), which contradicts the
fact that ‖𝑢

𝑛
‖

1,2
= 1 for all 𝑛 ≥ 1. If 𝛾 ̸= 0, then, from (17), we

have 𝜎(𝜙
1
) < 𝜆

1
‖𝜙

1
‖

2

2
, which contradicts (7).

Combining (11) and (12), we have

𝜉

1‖
𝑢‖

2

1,2
≤ ∫

Ω

(|∇𝑢|

2
+ 𝛽 (𝑥) 𝑢

2
+ 𝜃𝑢

2
) 𝑑𝑥 ≤ 𝜉

2‖
𝑢‖

2

1,2
. (18)

Namely, ‖ ⋅ ‖ is equivalent to the usual Sobolev norm ‖ ⋅ ‖

1,2
.

From now on we take (𝐻1
(Ω), ⟨⋅⟩, ‖ ⋅ ‖) as our working

space, 𝜃 > max{−𝜆
1
, 0}, ‖𝜙

1
‖ = 1. In view of Lemma 1

and the Rellich-Kondrachov Compactness theorem (see [15,
Theorem 1]), we directly get the following lemma.

Lemma 2. Let 𝛽 ∈ 𝐿

𝑠
(Ω) with 𝑠 > 𝑁/2 and it may change

sign. Then the space 𝐻1
(Ω) is compactly embedded in 𝐿𝑝(Ω)

for 1 ≤ 𝑝 < 2∗ and continuously embedded in 𝐿2
∗

(Ω); hence
there exists 𝑆 > 0 such that

‖𝑢‖𝑝
≤ 𝑆 ‖𝑢‖ , ∀𝑢 ∈ 𝐻

1
(Ω) . (19)

In addition, we also need the following lemmas.

Lemma 3 (from Lemma 4.6 of [13]). Let𝑋 be a Hilbert space
with orthonormal direct sum splitting 𝑋 = 𝑉 ⊕ 𝑍 ⊕ 𝑊.
Moreover, let dim(𝑉 ⊕ 𝑍) < ∞. For 𝜌 > 𝑅 > 0, set

𝐴 = {𝑢 ∈ 𝑊 : ‖𝑢‖ ≥ 𝑅} ∪ {𝑢 ∈ 𝑍 ⊕𝑊: ‖𝑢‖ = 𝑅} ,

𝐵 = {𝑢 ∈ 𝑉 ⊕ 𝑍 : ‖𝑢‖ = 𝜌} .

(20)

Then 𝐴 and 𝐵 link.

Lemma 4 (fromTheorem 8.1 of [16]). Let 𝑋 = 𝑋

1
⊕ 𝑋

2
be a

Hilbert space where 𝑋
1
has finite dimension and 𝐽 ∈ 𝐶1

(𝑋, 𝑅)

satisfying the (𝑃.𝑆.) condition and such that, for given 𝜌
1
, 𝜌

2
>

0,

sup
𝑢∈𝜌
1
𝑆
1

𝐽 (𝑢) < 𝑎 = inf
𝑢∈𝜌
2
𝐵
2

𝐽 (𝑢) ≤ 𝑏 = sup
𝑢∈𝜌
1
𝐵
1

𝐽 (𝑢) < inf
𝑢∈𝜌
2
𝑆
2

𝐽 (𝑢) ,

(21)

where 𝐵
𝑖
and 𝑆

𝑖
represent the unit ball and the unit sphere in

𝑋

𝑖
: 𝑖 = 1, 2. Then there exists a critical point 𝑢

0
such that

𝐽(𝑢

0
) ∈ [𝑎, 𝑏].

Next, let 𝐹(𝑥, 𝑡) = ∫

𝑡

0
𝑓(𝑥, 𝑠)𝑑𝑠; in order to state our

main results, we introduce the following assumptions on the
nonlinear term:

(𝑓

1
) lim

|𝑡|→∞
(𝑓(𝑥, 𝑡)𝑡/|𝑡|) = +∞ uniformly with respect

to 𝑥 ∈ Ω;

(𝑓

2
) lim

|𝑡|→∞
𝐹(𝑥, 𝑡) = +∞ uniformly with respect to 𝑥 ∈

Ω;

(𝑓

3
) lim

|𝑡|→∞
(𝑓(𝑥, 𝑡)𝑡/|𝑡|) = −∞ uniformly with respect

to 𝑥 ∈ Ω;

(𝑓

4
) lim

|𝑡|→∞
𝐹(𝑥, 𝑡) = −∞ uniformly with respect to 𝑥 ∈

Ω.

Our main results are given by the following theorems.

Theorem 5. Let 𝜆
𝑘
(𝑘 ≥ 2) be an eigenvalue of multiplicity𝑚

and 𝛽 ∈ 𝐿𝑠(Ω) with 𝑠 > 𝑁/2 and it may change sign. Suppose
that the conditions (𝑓

0
) and (𝑓

∞
) hold and one of the sets of

hypotheses (𝑓
1
) and (𝑓

2
). Then there exists 𝛿

0
> 0 such that for

𝜆 ∈ (𝜆

𝑘
− 𝛿

0
, 𝜆

𝑘
) problem (1) has at least two solutions.

Theorem 6. Let 𝜆
𝑘
(𝑘 ≥ 2) be an eigenvalue of multiplicity𝑚

and 𝛽 ∈ 𝐿𝑠(Ω) with 𝑠 > 𝑁/2 and it may change sign. Suppose
that the conditions (𝑓

0
) and (𝑓

∞
) hold and one of the sets of

hypotheses (𝑓
3
) and (𝑓

4
). Then there exists 𝛿

1
> 0 such that for

𝜆 ∈ (𝜆

𝑘
, 𝜆

𝑘
+ 𝛿

1
) problem (1) has at least two solutions.

Theorem 7. Let 𝛽 ∈ 𝐿𝑠(Ω) with 𝑠 > 𝑁/2 and it may change
sign. Suppose that the conditions (𝑓

0
) and (𝑓

∞
) hold, and the

nonlinearity 𝑓 satisfies (𝑓
2
). Then, for 𝜆 < 𝜆

1
sufficiently close

to 𝜆
1
, problem (1) has at least three solutions.

3. Proof of Theorems

The associated functional of problem (1) is

𝐽 (𝑢) =

1

2

∫

Ω

(|∇𝑢|

2
+ 𝛽 (𝑥) 𝑢

2
) 𝑑𝑥 −

𝜆

2

∫

Ω

𝑢

2
𝑑𝑥

− ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

=

1

2

‖𝑢‖

2
−

𝜆 + 𝜃

2

∫

Ω

𝑢

2
𝑑𝑥 − ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

(22)
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for 𝑢 ∈ 𝐻1
(Ω). Under the conditions (𝑓

0
) and (𝑓

∞
), it is easy

to verify that, for every 𝜆 ∈ 𝑅, 𝐽 ∈ 𝐶1
(𝐻

1
(Ω), 𝑅) and

⟨𝐽


(𝑢) , V⟩ = ∫

Ω

(∇𝑢∇V + 𝛽 (𝑥) 𝑢V) 𝑑𝑥 − 𝜆∫
Ω

𝑢V 𝑑𝑥

− ∫

Ω

𝑓 (𝑥, 𝑢) V 𝑑𝑥,
(23)

for 𝑢, V ∈ 𝐻

1
(Ω). Moreover, critical points of 𝐽 are exactly

weak solutions of problem (1).
It follows from (𝑓

0
) and (𝑓

∞
) that for every 𝜀 > 0 there

exist ̃𝑀
𝜀
> 0 and 𝐿

�̃�
𝜀

∈ 𝐿

2
(Ω) such that









𝑓 (𝑥, 𝑡)









≤ 𝜀 |𝑡| +











𝐿

�̃�
𝜀

(𝑥)











, (24)

for all 𝑡 ∈ 𝑅 and a.e. 𝑥 ∈ Ω, which implies that

|𝐹 (𝑥, 𝑡)| ≤

𝜀

2

|𝑡|

2
+











𝐿

�̃�
𝜀

(𝑥)











|𝑡| , (25)

for all 𝑡 ∈ 𝑅 and a.e. 𝑥 ∈ Ω. From this andHölder’s inequality,
we have















∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥















≤

𝜀

2

𝑆

2
‖𝑢‖

2
+

̃

𝐿

𝜀 ‖
𝑢‖ , (26)

where ̃𝐿
𝜀
= 𝑆‖𝐿

�̃�
𝜀

‖

2
and 𝑆 is the best embedding constant.

