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The aim of this paper is to introduce and study a new concept of the Γ
2 space via ideal convergence defined by modulus and also

some topological properties of the resulting sequence spaces were examined.

1. Introduction

Let (𝑥
𝑚𝑛

) be a double sequence of real or complex numbers.
Then the series ∑

∞

𝑚,𝑛=1
𝑥
𝑚𝑛

is called a double series. The
double series ∑∞

𝑚,𝑛=1
𝑥
𝑚𝑛

is said to be convergent if and only
if the double sequence (𝑆

𝑚𝑛
) is convergent, where

𝑆
𝑚𝑛

=

𝑚,𝑛

∑

𝑖,𝑗=1

𝑥
𝑖𝑗
, (𝑚, 𝑛 = 1, 2, 3, . . .) . (1)

We denote 𝑤
2 as the class of all complex double sequences

(𝑥
𝑚𝑛

). A sequence 𝑥 = (𝑥
𝑚𝑛

) is said to be double analytic if

sup
𝑚𝑛

𝑥𝑚𝑛


1/𝑚+𝑛

< ∞. (2)

The vector space of all prime sense double analytic sequences
is usually denoted by Λ

2. A sequence 𝑥 = (𝑥
𝑚𝑛

) is called
double entire sequence if

(
𝑥𝑚𝑛

)
1/𝑚+𝑛

→ 0 as 𝑚, 𝑛 → ∞. (3)

The vector space of all prime sense double entire sequences is
usually denoted by Γ2.The spaceΛ2 is a metric space with the
metric

𝑑 (𝑥, 𝑦) = sup
𝑚𝑛

{
𝑥𝑚𝑛 − 𝑦

𝑚𝑛



1/𝑚+𝑛

: 𝑚, 𝑛 : 1, 2, 3, . . .} . (4)

The space Γ2 is a metric space with the metric

𝑑 (𝑥, 𝑦) = sup
𝑚𝑛

{(
𝑥𝑚𝑛 − 𝑦

𝑚𝑛

)
1/𝑚+𝑛

: 𝑚, 𝑛 : 1, 2, 3, . . .} , (5)

for all 𝑥 = {𝑥
𝑚𝑛

} and 𝑦 = {𝑦
𝑚𝑛

} in Γ
2.

Consider a double sequence 𝑥 = (𝑥
𝑖𝑗
). The (𝑚, 𝑛)th sec-

tion 𝑥
[𝑚,𝑛] of the sequence is defined by 𝑥

[𝑚,𝑛]
= ∑
𝑚,𝑛

𝑖,𝑗=0
𝑥
𝑖𝑗
𝛿
𝑖𝑗

for all𝑚, 𝑛 ∈ N,

𝛿
𝑚𝑛

= (

0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅

...
0 0 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅

) , (6)

with 1 in the (𝑚, 𝑛)th position and zero otherwise. An FK-
space (or a metric space) 𝑋 is said to have AK property if
(𝛿
𝑚𝑛

) is a Schauder basis for 𝑋. Or equivalently 𝑥
[𝑚,𝑛]

→ 𝑥.
We need the following inequality in the sequel of the paper.

Lemma 1. For 𝑎, 𝑏 ≥ 0 and 0 < 𝑝 < 1, one has

(𝑎 + 𝑏)
𝑝
≤ 𝑎
𝑝
+ 𝑏
𝑝
. (7)

Some initial work on double sequence spaces is found in
Bromwich. Later on it was investigated by Moricz [1], Moricz
and Rhoades [2], Basarir and Solancan [3], Tripathy [4],
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Turkmenoglu [5], Subramanian and Misra [6, 7], and many
others. Tripathy and Dutta [8] introduced and investigated
different types of fuzzy real valued double sequence spaces.
Generalizing the concept of ordinary convergence for real
sequences Kostyrko et al. introduced the concept of ideal
convergence which is a generalization of statistical conver-
gence, by using the ideal 𝐼 of the subsets of the set of natural
numbers.

