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We mainly investigate the radial distribution of the Julia set of entire solutions to a special second order complex linear differential
equation, one of the entire coefficients of which has a finite deficient value.

1. Introduction and Main Results

In this paper, we assume the reader is familiar with standard
notations and basic results of Nevanlinna’s value distribution
theory; see [1–5]. Some basic knowledge of complex dynam-
ics of meromorphic functions is also needed; see [6, 7]. Let 𝑓
be a meromorphic function in the whole complex plane. We
use 𝜎(𝑓) and 𝜇(𝑓) to denote the order and lower order of 𝑓,
respectively; see [5] for the definitions.

We define that 𝑓𝑛, 𝑛 ∈ N, denotes the 𝑛th iterate of 𝑓.
The Fatou set 𝐹(𝑓) of transcendental meromorphic function
𝑓 is the subset of the plane C where the iterates 𝑓𝑛 of 𝑓 form
a normal family. The complement of 𝐹(𝑓) in C is called the
Julia set 𝐽(𝑓) of 𝑓. It is well known that 𝐹(𝑓) is open and
completely invariant under 𝑓; 𝐽(𝑓) is closed and nonempty.

We denote Ω(𝛼, 𝛽) = {𝑧 ∈ C | arg 𝑧 ∈ (𝛼, 𝛽)}, where
0 < 𝛼 < 𝛽 < 2𝜋. Given 𝜃 ∈ [0, 2𝜋), ifΩ(𝜃 − 𝜀, 𝜃 + 𝜀) ∩ 𝐽(𝑓) is
unbounded, for any 𝜀 > 0, then the ray arg 𝑧 = 𝜃 is called the
radial distribution of 𝐽(𝑓). Define

Δ (𝑓) = {𝜃 ∈ [0, 2𝜋) | 𝐽 (𝑓) has the radial

distribution with respect to arg 𝑧 = 𝜃} .
(1)

Obviously, Δ(𝑓) is closed and so measurable. We use
mesΔ(𝑓) to denote the linear measure of Δ(𝑓). Many
important results of radial distribution of transcendental
meromorphic functions have been obtained, for example, [8–
14]. Qiao [10] proved that mesΔ(𝑓) = 2𝜋 if 𝜇(𝑓) < 1/2

and mesΔ(𝑓) ≥ 𝜋/𝜇(𝑓) if 𝜇(𝑓) ≥ 1/2, where 𝑓(𝑧) is a
transcendental entire function of finite lower order. Recently,
Huang andWang [15, 16] considered the radial distribution of
the Julia sets of entire solutions to some special linear complex
differential equations and obtained the lower bound of them.

In the present paper, we continue and extend the work
of Huang and Wang. In fact, we are devoted to investigating
the radial distribution of the Julia set of solutions to second
order complex differential equations which is studied by Wu
and Zhu [17]. One of coefficients of this equation has relation
with deficient value. Actually, they proved the following.

Theorem A (see [17]). Let 𝐴(𝑧) be an entire function with
finite order having a finite deficient value and let 𝐵(𝑧) be a
transcendental entire function with 𝜇(𝐵) < 1/2. Then, every
nontrivial solution 𝑓 of equation

𝑓 + 𝐴 (𝑧) 𝑓
 + 𝐵 (𝑧) 𝑓 = 0 (2)

is of infinite order.

Our main results are about the lower bound of the radial
distribution of the Julia set of solutions to (2).

Theorem 1. Let 𝑓 be a nontrivial solution of (2), where 𝐴(𝑧)
is an entire function with finite order having a finite deficient
value and 𝐵(𝑧) is a transcendental entire function with 𝜇(𝐵) <
1/2; then𝑚𝑒𝑠(Δ(𝑓)) ≥ 𝑑 > 0, where 𝑑 is defined in Remark 8,
Section 2.
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Furthermore, we study the radial distribution of Julia set
of the derivatives of the nontrivial entire solutions of (2).
Indeed, we obtain the following results.

Theorem 2. Let 𝑓 be a nontrivial solution of (2), where 𝐴(𝑧)
is an entire function with finite order having a finite deficient
value and 𝐵(𝑧) is a transcendental entire function with 𝜇(𝐵) <
1/2; then𝑚𝑒𝑠(Δ(𝑓)∩Δ(𝑓(𝑘))) ≥ 𝑑, where 𝑘 is a positive integer.

ByTheorem 2, we immediately have the following.