In addition, we will use several times the estimates below.
From (7) and (8), we have

‖𝑢‖

2
≥ (𝜃 + 𝜆

1
) ∫

Ω

𝑢

2
𝑑𝑥, ∀𝑢 ∈ 𝐻

1
(Ω) , (27)

‖𝑢‖

2
≤ (𝜃 + 𝜆

𝑘
) ∫

Ω

𝑢

2
𝑑𝑥, ∀𝑢 ∈ span {𝜙

1
, 𝜙

2
, . . . , 𝜙

𝑘
} ,

(28)

‖𝑢‖

2
≥ (𝜃 + 𝜆

𝑘+1
) ∫

Ω

𝑢

2
𝑑𝑥, ∀𝑢 ∈ (span {𝜙

1
, 𝜙

2
, . . . , 𝜙

𝑘
})

⊥
.

(29)

Proposition 8. Assume that (𝑓
0
) and (𝑓

∞
) hold, and suppose

that 𝜆 ̸= 𝜆

𝑘
for any 𝑘 ∈ 𝑁+.Then 𝐽 satisfies the (𝑃.𝑆.) condition.

Proof. For any sequence {𝑢
𝑛
} ⊂ 𝐻

1
(Ω) such that









𝐽 (𝑢

𝑛
)









< ∞ ∀𝑛, 𝐽


(𝑢

𝑛
) → 0 as 𝑛 → ∞,

(30)

we need to prove that {𝑢
𝑛
} has a convergent subsequence.

By the standard argument, it suffices to show that {𝑢
𝑛
} is

bounded in 𝐻1
(Ω). Suppose by contradiction that ‖𝑢

𝑛
‖ as

𝑛 → ∞. Let 𝑤
𝑛
= 𝑢

𝑛
/‖𝑢

𝑛
‖. Then ‖𝑤

𝑛
‖ = 1, so we may

suppose that there is 𝑤 ∈ 𝐻1
(Ω) such that

𝑤

𝑛
⇀ 𝑤 weakly in 𝐻1

(Ω) ,

𝑤

𝑛
→ 𝑤 strongly in 𝐿𝑝 (Ω) , where 𝑝 ∈ [1, 2∗) ,

(31)

as 𝑛 → ∞. Then, for any V ∈ 𝐻1
(Ω), from (24) and (27), we

have
1









𝑢

𝑛









∫

Ω

𝑓 (𝑥, 𝑢

𝑛
) V 𝑑𝑥 ≤

1









𝑢

𝑛









∫

Ω

(𝜀









𝑢

𝑛









+











𝐿

�̃�
𝜀

(𝑥)











) |V| 𝑑𝑥

≤

1









𝑢

𝑛









(𝜀









𝑢

𝑛







2
‖V‖2 +











𝐿

�̃�
𝜀









2
‖V‖2)

≤

𝜀

√
𝜃 + 𝜆

1

‖V‖2 +










𝐿

�̃�
𝜀









2
‖V‖2









𝑢

𝑛









(32)

which shows that

lim
𝑛→∞

1









𝑢

𝑛









∫

Ω

𝑓 (𝑥, 𝑢

𝑛
) V 𝑑𝑥 ≤

𝜀

√
𝜃 + 𝜆

1

‖V‖2. (33)

By the arbitrariness of 𝜀, one has

lim
𝑛→∞

1









𝑢

𝑛









∫

Ω

𝑓 (𝑥, 𝑢

𝑛
) V 𝑑𝑥 = 0. (34)

Like in the proof of (34), from (26), it follows that

lim
𝑛→∞

1









𝑢

𝑛









2
∫

Ω

𝐹 (𝑥, 𝑢

𝑛
) V 𝑑𝑥 = 0. (35)

Thus, for any V ∈ 𝐻1
(Ω), by (30), (31), and (34), passing to

the limit in

⟨𝐽


(𝑢

𝑛
) , V⟩









𝑢

𝑛









= ∫

Ω

(∇𝑤

𝑛
∇V + 𝛽 (𝑥)𝑤𝑛

V) 𝑑𝑥

− 𝜆∫

Ω

𝑤

𝑛
V 𝑑𝑥 − ∫

Ω

𝑓 (𝑥, 𝑢

𝑛
) V 𝑑𝑥

(36)

gives

∫

Ω

(∇𝑤

𝑛
∇V 𝑑𝑥 + 𝛽 (𝑥)𝑤𝑛

V) 𝑑𝑥 − 𝜆∫
Ω

𝑤

𝑛
V 𝑑𝑥 = 0, (37)

which implies that

𝑤 ∈ Ker (−Δ + 𝛽 − 𝜆) . (38)

In addition, by (30), (31), and (35), passing to the limit in

𝐽 (𝑢

𝑛
)









𝑢

𝑛









2
=

1

2

∫

Ω

(









∇𝑤

𝑛









2
+ 𝛽 (𝑥)𝑤

2

𝑛
+ 𝜃𝑤

2

𝑛
) 𝑑𝑥

−

𝜃 + 𝜆

2

∫

Ω

𝑤

2

𝑛
𝑑𝑥 −

1









𝑢

𝑛









2
∫

Ω

𝐹 (𝑥, 𝑢

𝑛
) 𝑑𝑥

(39)

gives

1

2

−

𝜃 + 𝜆

2

∫

Ω

𝑤

2
𝑑𝑥 = 0. (40)

If 𝜃 + 𝜆 = 0, then, from (40), we have 1/2 = 0, which is a
contradiction.

If 𝜃+𝜆 ̸= 0, then, from (40), we have𝑤 ̸= 0. From this and
(38) it follows that 𝜆 is an eigenvalue of operator −Δ + 𝛽, a
contradiction; the proof is completed.
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Hereafter, we set
𝑉 = span {𝜙

1
, . . . , 𝜙

𝑘−1
} ,

𝑍 = span {𝜙
𝑘
, . . . , 𝜙

𝑘+𝑚−1
} = 𝐸

𝑘
,

𝑊 = (𝑉 ⊕ 𝑍)

⊥
,

(41)

and we define
𝐵

𝑉
= {𝑢 ∈ 𝑉 : ‖𝑢‖ ≤ 1} , 𝐵

𝑉𝑍
= {𝑢 ∈ 𝑉 ⊕ 𝑍 : ‖𝑢‖ ≤ 1} ,

𝐵

𝑍𝑊
= {𝑢 ∈ 𝑍 ⊕𝑊: ‖𝑢‖ ≤ 1} ,

(42)

and 𝑆
𝑉
, 𝑆

𝑉𝑍
, and 𝑆

𝑍𝑊
, respectively, are their relative bound-

aries.
Theorems 5 and 6 will be a consequence of the geometry

in Propositions 9 and 10 stated below, whose proofs will be
postponed to Sections 4 and 5.

Proposition9. If𝜆 ∈ (𝜆
𝑘−1
, 𝜆

𝑘
) and hypotheses (𝑓

0
) and (𝑓

∞
)

are satisfied, then there exist constants 𝐷
𝜆
and 𝜌

𝜆
such that

𝐽 (𝑢) ≥ 𝐷𝜆
, 𝑓𝑜𝑟 𝑢 ∈ 𝑍 ⊕𝑊, (43)

𝐽 (𝑢) < 𝐷𝜆
, 𝑓𝑜𝑟 𝑢 ∈ 𝜌

𝜆
𝑆

𝑉
. (44)

Moreover, if one of the sets of hypotheses (𝑓
1
) and (𝑓

2
) is

satisfied, then there exists 𝛿
0
such that for 𝜆 ∈ (𝜆

𝑘
− 𝛿

0
, 𝜆

𝑘
)

there exist 𝐷
𝑊
, 𝐷

𝜆
∈ 𝑅, 𝜌

𝜆
> 𝑅

1
> 0 such that, in addition to

(43) and (44),

𝐽 (𝑢) ≥ 𝐷𝑊
, 𝑓𝑜𝑟 𝑢 ∈ 𝑊, (45)

𝐽 (𝑢) < 𝐷𝑊
, 𝑓𝑜𝑟 𝑢 ∈ 𝑅

1
𝑆

𝑉𝑍
, (46)

𝐽 (𝑢) < 𝐷𝑊
, 𝑓𝑜𝑟 𝑢 ∈ 𝑉, ‖𝑧‖ ≥ 𝑅1

. (47)

(The values with index 𝜆 depend on 𝜆; the others may be fixed
uniformly.)