The notion of different sequence spaces (for single
sequences) was introduced by Kizmaz [9] as follows:

𝑍 (Δ) = {𝑥 = (𝑥
𝑘
) ∈ 𝑤 : (Δ𝑥

𝑘
) ∈ 𝑍} , (8)

for 𝑍 = 𝑐, 𝑐
0
and ℓ
∞
, where Δ𝑥

𝑘
= 𝑥
𝑘
− 𝑥
𝑘+1

for all 𝑘 ∈ N.
Here𝑤, 𝑐, 𝑐

0
, and ℓ

∞
denote the classes of all, convergent, null,

and bounded scalar valued single sequences, respectively.The
above spaces are Banach spaces normed by

‖𝑥‖ =
𝑥1

 + sup
𝑘≥1

Δ𝑥𝑘
 . (9)

Later on the notion was further investigated by many others.
We now introduce the following difference double sequence
spaces defined by

𝑍 (Δ) = {𝑥 = (𝑥
𝑚𝑛

) ∈ 𝑤
2
: (Δ𝑥
𝑚𝑛

) ∈ 𝑍} , (10)

where 𝑍 = Λ
2 and Γ

2, respectively. Δ𝑥
𝑚𝑛

= (𝑥
𝑚𝑛

− 𝑥
𝑚𝑛+1

) −

(𝑥
𝑚+1𝑛

− 𝑥
𝑚+1𝑛+1

) = 𝑥
𝑚𝑛

− 𝑥
𝑚𝑛+1

− 𝑥
𝑚+1𝑛

+ 𝑥
𝑚+1𝑛+1

for all
𝑚, 𝑛 ∈ N. We further generalized this notion and introduced
the following notion. For𝑚, 𝑛 ≥ 1,

𝑍(Δ
𝜇

𝛾
) = {𝑥 = 𝑥

𝑚𝑛
: (Δ
𝜇

𝛾
𝑥
𝑚𝑛

) ∈ 𝑍} , for 𝑍 = Λ
2
, Γ
2
.

(11)

An Orlicz function is a function 𝑓 : [0,∞) → [0,∞) which
is continuous, nondecreasing, and convex with 𝑓(0) = 0,
𝑓(𝑥) > 0, for 𝑥 > 0 and 𝑓(𝑥) → ∞ as 𝑥 → ∞. If convexity
of Orlicz function 𝑓 is replaced by 𝑓(𝑥 + 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦),
then this function is called modulus function. A modulus
function 𝑓 is said to satisfy Δ

2-condition for all values 𝑢, if
there exists 𝐾 > 0 such that 𝑓(2𝑢) ≤ 𝐾𝑓(𝑢), 𝑢 ≥ 0.

Remark 2. A modulus function satisfies the inequality
𝑓(𝜆𝑥) ≤ 𝜆𝑓(𝑥) for all 𝜆 with 0 < 𝜆 < 1.

Lemma 3. Let 𝑓 be a modulus function which satisfies Δ
2-

condition and let 0 < 𝛿 < 1. Then for each 𝑡 ≥ 𝛿, one has
𝑓(𝑡) < 𝐾𝛿

−1
𝑓(2) for some constant 𝐾 > 0.

Spaces of strongly summable sequences were discussed
by Kuttner, Maddox, and others. The class of sequences
which are strongly Cesàro summable with respect to a
modulus was introduced by Maddox as an extension of the
definition of strongly Cesàro summable sequences. Connor
further extended this definition to a definition of strong 𝐴-
summability with respect to a modulus where 𝐴 = (𝑎

𝑛,𝑘
) is

a nonnegative regular matrix and established some connec-
tions between strong 𝐴-summability, strong 𝐴-summability
with respect to a modulus, and 𝐴-statistical convergence.

The notion of convergence of double sequences was pre-
sented by A. Pringsheim. Also, the four-dimensional matrix
transformation (𝐴𝑥)

𝑘,ℓ
= ∑
∞

𝑚=1
∑
∞

𝑛=1
𝑎
𝑚𝑛

𝑘ℓ
𝑥
𝑚𝑛

was studied
extensively by Robison and Hamilton.