Corollary 3. Under the hypothesis of Theorem 2, one has
𝑚𝑒𝑠(Δ(𝑓(𝑘))) ≥ 𝑑, where 𝑘 is a positive integer.

Obviously, Theorem 1 becomes a corollary of Theorem 2,
but we will use the result of Theorem 1 when proving
Theorem 2.

2. Preliminary Lemmas

At first, we recall the Nevanlinna characteristic in an angle;
see [1]. We set

Ω(𝛼, 𝛽, 𝑟) = {𝑧 : 𝑧 ∈ Ω (𝛼, 𝛽) , |𝑧| < 𝑟} ;

Ω (𝑟, 𝛼, 𝛽) = {𝑧 : 𝑧 ∈ Ω (𝛼, 𝛽) , |𝑧| ≥ 𝑟}
(3)

and denote by Ω(𝛼, 𝛽) the closure of Ω(𝛼, 𝛽). Let 𝑔(𝑧) be
meromorphic on the angle Ω(𝛼, 𝛽), where 𝛽 − 𝛼 ∈ (0, 2𝜋].
Following [1], we define

𝐴
𝛼,𝛽
(𝑟, 𝑔) =

𝑤

𝜋
∫

𝑟

1

(
1

𝑡𝑤
−
𝑡𝑤

𝑟2𝑤
)

× {log+ 𝑔 (𝑡𝑒
𝑖𝛼)
 + log+ 𝑔 (𝑡𝑒

𝑖𝛽)
}
𝑑𝑡

𝑡
;

𝐵
𝛼,𝛽
(𝑟, 𝑔) =

2𝑤

𝜋𝑟𝑤
∫

𝛽

𝛼

log+ 𝑔 (𝑟𝑒
𝑖𝜃)
 sin𝑤 (𝜃 − 𝛼) 𝑑𝜃;

𝐶
𝛼,𝛽
(𝑟, 𝑔) = 2 ∑

1<|𝑏
𝑛
|<𝑟

(
1
𝑏𝑛

𝑤
−

𝑏𝑛

𝑤

𝑟2𝑤
) sin𝑤 (𝛽

𝑛
− 𝛼) ,

(4)

where 𝑤 = 𝜋/(𝛽 − 𝛼) and 𝑏
𝑛
= |𝑏

𝑛
|𝑒𝑖𝛽𝑛 are poles of 𝑔(𝑧)

in Ω(𝛼, 𝛽) appearing according to their multiplicities. The
Nevanlinna angular characteristic is defined as

𝑆
𝛼,𝛽
(𝑟, 𝑔) = 𝐴

𝛼,𝛽
(𝑟, 𝑔) + 𝐵

𝛼,𝛽
(𝑟, 𝑔) + 𝐶

𝛼,𝛽
(𝑟, 𝑔) . (5)

In particular, we denote the order of 𝑆
𝛼,𝛽
(𝑟, 𝑔) by

𝜎
𝛼,𝛽
(𝑔) = lim sup

𝑟→∞

log 𝑆
𝛼,𝛽
(𝑟, 𝑔)

log 𝑟
. (6)

If C \ 𝑊 contains at least three points, where C is
the extended complex plane, then 𝑊 is called a hyperbolic
domain. For 𝑎 ∈ C \ 𝑊, define

𝐶
𝑊
(𝑎) = inf {𝜆

𝑊
(𝑧) |𝑧 − 𝑎| : ∀𝑧 ∈ 𝑊} , (7)

where 𝜆
𝑊
(𝑧) is the hyperbolic density on𝑊. It is well known

that if every component of 𝑊 is simply connected, then
𝐶

𝑊
(𝑎) ≥ 1/2.

Lemma 4 (see [14, Lemma 2.2]). Let 𝑓(𝑧) be an analytic
in Ω(𝑟

0
, 𝜃

1
, 𝜃

2
); let 𝑈 be a hyperbolic domain and 𝑓 :

Ω(𝑟
0
, 𝜃

1
, 𝜃

2
) → 𝑈. If there exists a point 𝑎 ∈ 𝜕𝑈 \ {∞} such

that 𝐶
𝑈
(𝑎) > 0, then there exists a constant 𝑑 > 0 such that,

for sufficiently small 𝜀 > 0, one has

𝑓 (𝑧)
 = 𝑂 (|𝑧|

𝑑) , 𝑧 ∈ Ω (𝑟
0
, 𝜃

1
+ 𝜀, 𝜃

2
− 𝜀) , |𝑧| → ∞.