Proposition 10. If 𝜆 ∈ (𝜆

𝑘
, 𝜆

𝑘+𝑚
) and hypotheses (𝑓

0
) and

(𝑓

∞
) are satisfied, then there exist constants 𝐾

𝜆
and 𝛽

𝜆
such

that

𝐽 (𝑧) ≥ 𝐾𝜆
, 𝑓𝑜𝑟 𝑧 ∈ 𝑊, (48)

𝐽 (𝑧) < 𝐾𝜆
, 𝑓𝑜𝑟 𝑧 ∈ 𝛽

𝜆
𝑆

𝑉𝑍
. (49)

Moreover, if one of the sets of hypotheses (𝑓
3
) and (𝑓

4
) is

satisfied, then there exists 𝛿
1
such that for 𝜆 ∈ (𝜆

𝑘
, 𝜆

𝑘
+ 𝛿

1
)

there exist𝐾
𝜆
, 𝐾

𝑉
, 𝐸 ∈ 𝑅, 𝛽

𝜆
> 𝑅

2
> 0, and 𝜉 > 0 such that, in

addition to (48) and (49),

𝐽 (𝑢) < 𝐾𝑉
, 𝑓𝑜𝑟 𝑢 ∈ 𝑉, (50)

𝐽 (𝑢) > 𝐾𝑉
, 𝑓𝑜𝑟 𝑢 ∈ 𝑅

2
𝑆

𝑍𝑊
, (51)

𝐽 (𝑢) > 𝐾𝑉
, 𝑓𝑜𝑟 𝑢 ∈ 𝑊, ‖𝑢‖ ≥ 𝑅2

, (52)

𝐽 (𝑢) > 𝐸, 𝑓𝑜𝑟 𝑢 ∈ 𝑅

2
𝐵

𝑍𝑊
, (53)

𝐽 (𝑢) < 𝐸, 𝑓𝑜𝑟 𝑢 ∈ 𝜉𝑆

𝑉
. (54)

(The values with index 𝜆 depend on 𝜆; the others may be fixed
uniformly.)

Proof of Theorem 5. Since the functional 𝐽 satisfies the (P.S.)
condition, we can apply two times the saddle point theorem
(see, e.g., [17]); let

Γ

𝑘−1
= {𝛾 ∈ 𝐶

0
(𝜌

𝜆
𝐵

𝑉
; 𝐸) s.t. 𝛾|

𝜌
𝜆𝑆
𝑉

= id} ,

Γ

𝑘
= {𝛾 ∈ 𝐶

0
(𝑅

1
𝐵

𝑉𝑍
; 𝐸) s.t. 𝛾|

𝑅
1
𝑆
𝑉𝑍

= id} .
(55)

The first solution, which we denote by 𝑢
𝑘−1

and may be
obtained for any 𝜆 ∈ (𝜆

𝑘−1
, 𝜆

𝑘
) with just hypotheses (𝑓

0
) and

(𝑓

∞
), corresponds to a critical point at the level

𝑐

𝑘−1
= inf

𝛾∈Γ
𝑘−1

sup
𝑤∈𝜌
𝜆𝐵
𝑉

𝐽 (𝛾 (𝑤)) . (56)

The criticality of this level is guaranteed by the estimates (43)
and (44), since 𝜌

𝜆
𝑆

𝑉
and 𝑍⊕𝑊 link; that is, the image of any

map in Γ
𝑘−1

intersects 𝑍 ⊕𝑊.
The second solution, which we denote by 𝑢

𝑘
, corresponds

to a critical point at the critical level

𝑐

𝑘
= inf

𝛾∈Γ
𝑘

sup
𝑤∈𝑅
1
𝐵
𝑉𝑍

𝐽 (𝛾 (𝑤)) . (57)

Actually, this is a critical level because of the estimates (45)
and (46), since 𝑅

1
𝑆

𝑉𝑍
and𝑊 link.

To conclude the proof, we need to show that these two
solutions are distinct.

We observe first that by estimate (45) we have that 𝑐
𝑘
≥

𝐷

𝑊
, then we observe that we may build a map 𝛾

0
∈ Γ

𝑘−1
in

such a way that its image is the union between the annulus
{𝑢 ∈ 𝑉 : ‖𝑢‖ ∈ [𝑅

1
, 𝜌

𝜆
]} and the image of a (𝑘−1)-dimensional

ball in 𝑅
1
𝑆

𝑉𝑍
whose boundary is 𝑅

1
𝑆

𝑉
. By the estimates (46)

and (47), we deduce that sup
𝑤∈𝜌
𝜆
𝐵
𝑉

𝐽(𝛾

0
(𝑤)) < 𝐷

𝑊
, and as a

consequence 𝑐
𝑘−1

< 𝐷

𝑊
, proving that the two solutions are

distinct, for being at different critical levels.

Proof of Theorem 6. Since the functional 𝐽 satisfies the (P.S.)
condition, we can apply the saddle point theorem and
Lemma 4.

The first solution, which we denote by 𝑤
𝑘
and may be

obtained for any 𝜆 ∈ (𝜆
𝑘
, 𝜆

𝑘+𝑚
)with just hypotheses (𝑓

0
) and

(𝑓

∞
), is again obtained through the saddle point theorem and

corresponds to a critical point at the critical level

𝑑

𝑘
= inf

𝛾∈Γ
𝑘

sup
𝑤∈𝛽
𝜆
𝐵
𝑉𝑍

𝐽 (𝛾 (𝑤)) , (58)

where now

Γ

𝑘
= {𝛾 ∈ 𝐶

0
(𝛽

𝜆
𝐵

𝑉𝑍
; 𝐸) s.t. 𝛾|

𝛽
𝜆
𝑆
𝑉𝑍

= id} . (59)

The criticality is guaranteed by estimates (48) and (49), since
𝛽

𝜆
𝑆

𝑉𝑍
and𝑊 link.

The second solution, which we denote by 𝑤
𝑘−1

, comes
from Lemma 3, where we set 𝑋

1
= 𝑉 and 𝑋

2
= 𝑍 ⊕ 𝑊;

actually we have the structure

sup
𝜉𝑆
𝑉

𝐽 (𝑢) < 𝐸 = inf
𝑅
2
𝐵
𝑍𝑊

𝐽 (𝑢) ≤ sup
𝜉𝐵
𝑉

𝐽 (𝑢) < 𝐾𝑉
< inf

𝑅
2
𝑆
𝑍𝑊

𝐽 (𝑢)

(60)

and then we have a critical point𝑤
𝑘−1

at the level 𝑑
𝑘−1

≤ 𝐾

𝑉
.
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Finally, in order to prove that these two solutions are
distinct, we need a sharper estimate for 𝑑

𝑘
than that given

by (49). For this we use Lemma 3 to guarantee that, for any
map 𝛾 ∈ Γ

𝑘
, since 𝛽

𝜆
> 𝑅

2
, one has that the image of 𝛾 either

intersects 𝑅
2
𝑆

𝑍𝑊
or has a point 𝑢 ∈ 𝑊 with ‖𝑢‖ ≥ 𝑅

2
. This

implies that

sup
𝑤∈𝛽
𝜆
𝐵
𝑉𝑍

𝐽 (𝛾 (𝑤)) > 𝐾𝑉
, (61)

by estimates (51) and (52), and then 𝑑
𝑘
> 𝐾

𝑉
proving that

the two solutions are distinct, for being at different critical
levels.

Proof of Theorem 7. The proof will be divided into four steps.