2. Definitions and Preliminaries

Let 𝑋 be a nonempty set. A nonvoid class 𝐼 ⊆ 2
𝑋 (power

set, of 𝑋) is called an ideal if 𝐼 is additive (i.e., 𝐴, 𝐵 ∈ 𝐼 ⇒

𝐴⋃𝐵 ∈ 𝐼) and hereditary (i.e., 𝐴 ∈ 𝐼 and 𝐵 ⊆ 𝐴 ⇒ 𝐵 ∈ 𝐼).
A nonempty family of sets 𝐹 ⊆ 2

𝑋 is said to be a filter on𝑋 if
𝜙 ∉ 𝐹; 𝐴, 𝐵 ∈ 𝐹 ⇒ 𝐴⋂𝐵 ∈ 𝐹 and 𝐴 ∈ 𝐹, 𝐴 ⊆ 𝐵 ⇒ 𝐵 ∈ 𝐹.
For each ideal 𝐼 there is a filter 𝐹(𝐼) given by 𝐹(𝐼) = {𝐾 ⊆ 𝑁 :

𝑁 \ 𝐾 ∈ 𝐼}. A nontrivial ideal 𝐼 ⊂ 2
𝑋 is called admissible if

and only if {{𝑥} : 𝑥 ∈ 𝑋} ⊂ 𝐼.
A double sequence space 𝐸 is said to be solid or normal

if (𝛼
𝑚𝑛

𝑥
𝑚𝑛

) ∈ 𝐸, whenever (𝑥
𝑚𝑛

) ∈ 𝐸 and for all double
sequences𝛼 = (𝛼

𝑚𝑛
)of scalarswith |𝛼

𝑚𝑛
| ≤ 1, for all𝑚, 𝑛 ∈ N.

Let 𝑛 ∈ N and let 𝑋 be a real vector space of dimension
𝑤, where 𝑛 ≤ 𝑤. A real valued function 𝑑

𝑝
(𝑥
1
, . . . , 𝑥

𝑛
) =

‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝

on 𝑋 satisfies the following four
conditions:

(i) ‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
= 0 if and and only if 𝑑

1
(𝑥
1
),

. . . , 𝑑
𝑛
(𝑥
𝑛
) are linearly dependent,

(ii) ‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
is invariant under permuta-

tion,
(iii) ‖(𝛼𝑑

1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
= |𝛼|‖(𝑑

1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
,

𝛼 ∈ R,
(iv) 𝑑

𝑝
((𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
) ⋅ ⋅ ⋅ (𝑥

𝑛
, 𝑦
𝑛
)) = (𝑑

𝑋
(𝑥
1
, 𝑥
2
, . . .,

𝑥
𝑛
)
𝑝
+ 𝑑
𝑌
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)
𝑝
)
1/𝑝 for 1 ≤ 𝑝 < ∞, or

(v) 𝑑((𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑛
, 𝑦
𝑛
)) := sup{𝑑

𝑋
(𝑥
1
, 𝑥
2
,

. . . , 𝑥
𝑛
), 𝑑
𝑌
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)}, for 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋,

𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
∈ 𝑌, is called the𝑝 productmetric of the

Cartesian product of 𝑛 metric spaces which is the 𝑝

norm of the 𝑛-vector of the norms of the 𝑛 subspaces.

A trivial example of 𝑝 product metric of 𝑛 metric spaces
is the 𝑝 norm space 𝑋 = R equipped with the following
Euclidean metric in the product space which is the 𝑝 norm:

(𝑑1 (𝑥1) , . . . , 𝑑𝑛 (𝑥𝑛))
𝐸

= sup (
det (𝑑𝑚𝑛 (𝑥𝑚𝑛))

)

= sup(



𝑑
11

(𝑥
11
) 𝑑
12

(𝑥
12
) ⋅ ⋅ ⋅ 𝑑

1𝑛
(𝑥
1𝑛
)

𝑑
21

(𝑥
21
) 𝑑
22

(𝑥
22
) ⋅ ⋅ ⋅ 𝑑

2𝑛
(𝑥
1𝑛
)

...
𝑑
𝑛1

(𝑥
𝑛1
) 𝑑
𝑛2

(𝑥
𝑛2
) ⋅ ⋅ ⋅ 𝑑

𝑛𝑛
(𝑥
𝑛𝑛
)



) ,

(12)

where 𝑥
𝑖
= (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑛
) ∈ R𝑛 for each 𝑖 = 1, 2, . . . , 𝑛.