(8)

Thenext lemma shows some estimates for the logarithmic
derivative of functions being analytic in an angle. Before this,
we recall the definition of an 𝑅-set; for reference, see [3]. Set
𝐵(𝑧

𝑛
, 𝑟

𝑛
) = {𝑧 : |𝑧 − 𝑧

𝑛
| < 𝑟

𝑛
}. If ∑∞

𝑛=1
𝑟
𝑛
< ∞ and 𝑧

𝑛
→ ∞,

then ∪∞

𝑛=1
𝐵(𝑧

𝑛
, 𝑟

𝑛
) is called an 𝑅-set. Clearly, the set {|𝑧| : 𝑧 ∈

∪∞

𝑛=1
𝐵(𝑧

𝑛
, 𝑟

𝑛
)} is of finite linear measure.

Lemma 5 (see [16, Lemma 2.2]). Let 𝑧 = 𝑟𝑒𝑖𝜓, 𝑟
0
+ 1 < 𝑟, and

𝛼 ≤ 𝜓 ≤ 𝛽, where 0 < 𝛽 − 𝛼 ≤ 2𝜋. Suppose that 𝑛 (≥ 2) is an
integer and that 𝑔(𝑧) is analytic in Ω(𝑟

0
, 𝛼, 𝛽) with 𝜎

𝛼,𝛽
(𝑔) <

∞. Choose 𝛼 < 𝛼
1
< 𝛽

1
< 𝛽. Then, for every 𝜀

𝑗
∈ (0, (𝛽

𝑗
−

𝛼
𝑗
)/2) (𝑗 = 1, 2, . . . , 𝑛 − 1) outside a set of linear measure zero

with

𝛼
𝑗
= 𝛼 +

𝑗−1

∑
𝑠=1

𝜀
𝑠
, 𝛽

𝑗
= 𝛽 −

𝑗−1

∑
𝑠=1

𝜀
𝑠
, 𝑗 = 2, 3, . . . , 𝑛 − 1, (9)

there exist𝐾 > 0 and𝑀 > 0 only depending on 𝑔, 𝜀
1
, . . . , 𝜀

𝑛−1
,

and Ω(𝛼
𝑛−1
, 𝛽

𝑛−1
) and not depending on 𝑧, such that



𝑔 (𝑧)

𝑔 (𝑧)


≤ 𝐾𝑟𝑀(sin 𝑘 (𝜓 − 𝛼))−2,



𝑔(𝑛) (𝑧)

𝑔 (𝑧)


≤ 𝐾𝑟𝑀(sin 𝑘(𝜓 − 𝛼)

𝑛−1

∏
𝑗=1

sin 𝑘
𝜀
𝑗

(𝜓 − 𝛼
𝑗
))

−2
(10)

for all 𝑧 ∈ Ω(𝛼
𝑛−1
, 𝛽

𝑛−1
) outside an 𝑅-set𝐷, where 𝑘 = 𝜋/(𝛽 −

𝛼) and 𝑘
𝜀
𝑗

= 𝜋/(𝛽
𝑗
− 𝛼

𝑗
) (𝑗 = 1, 2, . . . , 𝑛 − 1).

Lemma 6 (see [18]). Let 𝑔(𝑧) be an entire function with 0 ≤
𝜇(𝑔) < 1. Then, for every 𝛼 ∈ (𝜇(𝑔), 1), there exists a set 𝐸 ⊂
[0,∞) such that log 𝑑𝑒𝑛𝑠 𝐸 ≥ 1 − (𝜇(𝑔)/𝛼), where 𝐸 = {𝑟 ∈
[0,∞) : 𝑚(𝑟) > 𝑀(𝑟) cos𝜋𝛼}. Also 𝑚(𝑟) = inf

|𝑧|=𝑟
log |𝑔(𝑧)|

and𝑀(𝑟) = sup
|𝑧|=𝑟

log |𝑔(𝑧)|.

In the above lemma, the upper logarithmic densities of
𝐸 ⊂ [1,∞) are defined by

log dens𝐸 = lim sup
𝑟→∞

𝑚
𝑙
(𝐸 ∩ [0, 𝑟])

log 𝑟
, (11)

where𝑚
𝑙
(𝐸) = ∫

𝐸

(𝑑𝑡/𝑡) is logarithmic measure of 𝐸.

