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We consider the Fekete-Szegö inequalities for classeswhichwere defined byMurugusundaramoorthy et al. (2013).These inequalities
will result in bounds of the third coefficient which are better than these obtained byMurugusundaramoorthy et al. (2013).Moreover,
we discuss two other classes of bi-univalent functions. The estimates of initial coefficients in these classes are obtained.

1. Introduction

LetA denote the class of all functions of the form

𝑓 (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎
𝑛
𝑧𝑛 (1)

analytic in the unit disk D ≡ {𝜁 ∈ C : |𝜁| < 1}, and let S
denote the class of these functions inA which are univalent.
It is known that if𝑓 ∈ S then there exists the inverse function
𝑓−1. Because of the normalization 𝑓(0) = 0, 𝑓−1 is defined in
some neighbourhood of the origin. In some cases, 𝑓−1 can be
defined in the wholeD. Clearly, 𝑓−1 is also univalent. For this
reason, the class Σ is defined as follows.

A function𝑓 ∈ A is called bi-univalent inD if both𝑓 and
𝑓−1 are univalent inD. The set of all bi-univalent functions is
usually denoted by Σ (or, following Lewin, by 𝜎).

It is easy to check that a bi-univalent function 𝑓 given by
(1) has the inverse with the Taylor series of the form

𝑓−1 (𝑤) = 𝑤 − 𝑎
2
𝑤2 + (2𝑎

2

2 − 𝑎
3
)𝑤3 + ⋅ ⋅ ⋅ . (2)

The research into Σ was started by Lewin ([1], 1967).
It focused on problems connected with coefficients. Many
papers concerning bi-univalent functions have been pub-
lished recently.Weowe the revival of these topics to Srivastava
et al. ([2], 2010).The investigations in this direction have also
been carried out, among others, by Ali et al. [3], Frasin and

Aouf [4], and Xu et al. [5]. Hamidi and Jahangiri (e.g., [6])
have revealed the importance of the Faber polynomials in
general studies on the coefficients of bi-univalent functions.

In fact, little is known about exact bounds of the initial
coefficients of 𝑓 ∈ Σ. For the most general families of
functions given by (1) we know that |𝑎

2
| < 1.51 for bi-

univalent functions (Lewin, [1]), |𝑎
2
| ≤ √2 for bi-starlike

functions (Kędzierawski, [7]), and |𝑎
2
| ≤ 1 for bi-convex

functions (Brannan and Taha, [8]). Only the last estimate
is sharp; equality holds only for 𝑓(𝑧) = 𝑧/(1 − 𝑧) and its
rotations.

In the papers [1–15], the authors present some estimates
for 𝑎
2
and 𝑎
3
, while𝑓 is taken from various subclasses of Σ. In

2013 Murugusundaramoorthy et al. (see [16]) obtained some
coefficient bounds in two classes:S

Σ
(𝛼, 𝜆) andM

Σ
(𝛽, 𝜆). For

a function 𝑓 ∈ Σ and its inverse function 𝑔, let 𝐹 and 𝐺 be
defined as below:

𝐹 (𝑧) ≡
𝑧𝑓 (𝑧)

(1 − 𝜆) 𝑓 (𝑧) + 𝜆𝑧𝑓 (𝑧)
,

𝐺 (𝑤) ≡
𝑤𝑔 (𝑤)

(1 − 𝜆) 𝑔 (𝑤) + 𝜆𝑤𝑔 (𝑤)
,

(3)

where 0 ≤ 𝜆 < 1, 𝑧 ∈ D, and 𝑔 = 𝑓−1.
The definitions of S

Σ
(𝛼, 𝜆) and M

Σ
(𝛽, 𝜆) are the follow-

ing.
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Definition 1. A function 𝑓 ∈ Σ is said to be in the
class S

Σ
(𝛼, 𝜆) if the functions 𝐹 and 𝐺, defined by (3),

corresponding to 𝑓 and 𝑔 = 𝑓−1, satisfy

arg𝐹 (𝑧)
 <
𝛼𝜋

2
,

arg𝐺 (𝑤)
 <
𝛼𝜋

2
,

0 < 𝛼 ≤ 1, 0 ≤ 𝜆 < 1, 𝑧 ∈ D.