3. Main Results

In this section we introduce the notion of different types of
𝐼-convergent double sequences. This generalizes and unifies
different notions of convergence for Γ

2. We will denote the
ideal of 2𝑁×𝑁 by 𝐼

2
.
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Let 𝐼
2
be an ideal of 2𝑁×𝑁, 𝑓 a modulus function, 𝜂 =

(𝜂
𝑚𝑛

) a double analytic sequence of strictly positive real
numbers, and (𝑋, ‖(𝑑

1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
) a 𝑝-product of 𝑛

metric spaces which is the 𝑝 norm of the 𝑛-vector of the
norms of the 𝑛 subspaces. Further Γ2(𝑝−𝑋) denotes𝑋-valued
sequence space. Now, we define the following sequence
spaces:

Γ
2𝐼
2

𝑓
[
(𝑑1 (𝑥1) , . . . , 𝑑𝑛 (𝑥𝑛))

𝑝
]
𝜂

= 𝑥 = (𝑥
𝑚𝑛

) ∈ Γ
2
(𝑝 − 𝑋) : ∀𝜖 > 0,

{ (𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

(
𝑥𝑚𝑛

)
1/𝑚+𝑛

,

𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

)
𝑝

]

𝜂
𝑚𝑛

≥ 𝜖} ∈ 𝐼
2
,

for every 𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

) ∈ 𝑋.

Λ
2𝐼
2

𝑓
[
(𝑑1 (𝑥1) , . . . , 𝑑𝑛 (𝑥𝑛))

𝑝
]
𝜂

= 𝑥 = (𝑥
𝑚𝑛

) ∈ Λ
2
(𝑝 − 𝑋) : ∃𝐾 > 0,

{{ (𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

(
𝑥𝑚𝑛



1/𝑚+𝑛

,

𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

≥ 𝐾} ∈ 𝐼
2
} , for every 𝑑

1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

) ∈ 𝑋.

Λ
2

𝑓
[
(𝑑1 (𝑥1) , . . . , 𝑑𝑛 (𝑥𝑛))

𝑝
]
𝜂

= 𝑥 = (𝑥
𝑚𝑛

) ∈ Λ
2
(𝑝 − 𝑋) : ∃𝐾 > 0,

{ (𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

(
𝑥𝑚𝑛



1/𝑚+𝑛

,

𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

≤ 𝐾} , for every 𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

) ∈ 𝑋.

(13)

If 𝜂 = 𝜂
𝑚𝑛

= 1 for all𝑚, 𝑛 ∈ N we obtain

Γ
2𝐼
2

𝑓
[
(𝑑1 (𝑥1) , . . . , 𝑑𝑛 (𝑥𝑛))

𝑝
]
𝜂

= Γ
2𝐼
2

𝑓
[
(𝑑1 (𝑥1) , . . . , 𝑑𝑛 (𝑥𝑛))

𝑝
] ,

Λ
2𝐼
2

𝑓
[
(𝑑1 (𝑥1) , . . . , 𝑑𝑛 (𝑥𝑛))

𝑝
]
𝜂

= Λ
2𝐼
2

𝑓
[
(𝑑1 (𝑥1) , . . . , 𝑑𝑛 (𝑥𝑛))

𝑝
] ,

Λ
2

𝑓
[
(𝑑1 (𝑥1) , . . . , 𝑑𝑛 (𝑥𝑛))

𝑝
]
𝜂

= Λ
2

𝑓
[
(𝑑1 (𝑥1) , . . . , 𝑑𝑛 (𝑥𝑛))

𝑝
] .

(14)

The following well-known inequality will be used in this
study: 0 ≤ inf

𝑚𝑛
𝜂
𝑚𝑛

= 𝐻
0

≤ 𝜂
𝑚𝑛

≤ sup
𝑚𝑛

= 𝐻 < ∞,
𝐷 = max(1, 2𝐻−1); then

𝑥𝑚𝑛 + 𝑦
𝑚𝑛



𝜂
𝑚𝑛

≤ 𝐷 {
𝑥𝑚𝑛



𝜂
𝑚𝑛

+
𝑦𝑚𝑛



𝜂
𝑚𝑛

} , (15)

for all 𝑚, 𝑛 ∈ N and 𝑥
𝑚𝑛

, 𝑦
𝑚𝑛

∈ C. Also |𝑥
𝑚𝑛

|
𝜂
𝑚𝑛
/𝑚+𝑛

≤

max(1, |𝑥
𝑚𝑛

|
𝐻/𝑚+𝑛

) for all 𝑥
𝑚𝑛

∈ C.