Lemma 7 (see [17]). Let 𝐴(𝑧) be a meromorphic function
with 𝜎(𝐴) < +∞ and let 𝐵(𝑧) be an entire function with
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0 < 𝜇(𝐵) < 1/2. If 𝐴(𝑧) has finite deficient value 𝑎 with
deficiency 𝛿 = 𝛿(𝑎, 𝐴) > 0, then, for any given constant
𝜀 > 0, there exists a sequence 𝑅

𝑛
with 𝑅

𝑛
→ ∞, such that

the following two inequalities hold:

𝑚𝑒𝑠 (𝐹
𝑛
) =: 𝑚𝑒𝑠 {𝜃 ∈ [0, 2𝜋) : log 𝐴 (𝑅𝑛

𝑒𝑖𝜃) − 𝑎


≤ −
𝛿

4
𝑇 (𝑅

𝑛
, 𝐴)} ≥ 𝑑 > 0;

(12)

𝐵 (𝑅𝑛
𝑒𝑖𝜑)

 ≥ exp {𝑅𝜇(𝐵)−𝜀

𝑛
} , 𝜑 ∈ [0, 2𝜋) , (13)

for all sufficiently large 𝑛, where 𝑑 is a constant depending only
on 𝜎(𝐴), 𝜇(𝐵), and 𝛿.

Remark 8. For the sake of simplicity, we denote 𝜎(𝐴), 𝜇(𝐵)
by 𝜎, 𝜇, respectively. From the proof of Lemma 2.4 in [17], we
know that

𝑑 :=
𝛿/4

(8𝐻0/2𝜋) {5 + (2 log 10𝑒𝐿
0
) / (log (4/3))}

, (14)

where 𝐻
0
= 2𝜎/(1 − 2𝜇) and 𝐿

0
= 2 + (2/ log 2)((2𝜇 +

1)/(2𝜇 − 1)2).

Remark 9 (see [17, Remark 2]). If 𝐵(𝑧) is an entire function
with 𝜇(𝐵) = 0, according to Lemma 6, we only need to give
an appropriate modification; then Lemma 7 still holds.

3. Proof of Theorems

Proof of Theorem 1. By Theorem A, we have already known
that every nontrivial solution 𝑓 of (2) is an entire function
of infinite order. We will obtain the assertion by reduction to
contradiction. At first, we suppose that mes(Δ(𝑓)) < 𝑑, so
𝜁 := 𝑑 − mes(Δ(𝑓)) > 0. Since Δ(𝑓) is closed, obviously 𝑆 =
[0, 2𝜋)\Δ(𝑓) is open, so it consists of at most countablymany
open intervals. We can finitely choose many open intervals
𝐼
𝑖
= (𝛼

𝑖
, 𝛽

𝑖
), 𝑖 = 1, 2, . . . , 𝑚, satisfying [𝛼

𝑖
, 𝛽

𝑖
] ⊂ 𝑆 and

mes(𝑆 \ ∪𝑚

𝑖=1
𝐼
𝑖
) < 𝜁/4. For the angular domain Ω(𝛼

𝑖
, 𝛽

𝑖
),

it is easy to see that (𝛼
𝑖
, 𝛽

𝑖
) ∩ Δ(𝑓) = 0 and Ω(𝑟, 𝛼

𝑖
, 𝛽

𝑖
) ∩

𝐽(𝑓) = 0 for sufficiently large 𝑟. This implies that, for each 𝑖 =
1, 2, . . . , 𝑚, there exist the corresponding 𝑟

𝑖
and unbounded

Fatou component 𝑈
𝑖
of 𝐹(𝑓) such that Ω(𝑟

𝑖
, 𝛼

𝑖
, 𝛽

𝑖
) ⊂ 𝑈

𝑖
; see

[19]. We take an unbounded and connected section Γ
𝑖
of 𝜕𝑈

𝑖
;

then the mapping 𝑓 : Ω(𝑟
𝑖
, 𝛼

𝑖
, 𝛽

𝑖
) → C \ Γ

𝑖
is analytic. Since

we have chosen Γ
𝑖
such thatC\Γ

𝑖
is simply connected, for any

𝑎 ∈ Γ
𝑖
\ {∞}, we have 𝐶C\Γ

𝑖

(𝑎) ≥ 1/2. By applying Lemma 4
to 𝑓 in every Ω(𝑟

𝑖
, 𝛼

𝑖
, 𝛽

𝑖
), there exists a positive constant 𝑑

1

such that, for 𝑧 ∈ ∪𝑚

𝑖=1
Ω(𝑟

𝑖
, 𝛼

𝑖
+ 𝜀, 𝛽

𝑖
− 𝜀),

𝑓 (𝑧)
 = 𝑂 (|𝑧|

𝑑
1) , as |𝑧| → ∞, (15)

where 0 < 𝜀 < min{𝜁/(16𝑚), (𝛽
𝑖
−𝛼

𝑖
)/8}, 𝑖 = 1, 2, . . . , 𝑚.Thus,

recalling the definition of 𝑆
𝛼,𝛽
(𝑟, 𝑓), we immediately have that

𝑆
𝛼
𝑖
+𝜀,𝛽
𝑖
−𝜀
(𝑟, 𝑓) = 𝑂 (1) , (𝑖 = 1, 2, . . . , 𝑚) . (16)