Step 1. For 𝜆 < 𝜆
1
, from the definition of 𝜆

1
, (26), and (27),

we get

𝐽 (𝑢) ≥

1

2

(

𝜆

1
− 𝜆

𝜃 + 𝜆

1

− 𝜀𝑆

2
) ‖𝑢‖

2
−

̃

𝐿

𝜀 ‖
𝑢‖ . (62)

Letting 𝜀 = (𝜆
1
− 𝜆)/2𝑆

2
(𝜃 + 𝜆

1
), it follows that 𝐽 is coercive

in𝐻1
(Ω).

Similarly, from (26) and (29), we obtain

𝐽 (𝑤) ≥

1

2

(

𝜆

2
− 𝜆

𝜃 + 𝜆

2

− 𝜀𝑆

2
) ‖𝑤‖

2
−

̃

𝐿

𝜀 ‖
𝑤‖

≥

1

2

(

𝜆

2
− 𝜆

1

𝜃 + 𝜆

2

− 𝜀𝑆

2
) ‖𝑤‖

2
−

̃

𝐿

𝜀 ‖
𝑤‖ ,

(63)

for all 𝑤 ∈ (span{𝜙
1
})

⊥. Let 𝜀 = (𝜆

2
− 𝜆

1
)/2𝑆

2
(𝜃 + 𝜆

2
);

hence 𝐽 is coercive in (span{𝜙
1
})

⊥ and 𝐽 is bounded from
below on (span{𝜙

1
})

⊥, and, moreover, there is a constant𝑀,
independent of 𝜆, such that inf

(span{𝜙
1
})
⊥
𝐽 ≥ 𝑀.

Step 2. If 𝜆 < 𝜆
1
is sufficiently close to 𝜆

1
, we have 𝑡− < 0 < 𝑡+

such that 𝐽(𝑡±𝜙
1
) < 𝑀. In fact, for 𝜆 < 𝜆

1
, we have

𝐽 (𝑡𝜙

1
) =

𝜆

1
− 𝜆

2 (𝜃 + 𝜆

1
)









𝑡𝜙

1









2
− ∫

Ω

𝐹 (𝑥, 𝑡𝜙

1
) 𝑑𝑥. (64)

For any fixed �̃� ∈ 𝑅 with |�̃�| = 1, from (𝑓

2
), we get

lim
|𝑡|→∞

𝐹(𝑥, 𝑡�̃�) = +∞ uniformly in 𝑥 ∈ Ω. From Fatou’s
lemma and 𝜙

1
> 0 inΩ, it follows that

lim
𝑡→+∞

∫

Ω

𝐹 (𝑥, 𝑡𝜙

1
) 𝑑𝑥 ≥ ∫

Ω

lim
𝑡→+∞

𝐹 (𝑥, 𝑡𝜙

1
) 𝑑𝑥 = +∞,

(65)

and hence, taking 𝑡+(> 0) large enough, we get

∫

Ω

𝐹 (𝑥, 𝑡

+
𝜙

1
) 𝑑𝑥 > −𝑀 + 1. (66)

For 𝜆
1
− 2(𝜃 + 𝜆

1
)/(𝑡

+
)

2
< 𝜆 < 𝜆

1
, combining (64) and (66)

yields 𝐽(𝑡+𝜙
1
) < 𝑀. A similar conclusion holds for some 𝑡− <

0.

Step 3. If 𝜆 < 𝜆
1
, let

Σ

±
= {𝑧 ∈ 𝐻

1
(Ω) : 𝑧 = ±𝑡𝜙1

+ 𝑤 with 𝑡 > 0,

𝑤 ∈ (span {𝜙
1
})

⊥
} .

(67)

The functional 𝐽 satisfies the (P.S.)
𝑐,Σ
+

and (P.S.)
𝑐,Σ
−

condition
for all 𝑐 < 𝑀.

In fact, let {𝑧
𝑛
} ⊂ ∑

+
satisfy 𝐽(𝑧

𝑛
) → 𝑐 < 𝑀 and

𝐽


(𝑧

𝑛
) → 0 as 𝑛 → ∞. From Proposition 8, there is

𝑧 ∈ 𝐻

1
(Ω) such that 𝑧

𝑛
→ 𝑧 strongly in 𝐻1

(Ω). If 𝑧 ∈

𝜕Σ

+
= (span{𝜙

1
})

⊥, from the second conclusion of Step 1, we
get 𝐽(𝑧

𝑛
) → 𝑐 ≥ 𝑀, which is impossible. Hence, 𝑐 ∈ Σ

+
and

𝐽 satisfies the (P.S.)
𝑐,Σ
+

. Similarly we have that (P.S.)
𝑐,Σ
−

holds
for all 𝑐 < 𝑀.

Step 4. Three solutions are obtained.
If 𝜆 < 𝜆

1
is sufficiently close to 𝜆

1
, from Steps 1 and 2, we

get−∞ < inf
Σ
±

𝐽 < 𝑀, which implies that 𝐽 is bounded below
in Σ

+
. Consequently, from Ekeland’s variational principle,

there exists {𝑧
𝑛
} ⊂ Σ

+
such that 𝐽(𝑧

𝑛
) → inf

Σ
+

𝐽 and
𝐽


(𝑧

𝑛
) → 0 as 𝑛 → ∞. Since 𝐽 satisfies (P.S.)

𝑐,Σ
+

for all
𝑐 < 𝑀, there is 𝑧+ ∈ Σ

+
such that 𝐽(𝑧+) = inf

Σ
+

𝐽; that is, the
infimum is attained in Σ

+
. A similar conclusion holds in Σ

−
.

So 𝐽 has two distinct critical points, denoted by 𝑧+, 𝑧−.
Suppose that 𝐽(𝑧+) ≥ 𝐽(𝑧−). Letting

𝜓 (𝑧) = 𝐽 (𝑧 + 𝑧

+
) − 𝐽 (𝑧

+
) , 𝑒 = 𝑧

−
− 𝑧

+
, (68)

we have𝜓(0) = 0,𝜓(𝑒) ≤ 0 and since 𝑧+ is the local minimum
of 𝐽, there are 𝑟, 𝜌 > 0 such that 𝜓(𝑧) ≥ 𝜌 for ‖𝑧‖ = 𝑟. Since
𝜓


= 𝐽

 and𝜓 satisfies the (P.S.) condition, from themountain
pass theorem, the number

𝑐 = inf
ℎ∈Γ

max
𝑡∈[0,1]

𝐽 (ℎ (𝑡)) , (69)

where Γ = {ℎ ∈ 𝐶([0, 1],𝐻

1
(Ω)) : ℎ(0) = 𝑧

+
, ℎ(1) = 𝑧

−
},

is a critical value of 𝐽. From the definition of 𝑐, we have 𝑐 ≥
𝑀 and obtain a third critical point of 𝐽. Hence, the proof is
completed.

4. Proof of Estimates

In this section we will prove all the estimates in Propositions
9 and 10.

4.1. Estimates of the Saddle Geometry

Lemma 11. Under hypotheses (𝑓
0
) and (𝑓

∞
), one gets the

following:

(i) for 𝜆 ∈ (𝜆

𝑘−1
, 𝜆

𝑘
), there exists 𝐷

𝜆
satisfying (43)

and 𝐷
𝑊
∈ 𝑅 satisfying (45);

(ii) for 𝜆 ∈ (𝜆
𝑘
, 𝜆

𝑘+𝑚
) one has the following:

(a) there exists 𝐾
𝜆
∈ 𝑅 satisfying (48),

(b) for a given 𝑅
2
> 0, there exists 𝐸 ∈ 𝑅

satisfying (53).

Proof. Let 𝑢 ∈ 𝑊; using estimates (26) and (29) we get

𝐽 (𝑢) ≥

1

2

(

𝜆

𝑘+𝑚
− 𝜆

𝜃 + 𝜆

𝑘+𝑚

− 𝜀𝑆

2
) ‖𝑢‖

2
−

̃

𝐿

𝜀 ‖
𝑢‖ . (70)
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For 𝜆 ∈ (𝜆
𝑘−1
, 𝜆

𝑘
), letting 𝜀 < (𝜆

𝑘+𝑚
−𝜆

𝑘
)/𝑆

2
(𝜃+𝜆

𝑘+𝑚
) <

(𝜆

𝑘+𝑚
−𝜆)/𝑆

2
(𝜃+𝜆

𝑘+𝑚
), it follows that 𝐽 is bounded below in

𝑊; that is, there exists a𝐷
𝑊
as in (45).