(4)

Definition 2. A function 𝑓 ∈ Σ is said to be in the
class M

Σ
(𝛽, 𝜆) if the functions 𝐹 and 𝐺, defined by (3),

corresponding to 𝑓 and 𝑔 = 𝑓−1, satisfy

R𝐹 (𝑧) > 𝛽, R𝐺 (𝑤) > 𝛽,

0 ≤ 𝛽 < 1, 0 ≤ 𝜆 < 1 𝑧 ∈ D.
(5)

In particular, for 𝜆 = 0, the classesS
Σ
(𝛼, 𝜆) andM

Σ
(𝛽, 𝜆)

become the classS𝛼
Σ
of strongly bi-starlike functions of order

𝛼 and the class S∗
Σ
(𝛽) of bi-starlike functions of order 𝛽,

respectively. If additionally 𝛼 = 1 or 𝛽 = 0, these two classes
reduce to the class S∗

Σ
of bi-starlike functions.

Conditions (4) and (5) in the above definitions can be
rewritten as follows:

𝐹 (𝑧) = [𝑝 (𝑧)]
𝛼

, 𝐺 (𝑤) = [𝑞 (𝑤)]
𝛼

, (6)

𝐹 (𝑧) = 𝛽 + (1 − 𝛽) 𝑝 (𝑧) , 𝐺 (𝑤) = 𝛽 + (1 − 𝛽) 𝑞 (𝑤) ,
(7)

respectively, where 𝑝 and 𝑞 are functions in P and have the
form

𝑝 (𝑧) = 1 +
∞

∑
𝑘=1

𝑝
𝑘
𝑧𝑘, 𝑞 (𝑤) = 1 +

∞

∑
𝑘=1

𝑞
𝑘
𝑤𝑘. (8)

Throughout the paper,P stands for the set of all analytic
functions ℎ such that ℎ(0) = 1 andRℎ(𝑧) > 0 for 𝑧 ∈ D.

In [11] the authors proved the following theorems.

Theorem 3. If 𝑓 ∈ S
Σ
(𝛼, 𝜆), 0 < 𝛼 ≤ 1, and 0 ≤ 𝜆 < 1, then

𝑎2
 ≤

2𝛼

(1 − 𝜆)√1 + 𝛼
,

𝑎3
 ≤

4𝛼2

(1 − 𝜆)2
+

𝛼

1 − 𝜆
. (9)

Theorem 4. If 𝑓 ∈M
Σ
(𝛽, 𝜆), 0 ≤ 𝛽 < 1, and 0 ≤ 𝜆 < 1, then

𝑎2
 ≤
√2 (1 − 𝛽)

1 − 𝜆
,

𝑎3
 ≤
4(1 − 𝛽)

2

(1 − 𝜆)2
+
1 − 𝛽

1 − 𝜆
. (10)

The above results can be improved. In order to do this,
we consider the Fekete-Szegö inequalities for the discussed
classes. This type of problems has been considered by many
authors. The results concerning this problem are given, for
example, in [17–20]. Moreover, it seems to be interesting
to discuss two other classes defined in a similar way to
S
Σ
(𝛼, 𝜆) andM

Σ
(𝛽, 𝜆).The results presented in the paper are

not sharp, but, unfortunately, no method which gives sharp
results with regard to these problems is known.

In the proofs of the main theorems we need two lemmas.

Lemma 5. If 𝑝(𝑧) = 1 + ∑∞
𝑘=1
𝑝
𝑘
𝑧𝑘 ∈ P then |𝑝

𝑘
| ≤ 2 for all

positive integers 𝑘.

Lemma 6. Let 𝑘 ∈ R and 𝑧
1
, 𝑧
2
∈ C. If |𝑧

1
| < 𝑅 and |𝑧

2
| < 𝑅

then

(𝑘 + 1) 𝑧1 + (𝑘 − 1) 𝑧2
 ≤ {

2 |𝑘| 𝑅 for |𝑘| ≥ 1,
2𝑅 for |𝑘| ≤ 1.

(11)

The proof of Lemma 6 is easy. It is enough to observe that
(𝑘 + 1) 𝑧1 + (𝑘 − 1) 𝑧2

 ≤ (|𝑘 + 1| + |𝑘 − 1|) 𝑅 (12)

and to discuss three cases with respect to 𝑘.
From Lemma 6 we immediately obtain the following.