So 𝜎
𝛼
𝑖
+𝜀,𝛽
𝑖
−𝜀
(𝑟, 𝑓) is finite. Therefore, by Lemma 5, there exist

two constants𝑀 > 0 and𝐾 > 0 such that


𝑓(𝑠) (𝑧)

𝑓 (𝑧)


≤ 𝐾𝑟𝑀, (𝑠 = 1, 2) , (17)

for all 𝑧 ∈ ∪𝑚

𝑖=1
Ω(𝑟

𝑖
, 𝛼

𝑖
+ 2𝜀, 𝛽

𝑖
− 2𝜀), outside a 𝑅-set 𝐻. By

Lemma 7, for sufficiently large 𝑛, we have

mes (𝐹
𝑛
) > 𝑑 −

𝜁

4
. (18)

Therefore, we have

mes (𝐹
𝑛
∩ 𝑆) = mes (𝐹

𝑛
\ (Δ (𝑓) ∩ 𝐹

𝑛
))

≥ mes (𝐹
𝑛
) −mes (Δ (𝑓)) > 3𝜁

4
> 0.

(19)

Then, for each 𝑛, we have

mes((
𝑚

⋃
𝑖=1

𝐼
𝑖
) ∩ 𝐹

𝑛
)

= mes (𝑆 ∩ 𝐹
𝑛
) −mes((𝑆 \

𝑚

⋃
𝑖=1

𝐼
𝑖
) ∩ 𝐹

𝑛
)

>
3𝜁

4
−
𝜁

4

=
𝜁

2
.

(20)

Thus, there exists an open interval 𝐼
𝑖
0

= (𝛼, 𝛽) ⊂ ∪𝑚

𝑖=1
𝐼
𝑖
⊂ 𝑆

such that, for infinitely many 𝑛,

mes (𝐹
𝑛
∩ (𝛼, 𝛽)) >

𝜁

2𝑚
> 0. (21)

Without loss of generality, we can assume that (21) holds for
all 𝑛.

Let 𝑎 be a finite deficient value of 𝐴(𝑧) with deficiency
𝛿 = 𝛿(𝑎, 𝐴). From (2), we have the following inequality:

|𝐵 (𝑧)| ≤


𝑓 (𝑧)

𝑓 (𝑧)


+


𝑓 (𝑧)

𝑓 (𝑧)


(|𝐴 (𝑧) − 𝑎| + |𝑎|) . (22)

In the following, we consider two cases.

Case 1: 0 < 𝜇(𝐵) < 1/2. By the definition (12) of 𝐹
𝑛
and (13),

there exists a sequence 𝑅
𝑛
, which is outside a 𝑅-set 𝐻, with

𝑅
𝑛
< 𝑅

𝑛+1
and 𝑅

𝑛
→ ∞ such that, for every 𝑛 and 𝜑 ∈

𝐹
𝑛
∩ (𝛼, 𝛽), we have

log 𝐴 (𝑅𝑛
𝑒𝑖𝜑) − 𝑎

 ≤ −
𝛿

4
𝑇 (𝑅

𝑛
, 𝐴) ; (23)

𝐵 (𝑅𝑛
𝑒𝑖𝜑)

 > exp {𝑅(1/2)𝜇(𝐵)

𝑛
} . (24)

From (17), (22), and (23), for every 𝑛 ≥ 𝑛
0
, we get

𝐵 (𝑅𝑛
𝑒𝑖𝜑)

 ≤ 𝐾𝑅
𝑀

𝑛
(1 + exp{−𝛿

4
𝑇 (𝑅

𝑛
, 𝑓)} + |𝑎|) . (25)
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Thus, by (24), we obtain

exp {𝑅(1/2)𝜇(𝐵)

𝑛
} < 𝐾𝑅𝑀

𝑛
(1 + exp{−𝛿

4
𝑇 (𝑅

𝑛
, 𝑓)} + |𝑎|) .

(26)

Obviously, when 𝑛 is sufficiently large, this is a contradiction.