For 𝜆 ∈ (𝜆
𝑘
, 𝜆

𝑘+𝑚
), then the same estimate holds but the

constant cannot be made independent of 𝜆, giving (48).
In the same way, let 𝑢 ∈ 𝑍⊕𝑊 and set 𝛿 = 𝜆

𝑘
−𝜆 > 0; we

get

𝐽 (𝑢) ≥

1

2

(

𝜆

𝑘
− 𝜆

𝜃 + 𝜆

𝑘

− 𝜀𝑆

2
) ‖𝑢‖

2
−

̃

𝐿

𝜀 ‖
𝑢‖

≥

1

2

(

𝛿

𝜃 + 𝜆

𝑘

− 𝜀𝑆

2
) ‖𝑢‖

2
−

̃

𝐿

𝜀 ‖
𝑢‖ .

(71)

Letting 𝜀 < 𝛿/𝑆2(𝜃+𝜆
𝑘
), it follows that 𝐽 is bounded below in

𝑍 ⊕ 𝑊; that is, there exists a 𝐷
𝜆
such that for all 𝑢 ∈ 𝑍 ⊕ 𝑊

we have (43), where again the constant𝐷
𝜆
depends on 𝛿, that

is, on 𝜆.
Finally, (71) with 𝜆 ∈ (𝜆

𝑘
, 𝜆

𝑘+𝑚
) implies

𝐽 (𝑢) ≥

1

2

(

𝜆

𝑘
− 𝜆

𝑘+𝑚

𝜃 + 𝜆

𝑘

− 𝜀𝑆

2
) ‖𝑢‖

2
−

̃

𝐿

𝜀 ‖
𝑢‖ . (72)

Then, no matter the value of 𝜆, 𝐽 is bounded from below in
any bounded subset of 𝑍⊕𝑊, giving (53) for a suitable value
of 𝐸.

Lemma 12. Under hypotheses (𝑓
0
) and (𝑓

∞
), one gets the

following:

(i) for 𝜆 ∈ (𝜆
𝑘−1
, 𝜆

𝑘
), given the constant 𝐷

𝜆
∈ 𝑅, there

exists 𝜌
𝜆
> 0 satisfying (44);

(ii) for 𝜆 ∈ (𝜆
𝑘
, 𝜆

𝑘+𝑚
) one has the following:

(a) there exists 𝐾
𝑉
∈ 𝑅 satisfying (50),

(b) for a given 𝐾
𝜆
∈ 𝑅, there exists 𝛽

𝜆
> 0

satisfying (49),
(c) for a given 𝐸 ∈ 𝑅, there exists 𝜉 > 0 satisfying
(54).

Moreover, given the values𝑅
1
,𝑅

2
, onemay always choose

𝜌

𝜆
> 𝑅

1
, 𝛽

𝜆
> 𝑅

2
as claimed in Propositions 9 and 10.

Proof. Let 𝑢 ∈ 𝑉, by estimates (26) and (28); we get

𝐽 (𝑢) ≤

1

2

(

𝜆

𝑘−1
− 𝜆

𝜃 + 𝜆

𝑘−1

+ 𝜀𝑆

2
) ‖𝑢‖

2
+

̃

𝐿

𝜀 ‖
𝑢‖ . (73)

For 𝜆 ∈ (𝜆
𝑘−1
, 𝜆

𝑘
), letting 𝜀 < (𝜆 − 𝜆

𝑘−1
)/𝑆

2
(𝜃 + 𝜆

𝑘−1
),

then one obtains (44) for suitably large 𝜌
𝜆
> 𝑅

1
.

For 𝜆 ∈ (𝜆
𝑘
, 𝜆

𝑘+𝑚
), letting 𝜀 < (𝜆

𝑘
− 𝜆

𝑘−1
)/𝑆

2
(𝜃 + 𝜆

𝑘−1
),

one obtains, for suitable 𝐾
𝑉
and 𝜉 > 0, (50) and (54).

Finally, letting 𝑢 ∈ 𝑉 ⊕ 𝑍 and setting 𝛿 = 𝜆 − 𝜆
𝑘
> 0, we

get

𝐽 (𝑢) ≤

1

2

(

𝜆

𝑘
− 𝜆

𝜃 + 𝜆

𝑘

+ 𝜀𝑆

2
) ‖𝑢‖

2
+

̃

𝐿

𝜀 ‖
𝑢‖

≤

1

2

(−

𝛿

𝜃 + 𝜆

𝑘

+ 𝜀𝑆

2
) ‖𝑢‖

2
+

̃

𝐿

𝜀 ‖
𝑢‖ .

(74)

Letting 𝜀 < 𝛿/𝑆2𝜆
𝑘
, it is clear that (once 𝛿 is fixed) this goes

to −∞ and then we may find the claimed 𝛽
𝜆
> 𝑅

2
such that

(49) holds.
Observe that 𝐾

𝑉
and 𝐸 can be chosen uniformly for 𝜆 ∈

(𝜆

𝑘
, 𝜆

𝑘+𝑚
), while 𝜌

𝜆
, 𝛽

𝜆
will in fact depend on 𝜆.

4.2. Estimating the Effect of the Nontrivial Perturbation. In
this section we will prove the remaining inequalities in
Propositions 9 and 10, those which rely on the hypothesis (𝑓

1
)

or (𝑓
2
) or (𝑓

3
) or (𝑓

4
), which, roughly speaking, say that the

perturbation 𝐹 is nontrivial in such a way that a new solution
arises when 𝜆 is sufficiently near to the eigenvalue 𝜆

𝑘
. The

proof is simpler forTheorem 5, since we need to estimate the
functional in the compact set 𝑆

𝑉𝑍
, while for Theorem 6 the

same kind of estimate is required in the noncompact set 𝑆
𝑍𝑊

.

4.2.1. Estimating 𝐽 in 𝑆
𝑉𝑍
. For the next estimates, wewill need

the following lemma.

Lemma 13. Hypothesis (𝑓
2
) implies that there exists a nonde-

creasing function𝐷 : (0, +∞) → 𝑅 such that

lim
𝑅→+∞

𝐷 (𝑅) = +∞, inf
𝑢∈𝑅𝑆
𝑉𝑍

∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 > 𝐷 (𝑅) .

(75)

Proof. First we claim that there exists a constant 𝜂 > 0 such
that the sets Ω

𝑢
= {𝑥 ∈ Ω : |𝑢(𝑥)| > 𝜂} have measure |Ω

𝑢
| >

𝜂, for all 𝑢 ∈ 𝑆
𝑉𝑍
.

Actually, 𝑉 ⊕ 𝑍 is a finite-dimensional subspace and the
functions 𝑢 ∈ 𝑆

𝑉𝑍
are smooth; they are uniformly bounded;

that is, there exists𝑀 > 0 such that |𝑢(𝑥)| ≤ 𝑀 for all 𝑥 ∈ Ω.
Suppose that for 𝜂

𝑛
→ 0(𝜂

𝑛
< 1) there exists {𝑢

𝑛
} ⊂ 𝑆

𝑉𝑍
such

that |Ω
𝑢
𝑛

| ≤ 𝜂

𝑛
.

On one hand, by (28), one obtains

1

𝜃 + 𝜆

𝑘

≤ ∫

Ω

𝑢

2
𝑑𝑥. (76)

On the other hand,

∫

Ω

𝑢

2
𝑑𝑥 = ∫

Ω
𝑢𝑛









𝑢

𝑛









2
𝑑𝑥 + ∫

Ω−Ω
𝑢𝑛









𝑢

𝑛









2
𝑑𝑥

≤ 𝑀

2 








Ω

𝑢
𝑛











+ 𝜂

2

𝑛











Ω − Ω

𝑢
𝑛











≤ 𝜂

𝑛
(𝑀

2
+ |Ω|)

→ 0.