Lemma 7. Let 𝑘, 𝑙 ∈ R and 𝑧
1
, 𝑧
2
∈ C. If |𝑧

1
| < 𝑅 and |𝑧

2
| < 𝑅

then

(𝑘 + 𝑙) 𝑧1 + (𝑘 − 𝑙) 𝑧2
 ≤ {

2 |𝑘| 𝑅 for |𝑘| ≥ |𝑙| ,
2 |𝑙| 𝑅 for |𝑘| ≤ |𝑙| .

(13)

2. Results for S
Σ
(𝛼, 𝜆) and M

Σ
(𝛽, 𝜆)

Now, we will formulate two theorems concerning the Fekete-
Szegö inequalities for S

Σ
(𝛼, 𝜆) andM

Σ
(𝛽, 𝜆).

Theorem 8. If 𝑓 ∈ S
Σ
(𝛼, 𝜆), 0 < 𝛼 ≤ 1, 0 ≤ 𝜆 < 1, and

𝜇 ∈ R, then
𝑎3 − 𝜇𝑎2

2


≤

{{{{{{{
{{{{{{{
{

4𝛼2

(1 − 𝜆)2 (1 + 𝛼)

1 − 𝜇
 for 4𝛼 1 − 𝜇



≥ (1 + 𝛼) (1 − 𝜆) ,
𝛼

1 − 𝜆
for 4𝛼 1 − 𝜇



≤ (1 + 𝛼) (1 − 𝜆) .

(14)

Theorem 9. If 𝑓 ∈ M
Σ
(𝛽, 𝜆), 0 ≤ 𝛽 < 1, 0 ≤ 𝜆 < 1, and

𝜇 ∈ R, then

𝑎3 − 𝜇𝑎2
2
 ≤

{{{
{{{
{

2 (1 − 𝛽)

(1 − 𝜆)2
1 − 𝜇

 for 2 1 − 𝜇
 ≥ 1 − 𝜆,

1 − 𝛽

1 − 𝜆
for 2 1 − 𝜇

 ≤ 1 − 𝜆.

(15)

Proof of Theorem 8. Let 𝑓 given by (1) be in S
Σ
(𝛼, 𝜆) and let

0 < 𝛼 ≤ 1, 0 ≤ 𝜆 < 1, and 𝜇 ∈ R. From Definition 1 and from
(6) we know that

𝑧𝑓 (𝑧)

(1 − 𝜆) 𝑓 (𝑧) + 𝜆𝑧𝑓 (𝑧)
= [𝑝(𝑧)]

𝛼

,

𝑤𝑔 (𝑤)

(1 − 𝜆) 𝑔 (𝑤) + 𝜆𝑤𝑔 (𝑤)
= [𝑞 (𝑤)]

𝛼

,

(16)

where 𝑝 and 𝑞 are functions inP which have the form (8).
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Comparing the coefficients in each equality in (16), it
follows that

(1 − 𝜆) 𝑎
2
= 𝛼𝑝
1
, (17)

2 (1 − 𝜆) 𝑎
3
− (1 − 𝜆2) 𝑎

2

2 =
1

2
𝛼 (𝛼 − 1) 𝑝

1

2 + 𝛼𝑝
2
, (18)

− (1 − 𝜆) 𝑎
2
= 𝛼𝑞
1
, (19)

−2 (1 − 𝜆) 𝑎
3
+ (𝜆2 − 4𝜆 + 3) 𝑎

2

2 =
1

2
𝛼 (𝛼 − 1) 𝑞

1

2 + 𝛼𝑞
2
.

(20)

From (17) and (19), there is 𝑝
1
= −𝑞
1
. Summing and subtract-

ing (18) and (20), we have two equalities

2(1 − 𝜆)2𝑎
2

2 =
1

2
𝛼 (𝛼 − 1) (𝑝

1

2 + 𝑞
1

2) + 𝛼 (𝑝
2
+ 𝑞
2
) , (21)

𝑎
3
= 𝑎
2

2 +
𝛼

4 (1 − 𝜆)
(𝑝
2
− 𝑞
2
) . (22)

Applying (17) and (19) we dispose of 𝑝
1
and 𝑞
1
in (21). Hence

𝑎
3
− 𝜇𝑎
2

2 = 𝑝
2
[ℎ (𝛼) (1 − 𝜇) +

𝛼

4 (1 − 𝜆)
]