Case 2: 𝜇(𝐵) = 0. By using Lemma 6, there exists a set 𝐸 ⊂
[0, +∞) with log dens𝐸 = 1 such that, for all 𝑧 satisfying
|𝑧| = 𝑟 ∈ 𝐸, we have

log |𝐵 (𝑧)| >
√2

2
log𝑀(𝑟, 𝐵) , (27)

where 𝑀(𝑟, 𝐵) = max
|𝑧|=𝑟

|𝐵(𝑧)|. It follows from Remark 9
that there exists a sequence 𝑅

𝑛
, which is contained in 𝐸 and

outside a 𝑅-set 𝐻, such that (17), (23), and (27) hold for
𝑧 = 𝑅

𝑛
𝑒𝑖𝜑, 𝜑 ∈ 𝐹

𝑛
∩(𝛼, 𝛽). From (17), (22), and (23), we obtain

(25). Hence, from (25) and (27), we get

𝑀(𝑅
𝑛
, 𝐵)

√2/2

≤ 𝐾𝑅𝑀

𝑛
(1 + exp{−𝛿

4
𝑇 (𝑅

𝑛
, 𝑓)} + |𝑎|) .

(28)

Since 𝐵(𝑧) is a transcendental entire function, we have

lim inf
𝑟→∞

log𝑀(𝑟, 𝐵)

log 𝑟
= +∞. (29)

Therefore, we can easily obtain a contradiction from (28),
when 𝑛 is sufficiently large. Thus, we complete the proof of
Theorem 1.

Proof of Theorem 2. Weknow that every nontrivial solution𝑓
of (2) is an entire function with infinite order. We also obtain
the assertion by reduction to contradiction. Assume that

mes (Δ (𝑓) ∩ Δ (𝑓(𝑘))) < 𝑑 (30)

and so

𝜉 := 𝑑 −mes (Δ (𝑓) ∩ Δ (𝑓(𝑘))) > 0. (31)

We will show that there must exist an open interval

𝐼 = (𝛼, 𝛽) ⊂ Δ(𝑓(𝑘))
𝑐

, 0 < 𝛽 − 𝛼 < 𝑑 (32)

such that

lim
𝑛→∞

mes (Δ (𝑓) ∩ 𝐹
𝑛
∩ 𝐼) > 0, (33)

where Δ(𝑓(𝑘))𝑐 := [0, 2𝜋) \ Δ(𝑓(𝑘)) and 𝐹
𝑛
is as defined in

(12). In order to achieve this goal, we will firstly prove the
following:

lim
𝑛→∞

mes (𝐹
𝑛
\ Δ (𝑓)) = 0. (34)

Otherwise, suppose that there is a subseries {𝑟
𝑛
𝑘

} such that

lim
𝑘→∞

mes (𝐹
𝑛
𝑘

\ Δ (𝑓)) > 0; (35)

then there exist 𝜃
0
∈ Δ(𝑓)𝑐 and 𝜂 > 0 satisfying

lim
𝑘→∞

mes ((𝜃
0
− 𝜂, 𝜃

0
+ 𝜂) ∩ (𝐹

𝑛
𝑘

\ Δ (𝑓))) > 0. (36)

Since arg 𝑧 = 𝜃
0
is not a radial distribution of 𝐽(𝑓), there exists

𝑟
0
> 0 such that

Ω(𝑟
0
, 𝜃

0
− 𝜂, 𝜃

0
+ 𝜂) ∩ 𝐽 (𝑓) = 0. (37)

This implies that there exists an unbounded component 𝑈
of Fatou set 𝐹(𝑓), such that Ω(𝑟

0
, 𝜃

0
− 𝜂, 𝜃

0
+ 𝜂) ⊂ 𝑈. Take

an unbounded and connected set Γ ⊂ 𝜕𝑈; the mapping
𝑓 : Ω(𝑟

0
, 𝜃

0
−𝜂, 𝜃

0
+𝜂) → C\Γ is analytic. SinceC\Γ is simply

connected, then, for any 𝑎 ∈ Γ \ {∞}, we have 𝐶C\Γ
(𝑎) ≥ 1/2.