(77)

That is a contradiction.
Now, for any 𝐻 > 0, we will show that we can find a ̃𝑅

large enough so that ∫
Ω
𝐹(𝑥, 𝑅𝑢)𝑑𝑥 ≥ 𝐻 for any 𝑢 ∈ 𝑆

𝑉𝑍
and

𝑅 ≥

̃

𝑅; this means that

lim
𝑅→∞

inf
𝑢∈𝑅𝑆
𝑉𝑍

∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 = +∞. (78)
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Actually, it follows from (𝑓

2
) that for any 𝑀 > 0 there

exists 𝑡
0
(> 0) such that 𝐹(𝑥, 𝑡) > 𝑀 for |𝑡| > 𝑡

0
. For 𝑅 > 𝑡

0
/𝜂,

one hasΩ
𝑢
⊆ {𝑥 ∈ Ω : |𝑅𝑢(𝑥)| > 𝑡

0
}, and then one gets

∫

|𝑅𝑢|≥𝑡
0

𝐹 (𝑥, 𝑅𝑢) 𝑑𝑥 ≥ 𝑀𝜂. (79)

For 𝑅 ≤ 𝑡

0
/𝜂, by (𝑓

0
) and (𝑓

2
), there exist ̃𝐶 > 0 and

𝐿

�̃�
∈ 𝐿

2
(Ω) such that 𝐹(𝑥, 𝑡) ≥ −̃𝐶(1 + 𝐿

�̃�
(𝑥)), for 𝑡 ∈ 𝑅 and

a.e. 𝑥 ∈ Ω.
Let𝑀 = (𝐻+

̃

𝐶|Ω|+

̃

𝐶|Ω|

1/2
‖𝐿

�̃�
‖

2
)𝜂

−1; one finally obtains

∫

Ω

𝐹 (𝑥, 𝑅𝑢) 𝑑𝑥 = ∫

|𝑅𝑢|≥𝑡
0

𝐹 (𝑥, 𝑅𝑢) 𝑑𝑥 + ∫

|𝑅𝑢|≤𝑡
0

𝐹 (𝑥, 𝑅𝑢) 𝑑𝑥

≥ 𝑀𝜂 −

̃

𝐶 |Ω| −

̃

𝐶|Ω|

1/2






𝐿

�̃�







2

= 𝐻.

(80)

It is elementary that

𝐷 (𝑅) = inf
𝜌≥𝑅

inf
𝑢∈𝑅𝑆
𝑉𝑍

∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 (81)

is well defined and satisfies the claim.

Now we may prove the following.

Lemma 14. Consider Theorem 5 with one of the sets of
hypotheses (𝑓

1
) and (𝑓

2
). Given the constant 𝐷

𝑊
∈ 𝑅, there

exist 𝑅
1
, 𝛿

0
> 0 such that, for any 𝜆 ∈ (𝜆

𝑘
− 𝛿

0
, 𝜆

𝑘
), (46) and

(47) hold.

Proof. We consider the two sets of hypotheses separately.
(i) In case (𝑓

1
), it follows from (𝑓

0
) and (𝑓

1
) that for any

𝑀 > 0 there exist 𝐶
𝑀
and 𝐿

𝑀
∈ 𝐿

2
(Ω) such that

𝐹 (𝑥, 𝑡) ≥ 𝑀 |𝑡| − 𝐶𝑀
(1 + 𝐿

𝑀 (
𝑥)) , (82)

for 𝑡 ∈ 𝑅 and 𝑥 ∈ Ω; in particular we set𝑀 = 1. Let 𝑢 ∈ 𝑅𝑆
𝑉𝑍
;

for being in a finite-dimensional subspace, all the norms are
equivalent, so that (set 𝛿 = 𝜆

𝑘
− 𝜆 > 0 and use estimates (28)

and (82))

𝐽 (𝑢) ≤

𝜆

𝑘
− 𝜆

2 (𝜃 + 𝜆

𝑘
)

‖𝑢‖

2
− ‖𝑢‖ + 𝐶0

≤

𝛿

2 (𝜃 + 𝜆

𝑘
)

‖𝑢‖

2
− ‖𝑢‖ + 𝐶0

≤

𝛿

2 (𝜃 + 𝜆

𝑘
)

𝑅

2
− 𝑅 + 𝐶

0
,

(83)

where 𝐶
0
= 𝐶

1
|Ω|

1/2
‖𝐿

1
‖

2
+ 𝐶

1
|Ω|.

(ii) In case (𝑓
2
), let 𝐷(𝑅) be as in Lemma 13, for ‖𝑢‖ = 𝑅;

let 𝑢 = 𝑤 + 𝜙 with 𝑤 ∈ 𝑉 and 𝜙 ∈ 𝑍 = 𝐸
𝑘
:

𝐽 (𝑢) ≤

𝜆

𝑘−1
− 𝜆

2 (𝜃 + 𝜆

𝑘−1
)

‖𝑤‖

2
+

𝜆

𝑘
− 𝜆

2 (𝜃 + 𝜆

𝑘
)









𝜙









2
− ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≤

𝜆

𝑘−1
− 𝜆

𝑘
+ 𝛿

2 (𝜃 + 𝜆

𝑘−1
)

‖𝑤‖

2
+

𝛿

2 (𝜃 + 𝜆

𝑘
)









𝜙









2
− ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≤

𝛿

2 (𝜃 + 𝜆

𝑘
)









𝜙









2
−

𝜆

𝑘
− 𝜆

𝑘−1

4 (𝜃 + 𝜆

𝑘−1
)

‖𝑤‖

2
− ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥.

(84)

We assume that 𝛿 ≤ (𝜆
𝑘
−𝜆

𝑘−1
)/2; it is easy to see that (𝜆

𝑘−1
−

𝜆

𝑘
)‖𝑤‖

2
/4(𝜃 + 𝜆

𝑘−1
) ≤ 𝐶 for some constant 𝐶; we estimate

𝐽 (𝑧) ≤

𝛿

2 (𝜃 + 𝜆

𝑘
)









𝜙









2
+ 𝐶 − 𝐷 (𝑅)

≤

𝛿

2 (𝜃 + 𝜆

𝑘
)

𝑅

2
− 𝐷 (𝑅) + 𝐶.

(85)

Considering (83) and (85), we see that since lim
𝑅→∞

𝐷(𝑅) =

+∞ by Lemma 13, we may fix 𝑅
1
so that 𝐶−𝐷(𝑅

1
) < 𝐷

𝑊
− 1

(or 𝐶
0
− 𝑅

1
< 𝐷

𝑊
− 1 for the case (𝑓

1
)) and then for 0 < 𝛿 <

min{2(𝜃 + 𝜆
𝑘
)/𝑅

2

1
, (𝜆

𝑘
− 𝜆

𝑘−1
)/2} one gets (46).

To obtain (47), we observe that (since 𝜆 > 𝜆

𝑘−1
) if 𝜙 =

0, that is, if 𝑢 ∈ 𝑉, then in estimates (83) and (85) we may
avoid the term 𝛿𝑅

2
/2(𝜃 + 𝜆

𝑘
) so that (remember that𝐷(𝑅) is

nondecreasing) 𝐽(𝑢) < 𝐷
𝑊
− 1 for ‖𝑢‖ > 𝑅

1
.

4.2.2. Estimating 𝐽 in 𝑆
𝑍𝑊

. We consider the corresponding
estimates of the previous lemma, for Theorem 6.

Lemma 15. Consider Theorem 6 with one of the sets of
hypotheses (𝑓

3
) and (𝑓

4
). Given the constant 𝐾

𝑉
∈ 𝑅, there

exist 𝑅
2
, 𝛿

1
> 0 such that, for any 𝜆 ∈ (𝜆

𝑘
, 𝜆

𝑘
+ 𝛿

1
), (51) and

(52) hold.

Proof. Letting 𝜆 = 𝜆
𝑘
+𝛿, we see from (70) that property (52)

will be satisfied provided that𝑅
2
is large enough (say𝑅

2
>

̃

𝑅);
observe that this value can bemade independent from 𝜆 once
𝛿 is small enough.