+ 𝑞
2
[ℎ (𝛼) (1 − 𝜇) −

𝛼

4 (1 − 𝜆)
] ,

(23)

where ℎ(𝛼) = 𝛼2/(1 − 𝜆)2(1 + 𝛼) is nonnegative. From
Lemmas 5 and 7 we conclude

𝑎3 − 𝜇𝑎2
2
 ≤

{{{{{{{
{{{{{{{
{

4ℎ (𝛼)
1 − 𝜇

 for ℎ (𝛼) 1 − 𝜇


≥
𝛼

4 (1 − 𝜆)
,

𝛼

1 − 𝜆
for ℎ (𝛼) 1 − 𝜇



≤
𝛼

4 (1 − 𝜆)
.

(24)

The proof of Theorem 9 is similar to that of Theorem 8
and can be omitted. From Theorems 8 and 9 we get the
following corollaries.

Corollary 10. If𝑓 ∈ S
Σ
(𝛼, 𝜆), 0 < 𝛼 ≤ 1, and 0 ≤ 𝜆 < 1, then

𝑎3
 ≤
{{
{{
{

4𝛼2

(1 − 𝜆)2 (1 + 𝛼)
for 4𝛼 ≥ (1 + 𝛼) (1 − 𝜆)

𝛼

1 − 𝜆
for 4𝛼 ≤ (1 + 𝛼) (1 − 𝜆) .

(25)

Corollary 11. If 𝑓 ∈ M
Σ
(𝛽, 𝜆), 0 ≤ 𝛽 < 1, and 0 ≤ 𝜆 < 1,

then

𝑎3
 ≤
2 (1 − 𝛽)

(1 − 𝜆)2
. (26)

The result in Corollary 10 improves the corresponding
result in Theorem 3. Similarly, for 0 ≤ 𝛽 ≤ 1/2 the bound
in Corollary 11 is better that the one obtained inTheorem 4.

If 𝜆 = 0 we get the bounds for S𝛼
Σ
and S∗

Σ
(𝛽) which are

better than these obtained in [3, 11]. It is worth mentioning
that recently Hamidi and Jahangiri ([6]) and Srivastava et
al. ([13]) have provided an improvement of the result from
Corollaries 10 and 11.

If additionally 𝛼 = 1, we obtain that |𝑎
3
| ≤ 2 for the class

S∗
Σ
of bi-starlike functions (see [3, 6, 13]).

3. Results for K
Σ
(𝛼, 𝜆) and N

Σ
(𝛽, 𝜆)

To begin with, we can observe that the operators which
were used byMurugusundaramoorthy et al. in the definitions
of S
Σ
(𝛼, 𝜆) and M

Σ
(𝛽, 𝜆) can be written as the weighted

harmonic mean of two expressions: 𝑧𝑓(𝑧)/𝑓(𝑧) and 1; that
is,

𝐹 (𝑧) = [
1 − 𝜆

𝑧𝑓(𝑧)/𝑓(𝑧)
+
𝜆

1
]
−1

,

𝐺 (𝑤) = [
1 − 𝜆

𝑤𝑔(𝑤)/𝑔(𝑤)
+
𝜆

1
]
−1

,

(27)

where 𝑔 = 𝑓−1.
Let us define two new classes. In definitions of 𝐹 and 𝐺

we consider the weighted harmonicmean of 1+𝑧𝑓(𝑧)/𝑓(𝑧)
and 𝑧𝑓(𝑧)/𝑓(𝑧); namely,

𝐹 (𝑧) = [
1 − 𝜆

𝑧𝑓(𝑧)/𝑓 (𝑧)
+

𝜆

1 + 𝑧𝑓(𝑧)/𝑓(𝑧)
]
−1

,

𝐺 (𝑤) = [
1 − 𝜆

𝑤𝑔(𝑤)/𝑔(𝑤)
+

𝜆

1 + 𝑤𝑔(𝑤)/𝑔(𝑤)
]
−1

,

(28)

where 0 ≤ 𝜆 ≤ 1, 𝑧 ∈ D, and 𝑔 = 𝑓−1. In fact, in the above
functions the range of 𝜆 can be extended to the set [0,∞).