Now, by applying Lemma 4 to 𝑓 in Ω(𝑟
0
, 𝜃

0
− 𝜂, 𝜃

0
+ 𝜂), for

any 𝜁 > 0, 𝜁 < 𝜂, we have

𝑓 (𝑧)
 = 𝑂 (|𝑧|

𝑑
1) , 𝑧 ∈ Ω (𝑟

0
, 𝜃

0
− 𝜂 + 𝜁, 𝜃

0
+ 𝜂 − 𝜁) ,

|𝑧| → ∞,

(38)

where 𝑑
1
is a positive constant. Recalling the definition of

𝑆
𝛼,𝛽
(𝑟, 𝑓), we immediately get that

𝑆
𝜃
0
−𝜂+𝜁,𝜃

0
+𝜂−𝜁

(𝑟, 𝑓) = 𝑂 (1) . (39)

Thus, 𝜎
𝜃
0
−𝜂+𝜁,𝜃

0
+𝜂−𝜁

(𝑟, 𝑓) is finite. Therefore, by Lemma 5,
there exist constants𝑀 > 0 and𝐾 > 0 such that



𝑓(𝑠) (𝑧)

𝑓 (𝑧)


≤ 𝐾𝑟𝑀, (𝑠 = 1, 2) , (40)

for all 𝑧 ∈ Ω(𝑟
0
, 𝜃

0
− 𝜂 + 2𝜁, 𝜃

0
+ 𝜂 − 2𝜁), outside a 𝑅-set𝐻.

Since 𝜁 can be chosen sufficiently small, from (36), we
have

lim
𝑘→∞

mes ((𝜃
0
− 𝜂 + 2𝜁, 𝜃

0
+ 𝜂 − 2𝜁) ∩ 𝐹

𝑛
𝑘

) > 0. (41)

Thus, we can find an infinite series {𝑟
𝑛
𝑘

𝑒𝑖𝜃𝑛𝑘 } such that, for all
sufficiently large 𝑘, (23), (24), and (27) hold when 𝜃

𝑛
𝑘

∈ (𝜃
0
−

𝜂 + 2𝜁, 𝜃
0
+ 𝜂 − 2𝜁) ∩ 𝐹

𝑛
𝑘

. From (22), (23), (24), (27), and (40)
and by the same argument as in Cases 1 and 2 in the proof
ofTheorem 1, we can obtain contradictions.This implies that
(34) is valid.

ByTheorem 1, we know that

mesΔ (𝑓) ≥ 𝑑. (42)

From Lemma 7, we have, for all sufficiently large 𝑛 and any
positive 𝜀,

mes (𝐹
𝑛
) > 𝑑 − 𝜀. (43)

Combining (34), (42), and (43), it follows that, for all
sufficiently large 𝑛,

mes (Δ (𝑓) ∩ 𝐹
𝑛
) ≥ 𝑑 −

𝜉

4
, (44)
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where 𝜉 is defined in (31). Since Δ(𝑓(𝑘)) is closed, clearly
Δ(𝑓(𝑘))𝑐 is open, so it consists of at most countably open
intervals. We can choose finitely many open intervals 𝐼

𝑗
(𝑗 =

1, 2, . . . , 𝑚) satisfying

𝐼
𝑗
⊂ Δ(𝑓(𝑘))

𝑐

, mes(Δ(𝑓(𝑘))
𝑐

\
𝑚

⋃
𝑖=1

𝐼
𝑖
) <

𝜉

4
. (45)

Since, for sufficiently large 𝑛,

mes(Δ (𝑓) ∩ 𝐹
𝑛
∩ (

𝑚

⋃
𝑖=1

𝐼
𝑖
)) +mes (Δ (𝑓) ∩ 𝐹

𝑛
∩ Δ (𝑓(𝑘)))

= mes(Δ (𝑓) ∩ 𝐹
𝑛
∩ (Δ (𝑓(𝑘)) ∪ (

𝑚

⋃
𝑖=1

𝐼
𝑖
))) ≥ 𝑑 −

𝜉

2
,

(46)

we have

mes(Δ (𝑓) ∩ 𝐹
𝑛
∩ (

𝑚

⋃
𝑖=1

𝐼
𝑖
))

≥ 𝑑 −
𝜉

2
−mes (Δ (𝑓) ∩ 𝐹

𝑛
∩ Δ (𝑓(𝑘)))

≥ 𝑑 −
𝜉

2
−mes (Δ (𝑓) ∩ Δ (𝑓(𝑘))) =

𝜉

2
.