Now we consider the two sets of hypotheses separately.
(i) In case (𝑓

3
), suppose 𝑢 ∈ 𝐸

𝑘
⊕ 𝑊; we can assume

that 𝑢 = 𝑤 + 𝜙, with 𝑤 ∈ 𝑊 and 𝜙 ∈ 𝐸

𝑘
. Since 𝐸

𝑘
is a

finite dimension subspace, all the norms are equivalent, so
that there exists 𝐾 > 0 such that for all 𝜙 ∈ 𝐸

𝑘
we have

‖𝜙‖ ≤ 𝐾‖𝜙‖

1
. In addition, by (𝑓

0
) and (𝑓

3
), there exist 𝐶

2

and 𝐿
2
∈ 𝐿

2
(Ω) such that

−𝐹 (𝑥, 𝑠) ≥ 𝐾 |𝑠| − 𝐶2
(1 + 𝐿

2 (
𝑥)) , (86)
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uniformly in 𝑥 ∈ Ω. So by (29) and (86),

𝐽 (𝑤 + 𝜙) ≥

𝜆

𝑘+𝑚
− (𝜆

𝑘
+ 𝛿)

2 (𝜃 + 𝜆

𝑘+𝑚
)

‖𝑤‖

2
−

𝛿

2 (𝜃 + 𝜆

𝑘
)









𝜙









2

+ 𝐾









𝑤 + 𝜙







1
− 𝐶

4

≥

𝜆

𝑘+𝑚
− (𝜆

𝑘
+ 𝛿)

2 (𝜃 + 𝜆

𝑘+𝑚
)

‖𝑤‖

2
−

𝛿

2 (𝜃 + 𝜆

𝑘
)









𝜙









2

+ 𝐾









𝜙







1
− 𝐾‖−𝑤‖1

− 𝐶

4

≥

𝜆

𝑘+𝑚
− (𝜆

𝑘
+ 𝛿)

2 (𝜃 + 𝜆

𝑘+𝑚
)

‖𝑤‖

2
−

𝛿

2 (𝜃 + 𝜆

𝑘
)









𝜙









2

+









𝜙









− 𝐶

3 ‖
𝑤‖ − 𝐶4

,

(87)

where 𝐶
3
= |Ω|

1/2
𝑆𝐾, 𝐶

4
= 𝐶

2
|Ω|

1/2
‖𝐿

2
‖

2
+ 𝐶

2
|Ω|. Since

(1 −

𝛿

2 (𝜃 + 𝜆

𝑘
)

‖𝑢‖) ‖𝑢‖ ≤ ‖𝑤‖ +









𝜙









−

𝛿

2 (𝜃 + 𝜆

𝑘
)

(









𝜙









2
+ ‖𝑤‖

2
)

≤ (1 −

𝛿

2 (𝜃 + 𝜆

𝑘
)









𝜙









)









𝜙









+ ‖𝑤‖ ,

(88)

supposing 𝛿 ≤ (𝜆
𝑘+𝑚

− 𝜆

𝑘
)/2, (87) becomes

𝐽 (𝑤 + 𝜙) ≥

𝜆

𝑘+𝑚
− (𝜆

𝑘
+ 𝛿)

2 (𝜃 + 𝜆

𝑘+𝑚
)

‖𝑤‖

2
− 𝐶

3 ‖
𝑤‖ − 𝐶4

− ‖𝑤‖ + (1 −

𝛿

2 (𝜃 + 𝜆

𝑘
)

‖𝑢‖) ‖𝑢‖

≥

𝜆

𝑘+𝑚
− 𝜆

𝑘

4 (𝜃 + 𝜆

𝑘+𝑚
)

‖𝑤‖

2
− (𝐶

3
+ 1) ‖𝑤‖

− 𝐶

4
+ (1 −

𝛿

2 (𝜃 + 𝜆

𝑘
)

‖𝑢‖) ‖𝑢‖ ,

(89)

since (𝜆
𝑘+𝑚

− 𝜆

𝑘
)/4(𝜃 + 𝜆

𝑘+𝑚
) > 0, so

ℎ (𝑤) =

𝜆

𝑘+𝑚
− 𝜆

𝑘

4 (𝜃 + 𝜆

𝑘+𝑚
)

‖𝑤‖

2
− (𝐶

3
+ 1) ‖𝑤‖ − 𝐶4 (90)

is bounded below for all 𝑤 ∈ 𝑊; that is, there exists 𝐶
5
∈ 𝑅

such that ℎ(𝑤) ≥ 𝐶
5
; by (89) one gets

𝐽 (𝑢) ≥ (1 −

𝛿

2 (𝜃 + 𝜆

𝑘
)

‖𝑢‖) ‖𝑢‖ + 𝐶5

= −

𝛿

2 (𝜃 + 𝜆

𝑘
)

‖𝑢‖

2
+ ‖𝑢‖ + 𝐶5

.

(91)

(ii) In case (𝑓
4
), first we give some conclusions which are

similar to Lemma 3 of [18]. Under the property of 𝐹, there

exists a const 𝐶, and 𝐺 ∈ 𝐶(𝑅, 𝑅) which is subadditive, that
is,

𝐺 (𝑠 + 𝑡) ≤ 𝐺 (𝑠) + 𝐺 (𝑡) (92)

for all 𝑠, 𝑡 ∈ 𝑅, and coercive, that is,

𝐺 (𝑠) → +∞ (93)

as |𝑠| → ∞, and satisfies that

𝐺 (𝑠) ≤ |𝑠| + 4 (94)

for all 𝑠 ∈ 𝑅, such that

−𝐹 (𝑥, 𝑠) ≥ 𝐺 (𝑠) − 𝐶 (95)

for all 𝑠 ∈ 𝑅 and 𝑥 ∈ Ω.
In fact, since −𝐹(𝑥, 𝑠) → +∞ as |𝑠| → ∞ uniformly for

all 𝑥 ∈ Ω, there exists a sequence of positive integers 𝑛
𝑘
with

𝑛

𝑘+1
> 2𝑛

𝑘
for all positive integers 𝑘 such that

−𝐹 (𝑥, 𝑠) ≥ 𝑘 (96)

for all |𝑠| ≥ 𝑛
𝑘
and all 𝑥 ∈ Ω. Let 𝑛

0
= 0 and define

𝐺 (𝑠) = 𝑘 + 2 +

|𝑠| − 𝑛𝑘−1

𝑛

𝑘
− 𝑛

𝑘−1

(97)

for 𝑛
𝑘−1

≤ |𝑠| < 𝑛

𝑘
, where 𝑘 ∈ 𝑁.

By the definition of 𝐺 we have

𝑘 + 2 ≤ 𝐺 (𝑠) ≤ 𝑘 + 3 (98)

for all 𝑛
𝑘−1

≤ |𝑠| < 𝑛

𝑘
. By (𝑓

4
) and 𝐹 ∈ 𝐶1

(Ω × 𝑅, 𝑅), there
exists 𝐶

𝐹
> 0 such that

−𝐹 (𝑥, 𝑠) ≥ −𝐶𝐹
, ∀ (𝑥, 𝑠) ∈ (Ω, 𝑅

2
) . (99)