Now, we can define the classesK
Σ
(𝛼, 𝜆) andN

Σ
(𝛽, 𝜆).

Definition 12. A function 𝑓 ∈ Σ is said to be in the
class K

Σ
(𝛼, 𝜆) if the functions 𝐹 and 𝐺, defined by (28),

corresponding to 𝑓 and 𝑔 = 𝑓−1, satisfy

arg 𝐹 (𝑧)
 <
𝛼𝜋

2
,

arg 𝐺 (𝑤)
 <
𝛼𝜋

2
,

0 < 𝛼 ≤ 1, 𝜆 ≥ 0, 𝑧 ∈ D.

(29)

Definition 13. A function 𝑓 ∈ Σ is said to be in the
class N

Σ
(𝛽, 𝜆) if the functions 𝐹 and 𝐺, defined by (28),

corresponding to 𝑓 and 𝑔 = 𝑓−1, satisfy

R𝐹 (𝑧) > 𝛽, R𝐺 (𝑤) > 𝛽,

0 ≤ 𝛽 < 1, 𝜆 ≥ 0, 𝑧 ∈ D.
(30)

The idea of considering the weighted mean of 1 +
𝑧𝑓(𝑧)/𝑓(𝑧) and 𝑧𝑓(𝑧)/𝑓(𝑧) first appeared in the paper by
Miller et al. (see [16]). They did their research into the class
of so-called 𝛼-convex functions defined as the arithmetic
weighted mean of the expressions mentioned above.

Now we are ready to establish the main theorems of this
section.
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Theorem 14. If 𝑓 ∈ K
Σ
(𝛼, 𝜆), 0 < 𝛼 ≤ 1, 𝜆 ≥ 0, and 𝜇 ∈ R,

then

(1)

𝑎2
 ≤

2𝛼

√𝛼(1 − 𝜆)2 + (1 + 𝜆)2
, (31)

(2)
𝑎3 − 𝜇𝑎2

2


≤

{{{{{{{{{{{{
{{{{{{{{{{{{
{

4𝛼2

𝛼(1 − 𝜆)2 + (1 + 𝜆)2
1 − 𝜇

 for 4𝛼 (1 + 2𝜆) 1 − 𝜇


≥ 𝛼(1 − 𝜆)2

+ (1 + 𝜆)2

𝛼

1 + 2𝜆
for 4𝛼 (1 + 2𝜆) 1 − 𝜇



≤ 𝛼(1 − 𝜆)2

+ (1 + 𝜆)2.

(32)

Theorem 15. If 𝑓 ∈ N
Σ
(𝛽, 𝜆), 0 ≤ 𝛽 < 1, 𝜆 ≥ 0, and 𝜇 ∈ R,

then

(1)

𝑎2
 ≤

{{{{{
{{{{{
{

2 (1 − 𝛽)

1 + 𝜆
for 𝛽 ≥ (1 − 𝜆)2

2 (1 + 𝜆2)
,

√
2 (1 − 𝛽)

1 + 𝜆2
for 𝛽 ≤ (1 − 𝜆)2

2 (1 + 𝜆2)
,

(33)

(2)

𝑎3 − 𝜇𝑎2
2
 ≤

{{{{{{{
{{{{{{{
{

2 (1 − 𝛽)

1 + 𝜆2
1 − 𝜇

 for 2 (1 + 2𝜆) 1 − 𝜇


≥ 1 + 𝜆2,
1 − 𝛽

1 + 2𝜆
for 2 (1 + 2𝜆) 1 − 𝜇



≤ 1 + 𝜆2.

(34)

Proof of Theorem 14. Assume that 0 < 𝛼 ≤ 1, 𝜆 ≥ 0, and 𝜇 ∈
R. From Definition 12 it follows that if 𝑓 ∈K

Σ
(𝛼, 𝜆) then

𝑧𝑓 (𝑧) [𝑓 (𝑧) + 𝑧𝑓 (𝑧)]

𝜆𝑧(𝑓(𝑧))
2

+ (1 − 𝜆) 𝑓 (𝑧) [𝑓 (𝑧) + 𝑧𝑓 (𝑧)]
= [𝑝(𝑧)]

𝛼

,

𝑤𝑔 (𝑧) [𝑔 (𝑤) + 𝑤𝑔 (𝑧)]