(47)

Thus, there exists an open interval 𝐼
𝑖
0

= (𝛼, 𝛽) ⊂ ∪𝑚

𝑖=1
𝐼
𝑖
⊂

Δ(𝑓(𝑘))𝑐 such that, for infinitely many sufficiently large 𝑛,

mes (Δ (𝑓) ∩ 𝐹
𝑛
∩ 𝐼

𝑖
0

) ≥
𝜉

2𝑚
> 0. (48)

Then, we prove that (33) holds.
From (33), we know that there are 𝜃

0
and 𝜂 > 0 such that

(𝜃
0
− 𝜂, 𝜃

0
+ 𝜂) ⊂ 𝐼,

lim
𝑛→∞

mes (Δ (𝑓) ∩ 𝐹
𝑛
∩ (𝜃

0
− 𝜂, 𝜃

0
+ 𝜂)) > 0.

(49)

Then, there exists 𝑟
0
such thatΩ(𝑟

0
, 𝜃

0
−𝜂, 𝜃

0
+𝜂)∩𝐽(𝑓(𝑘)) = 0.

By similar argument between (37) and (38), for any 𝜁 > 0,
𝜁 < 𝜂, we have
𝑓

(𝑘)

(𝑧)
 = 𝑂 (|𝑧|

𝑑
2) , 𝑧 ∈ Ω (𝑟

0
, 𝜃

0
− 𝜂 + 2𝜁, 𝜃

0
+ 𝜂 − 2𝜁) ,

|𝑧| → ∞,

(50)

where 𝑑
2
is a positive constant.

Fix 𝑟
𝑁
𝑒𝑖𝜃𝑁 ∈ {𝑟

𝑛
𝑒𝑖𝜃𝑛}, and take a 𝑟

𝑛
𝑒𝑖𝜃𝑛 ∈ {𝑟

𝑛
𝑒𝑖𝜃𝑛}, 𝑛 >

𝑁. Take a simple Jordan arc 𝛾 in Ω(𝑟
0
, 𝜃

0
− 𝜂, 𝜃

0
+ 𝜂) which

connects 𝑟
𝑁
𝑒𝑖𝜃𝑁 to 𝑟

𝑁
𝑒𝑖𝜃𝑛 along |𝑧| = 𝑟

𝑁
and connects 𝑟

𝑁
𝑒𝑖𝜃𝑛

to 𝑟
𝑛
𝑒𝑖𝜃𝑛 along arg 𝑧 = 𝜃

𝑛
. For any 𝑧 ∈ 𝛾, 𝛾

𝑧
denotes a part

of 𝛾, which connects 𝑟
𝑁
𝑒𝑖𝜃𝑁 to 𝑧. Let 𝐿(𝛾) be the length of 𝛾.

Clearly,

𝐿 (𝛾) = 𝑂 (𝑟
𝑛
) , 𝑛 → ∞. (51)

By (50), it follows that

𝑓
(𝑘−1)

(𝑧)
 ≤ ∫

𝛾
𝑧

𝑓
(𝑘)

(𝑧)
 |𝑑𝑧| + 𝑐𝑘

≤ 𝑂 (|𝑧|
𝑑
2𝐿 (𝛾)) + 𝑐

𝑘

≤ 𝑂 (𝑟𝑑2+1
𝑛

) , 𝑛 → ∞.

(52)

Similarly, we have

𝑓
(𝑘−2)

(𝑧)
 ≤ ∫

𝛾
𝑧

𝑓
(𝑘−1)

(𝑧)
 |𝑑𝑧| + 𝑐𝑘−1

≤ 𝑂 (𝑟𝑑2+2
𝑛

) , 𝑛 → ∞

...

𝑓 (𝑧)
 ≤ ∫

𝛾
𝑧

𝑓


(𝑧)
 |𝑑𝑧| + 𝑐1

≤ 𝑂 (𝑟𝑑2+𝑘
𝑛

) , 𝑛 → ∞,

(53)

where 𝑐
1
, 𝑐

2
, . . . , 𝑐

𝑘
are constants, which are independent of 𝑛.

Therefore,

𝑆̃
𝜃
0
−𝜂+

̃
𝜁,
̃
𝜃
0
+𝜂−

̃
𝜁
(𝑟, 𝑓) = 𝑂 (1) , (54)

By Lemma 5, we know that (40) also holds for all 𝑧 ∈

Ω(𝑟
0
, 𝜃

0
− 𝜂 + 2𝜁, 𝜃

0
+ 𝜂 − 2𝜁), outside a 𝑅-set 𝐻. By

applying similar argument as in Cases 1 and 2 in the proof
of Theorem 1, we can deduce contradictions. Therefore, it
follows that

mes (Δ (𝑓) ∩ Δ (𝑓(𝑘))) ≥ 𝑑. (55)

The proof is complete.
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