It follows that

−𝐹 (𝑥, 𝑠) ≥ 𝐺 (𝑠) − 𝐶, (100)

where 𝐶 = 𝐶

𝐹
+ 4. In fact, when 𝑛

𝑘−1
≤ |𝑠| < 𝑛

𝑘
, for some

𝑘 ≥ 2, one has, by (96) and (98),

−𝐹 (𝑥, 𝑠) ≥ 𝑘 − 1 ≥ 𝐺 (𝑠) − 4 ≥ 𝐺 (𝑠) − 𝐶 (101)

for all 𝑥 ∈ Ω. When |𝑠| < 𝑛
1
, we have, by (98) and (99),

−𝐹 (𝑥, 𝑠) ≥ −𝐶𝐹
= 4 − 𝐶 ≥ 𝐺 (𝑠) − 𝐶 (102)

for all 𝑥 ∈ Ω.
It is obvious that𝐺 is continuous and coercive. Moreover,

one has

𝐺 (𝑠) ≤ |𝑠| + 4 (103)

for all 𝑠 ∈ 𝑅. In fact, for every 𝑠 ∈ 𝑅, there exists 𝑘 ∈ 𝑁 such
that

𝑛

𝑘−1
≤ |𝑠| < 𝑛𝑘

, (104)
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which implies that

𝐺 (𝑠) ≤ (𝑘 − 1) + 4 ≤ 𝑛𝑘−1
+ 4 ≤ |𝑠| + 4 (105)

for all 𝑠 ∈ 𝑅 by (98) and the fact that 𝑛
𝑘
≥ 𝑘 for all integers

𝑘 ≥ 0.
Now we only need to prove the subadditivity of 𝐺. Let

𝑛

𝑘−1
≤ |𝑠| < 𝑛𝑘

, 𝑛

𝑗−1
≤ |𝑡| < 𝑛𝑗 (106)

and𝑚 = max{𝑘, 𝑗}. Then we have

|𝑠 + 𝑡| ≤ |𝑠| + |𝑡| < 𝑛𝑘
+ 𝑛

𝑗
≤ 2𝑛

𝑚
< 𝑛

𝑚+1
. (107)

Hence we obtain, by (98),

𝐺 (𝑠 + 𝑡) ≤ 𝑚 + 4 ≤ 𝑘 + 2 + 𝑗 + 2 ≤ 𝐺 (𝑠) + 𝐺 (𝑡) , (108)

which shows that 𝐺 is subadditive.
For 𝑢 ∈ 𝐸

𝑘
⊕ 𝑊, we assume that 𝑢 = 𝑤 + 𝜙, with 𝑤 ∈ 𝑊

and 𝜙 ∈ 𝐸
𝑘
; letting 0 < 𝛿 < (𝜆

𝑘+𝑚
− 𝜆

𝑘
)/2, by (28), (92), (94),

and (95), one gets

𝐽 (𝑤 + 𝜙) ≥

𝜆

𝑘+𝑚
− (𝜆

𝑘
+ 𝛿)

2 (𝜃 + 𝜆

𝑘+𝑚
)

‖𝑤‖

2
−

𝛿

2 (𝜃 + 𝜆

𝑘
)









𝜙









2

+ ∫

Ω

𝐺 (𝜙 + 𝑤) 𝑑𝑥 − 𝐶 |Ω|

≥

𝜆

𝑘+𝑚
− (𝜆

𝑘
+ 𝛿)

2 (𝜃 + 𝜆

𝑘+𝑚
)

‖𝑤‖

2
−

𝛿

2 (𝜃 + 𝜆

𝑘
)









𝜙









2

+ ∫

Ω

𝐺 (𝜙) 𝑑𝑥

− ∫

Ω

𝐺 (−𝑤) 𝑑𝑥 − 𝐶 |Ω|

≥

𝜆

𝑘+𝑚
− 𝜆

𝑘

4 (𝜃 + 𝜆

𝑘+𝑚
)

‖𝑤‖

2
−

𝛿

2 (𝜃 + 𝜆

𝑘
)









𝜙









2

+ ∫

Ω

𝐺 (𝜙) 𝑑𝑥

− ∫

Ω

(|𝑤| + 4) 𝑑𝑥 − 𝐶 |Ω|

≥

𝜆

𝑘+𝑚
− 𝜆

𝑘

4 (𝜃 + 𝜆

𝑘+𝑚
)

‖𝑤‖

2
−

𝛿

2 (𝜃 + 𝜆

𝑘
)

‖𝑧‖

2

+ ∫

Ω

𝐺 (𝜙) 𝑑𝑥 − 𝑆 |Ω| ‖𝑤‖ − 𝐶1

= 𝑔 (𝑤) + ∫

Ω

𝐺 (𝜙) 𝑑𝑥 −

𝛿

2 (𝜃 + 𝜆

𝑘
)

‖𝑢‖

2
,

(109)

where 𝑔(𝑤) = ((𝜆
𝑘+𝑚

−𝜆

𝑘
)/4(𝜃+𝜆

𝑘+𝑚
))‖𝑤‖

2
−𝑆|Ω|‖𝑤‖−𝐶

1
,

𝐶

1
= (4 + 𝐶)|Ω|. Since 𝜙 ∈ 𝐸

𝑘
, 𝐸

𝑘
is a finite-dimensional

subspace, and 𝐺 is coercive, from the proof of (75), one can
get

lim
‖

𝜙
‖

→∞

∫

Ω

𝐺 (𝜙) 𝑑𝑥 = +∞. (110)

That is, ∫
Ω
𝐺(𝜙)𝑑𝑥 is coercive on 𝐸

𝑘
. Since (𝜆

𝑘+𝑚
− 𝜆

𝑘
)/4(𝜃 +

𝜆

𝑘+𝑚
) > 0, so𝑔(𝑤) is coercive on𝑊, and∫

Ω
𝐺(𝜙)𝑑𝑥 and𝑔(𝑤)

are bounded below, so it is obvious that

lim
‖𝑢‖→∞

(𝑔 (𝑤) + ∫

Ω

𝐺 (𝜙) 𝑑𝑥) = +∞ (111)

for all 𝑢 ∈ 𝑍 ⊕𝑊.
Considering (91), (109), and (111), we can choose 𝑅

2
large

enough such that for all ‖𝑢‖ ≥ 𝑅
2
one gets

𝑔 (𝑤) + ∫

Ω

𝐺 (𝜙) 𝑑𝑥 > 𝐾

𝑉
+ 1 (112)

(or𝑅
2
+𝐶

5
> 𝐾

𝑉
+1 for the case (𝑓

3
)) and property (52) holds;

then for 0 < 𝛿 < min{2(𝜃 + 𝜆
𝑘
)/𝑅

2

2
, (𝜆

𝑘+𝑚
− 𝜆

𝑘
)/2} = 𝛿

1
and

𝑢 ∈ 𝑅

2
𝑆

𝑍𝑊
one gets 𝐽(𝑢) > 𝐾

𝑉
; that is, the property (51)

holds.

5. Proof of the Geometry in
Propositions 9 and 10

We finally give the proof of Propositions 9 and 10, which
is nothing but a resume of the lemmata above, verifying
that all the constants can be chosen sequentially without
contradictions.

Proof of Proposition 9. Under hypotheses (𝑓
0
) and (𝑓

∞
), if we

fix a value 𝜆, then we obtain the constant𝐷
𝜆
from Lemma 11

and with this we get 𝜌
𝜆
from Lemma 12. If we consider also

one of the two sets of hypotheses (𝑓
1
) and (𝑓

2
), then we

proceed as follows. First of all, we determine (once forever)
the constant 𝐷

𝑊
from Lemma 11; with this we obtain from

Lemma 14 the values 𝑅
1
and 𝛿

0
. Then, for any (now fixed)

𝜆 ∈ (𝜆

𝑘
− 𝛿

0
, 𝜆

𝑘
), we obtain from Lemma 11 the value 𝐷

𝜆
.

Finally, we can get from Lemma 12 the corresponding value
of 𝜌

𝜆
> 𝑅

1
.

Proof of Proposition 10. Under hypotheses (𝑓
0
) and (𝑓

∞
), if

we fix a value 𝜆 ∈ (𝜆
𝑘
, 𝜆

𝑘+𝑚
), then we obtain the constant𝐾

𝜆

from Lemma 11 and with this we get 𝛽
𝜆
from Lemma 12. If we

consider also one of the two sets of hypotheses (𝑓
3
) and (𝑓

4
),

then we proceed as follows. First of all, we determine (once
forever) the constant𝐾

𝑉
from Lemma 12; with this we obtain

from Lemma 15 the values 𝑅
2
and 𝛿

1
. Since we have 𝑅

2
, we

can get from Lemma 11 the constant 𝐸 and with this obtain 𝜉
from Lemma 12.

Finally, for any (now fixed) 𝜆 ∈ (𝜆
𝑘
, 𝜆

𝑘
+ 𝛿

1
), we obtain

from Lemma 11 the constant 𝐾
𝜆
and with this we get from

Lemma 12 the corresponding value of 𝛽
𝜆
> 𝑅

2
.
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