𝜆𝑤(𝑔(𝑧))
2

+ (1 − 𝜆) 𝑔 (𝑤) [𝑔 (𝑤) + 𝑤𝑔 (𝑤)]
= [𝑞 (𝑤)]

𝛼

,

(35)

where 𝑝 and 𝑞 are functions inP and have the form (8).
Hence, comparing the coefficients in each equality in (35),

we can write

(1 + 𝜆) 𝑎
2
= 𝛼𝑝
1
, (36)

2 (1 + 2𝜆) 𝑎
3
+ 4𝑎
2

2 − (5 − 𝜆) 𝑎
2
𝛼𝑝
1

=
1

2
𝛼 (𝛼 − 1) 𝑝

1

2 + 𝛼𝑝
2
,

(37)

− (1 + 𝜆) 𝑎
2
= 𝛼𝑞
1
, (38)

− 2 (1 + 2𝜆) 𝑎
3
+ 8 (1 + 𝜆) 𝑎

2

2 + (5 − 𝜆) 𝑎
2
𝛼𝑞
1

=
1

2
𝛼 (𝛼 − 1) 𝑞

1

2 + 𝛼𝑞
2
.

(39)

From (36) and (38), it yields that 𝑝
1
= −𝑞
1
. Putting (36) into

(37) and (38) into (39), we obtain

2 (1 + 2𝜆) 𝑎
3
+ (𝜆2 − 4𝜆 − 1) 𝑎

2

2 =
1

2
𝛼 (𝛼 − 1) 𝑝

1

2 + 𝛼𝑝
2

−2 (1 + 2𝜆) 𝑎
3
+ (𝜆2 + 4𝜆 + 3) 𝑎

2

2 =
1

2
𝛼 (𝛼 − 1) 𝑞

1

2 + 𝛼𝑞
2
.

(40)

Now, summing and subtracting (40) we have two equali-
ties

2 (1 + 𝜆2) 𝑎
2

2 =
1

2
𝛼 (𝛼 − 1) (𝑝

1

2 + q
1

2) + 𝛼 (𝑝
2
+ 𝑞
2
) , (41)

𝑎
3
= 𝑎
2

2 +
𝛼

4 (1 + 2𝜆)
(𝑝
2
− 𝑞
2
) . (42)

Substituting in (41) 𝑝
1
and 𝑞

1
taken from (36) and (38),

we get

𝑎
2

2 =
𝛼2

𝛼(1 − 𝜆)2 + (1 + 𝜆)2
(𝑝
2
+ 𝑞
2
) . (43)

By Lemma 5, the first part of our assertion follows.
From (41) and (42),

𝑎
3
− 𝜇𝑎
2

2

= 𝑝
2
[

𝛼2

𝛼(1 − 𝜆)2 + (1 + 𝜆)2
(1 − 𝜇) +

𝛼

4 (1 + 2𝜆)
]

+ 𝑞
2
[

𝛼2

𝛼(1 − 𝜆)2 + (1 + 𝜆)2
(1 − 𝜇) −

𝛼

4 (1 + 2𝜆)
] .

(44)

Applying Lemmas 5 and 7 completes the second part of the
assertion.

Theorem 14 gives the following corollaries.

Corollary 16. If 𝑓 ∈K
Σ
(𝛼, 𝜆), 0 < 𝛼 ≤ 1, and 𝜆 ≥ 0, then

a3
 ≤

{{{{{{{
{{{{{{{
{

4𝛼2

𝛼(1 − 𝜆)2 + (1 + 𝜆)2
for 4𝛼 (1 + 2𝜆) ≥ 𝛼(1 − 𝜆)2

+ (1 + 𝜆)2,
𝛼

1 + 2𝜆
for 4𝛼 (1 + 2𝜆) ≤ 𝛼(1 − 𝜆)2

+ (1 + 𝜆)2.

(45)



Abstract and Applied Analysis 5

For 𝜆 = 0 we obtain the bounds for S𝛼
Σ
. For 𝜆 = 1, the

classK
Σ
(𝛼, 𝜆) reduces to the classK𝛼

Σ
of strongly bi-convex

functions of order 𝛼. Hence we have the following.

Corollary 17. If 𝑓 ∈K𝛼
Σ
and 0 < 𝛼 ≤ 1, then

(1)
𝑎2
 ≤ 𝛼, (46)

(2)

𝑎3
 ≤
{{
{{
{

𝛼

3
for 𝛼 ∈ (0, 1

3
] ,

𝛼2 for 𝛼 ∈ [1
3
, 1] .

(47)

This result improves the result given in [3].

Proof of Theorem 15. Let 𝑓 ∈ N
Σ
(𝛼, 𝜆) with 0 ≤ 𝛽 < 1 and

𝜆 ≥ 0. From Definition 13 we obtain

𝑧𝑓 (𝑧) [𝑓 (𝑧) + 𝑧𝑓 (𝑧)]

𝜆𝑧(𝑓(𝑧))
2

+ (1 − 𝜆) 𝑓 (𝑧) [𝑓 (𝑧) + 𝑧𝑓 (𝑧)]

= 𝛽 + (1 − 𝛽) 𝑝 (𝑧) ,

𝑤𝑔 (𝑧) [𝑔 (𝑤) + 𝑤𝑔 (𝑧)]

𝜆𝑤(𝑔(𝑧))
2

+ (1 − 𝜆) 𝑔 (𝑤) [𝑔 (𝑤) + 𝑤𝑔 (𝑤)]

= 𝛽 + (1 − 𝛽) 𝑞 (𝑤) ,

(48)

where 𝑝, 𝑞 ∈ P.
Hence,

(1 + 𝜆) 𝑎
2
= (1 − 𝛽) 𝑝

1
, (49)

2 (1 + 2𝜆) 𝑎
3
+ 4𝑎
2

2 − (5 − 𝜆) (1 − 𝛽) 𝑎
2
𝑝
1
= (1 − 𝛽) 𝑝

2
,

(50)

− (1 + 𝜆) 𝑎
2
= (1 − 𝛽) 𝑞

1
, (51)

2 (1 + 2𝜆) (2𝑎
2

2 − 𝑎
3
) + 4𝑎

2

2

+ (5 − 𝜆) (1 − 𝛽) 𝑎
2
𝑞
1
= (1 − 𝛽) 𝑞

2
.

(52)

Applying the same method as in the proof of Theorem 15 we
get

𝑎
2

2 =
1 − 𝛽

2 (1 + 𝜆2)
(𝑝
2
+ 𝑞
2
) , (53)

𝑎
3
= 𝑎
2

2 +
1 − 𝛽

4 (1 + 2𝜆)
(𝑝
2
− 𝑞
2
) . (54)

Observe that the estimate for |𝑎
2
| obtained from (53), that

is, |𝑎
2
| ≤ √2(1 − 𝛽)/(1 + 𝜆2), is not always better than the

estimate which follows directly from (49), that is, |𝑎
2
| ≤ 2(1−

𝛽)/(1 + 𝜆). The comparison of these two bounds completes
the first part of the proof.

From (53) and (54),

𝑎
3
− 𝜇𝑎
2

2 = 𝑝
2
[
(1 − 𝛽) (1 − 𝜇)

2 (1 + 𝜆2)
+

1 − 𝛽

4 (1 + 2𝜆)
]

+ 𝑞
2
[
(1 − 𝛽) (1 − 𝜇)

2 (1 + 𝜆2)
−

1 − 𝛽

4 (1 + 2𝜆)
] ,

(55)

which results in the second part of the assertion.
FromTheorem 15 we get the following corollaries.

Corollary 18. If 𝑓 ∈ N
Σ
(𝛽, 𝜆), 0 ≤ 𝛽 < 1, and 𝜆 ≥ 0, then

|𝑎
3
| ≤ 2(1 − 𝛽)/(1 + 𝜆2).

For 𝜆 = 0 we obtain the bounds for S∗
Σ
(𝛽). For 𝜆 = 1,

the setN
Σ
(𝛽, 𝜆) is the classK

Σ
(𝛽) of bi-convex functions of

order 𝛽. Hence we have the following.

Corollary 19. If 𝑓 ∈K
Σ
(𝛽) and 0 ≤ 𝛽 < 1, then

(1)
𝑎2
 ≤ 1 − 𝛽, (56)

(2)
𝑎3
 ≤ 1 − 𝛽. (57)

This bound is better than the one proved in [3].
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