Theorem 4. The sets Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂
𝑚𝑛 and

Λ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂
𝑚𝑛 are linear spaces over the

complex field C

Proof. Now only prove Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂
𝑚𝑛

and the others can be proved similarly. Let 𝑥, 𝑦 ∈

Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂
𝑚𝑛 and 𝛼, 𝛽 ∈ C. Then

{ (𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

(
𝑥𝑚𝑛

)
1/𝑚+𝑛

,

𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

)

𝑝

]

𝜂
𝑚𝑛

≥
𝜖

2
} ∈ 𝐼
2
,

{ (𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑟

∑

𝑛=1

[𝑓

(
𝑦𝑚𝑛

)
1/𝑚+𝑛

,

𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

)

𝑝

]

𝜂
𝑚𝑛

≥
𝜖

2
} ∈ 𝐼
2
.

(16)

Since ‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
is a 𝑝-product of 𝑛 metric

spaces which is the 𝑝 norm of the 𝑛-vector of the norms of
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the 𝑛 subspaces and 𝑓 is a modulus function, the following
inequality holds:

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[

[

𝑓(



𝛼𝑥𝑚𝑛 + 𝛽𝑦
𝑚𝑛



1/𝑚+𝑛

|𝛼|
1/𝑚+𝑛

+
𝛽


1/𝑚+𝑛
,

𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

)

𝑝

)]

]

𝜂
𝑚𝑛

≤
𝐷

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[
|𝛼|
1/𝑚+𝑛

|𝛼|
1/𝑚+𝑛

+
𝛽


1/𝑚+𝑛

× 𝑓(

(
𝑥𝑚𝑛

)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

)
𝑝

)]

𝜂
𝑚𝑛

+
𝐷

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[

𝛽


1/𝑚+𝑛

|𝛼|
1/𝑚+𝑛

+
𝛽


1/𝑚+𝑛

× 𝑓(



(
𝑦𝑚𝑛

)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

)

𝑝

)]

]

𝜂
𝑚𝑛

≤
𝐷

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓(


(
𝑥𝑚𝑛

)
1/𝑚+𝑛

,

𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

)
𝑝

)]

𝜂
𝑚𝑛

+
𝐷

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓 (

(
𝑦𝑚𝑛

)
1/𝑚+𝑛

,

𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

)
𝑝

)]

𝜂
𝑚𝑛

.

(17)

From the above inequality we get

{

{

{

(𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[

[

𝑓(



(
(
𝛼𝑥𝑚𝑛 + 𝛽𝑦

𝑚𝑛

)
1/𝑚+𝑛

|𝛼|
1/𝑚+𝑛

+
𝛽


1/𝑚+𝑛
,

𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

))

𝑝

)]

]

𝜂
𝑚𝑛

≥ 𝜖

}

}

}

⊂ { (𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

𝐷

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

((

𝑥𝑚𝑛
)
1/𝑚+𝑛

,

𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

≥
𝜖

2
} ∈ 𝐼
2

⋃{(𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

𝐷

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

(
𝑦𝑚𝑛



1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

≥
𝜖

2
} ∈ 𝐼
2
.

(18)

This completes the proof.

Theorem 5. Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂 paranormed space

with respect to the paranorm is defined by

𝑔
𝑟𝑠
(𝑥)

= inf {(sup
𝑟𝑠

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

)

1/𝐻

≤ 1} , 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

) ∈ 𝑋.

(19)

Proof. 𝑔
𝑟𝑠
(𝜃) = 0 and 𝑔

𝑟𝑠
(−𝑥) = 𝑔

𝑟𝑠
(𝑥) are easy to prove,

so we omit them. Let us take 𝑥, 𝑦 ∈ Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . ,

𝑑
𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂
𝑚𝑛 . Let

𝑔
𝑟𝑠
(𝑥)

= inf {sup
𝑟𝑠

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

≤ 1, ∀𝑥 ∈ 𝑋} ,
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𝑔
𝑟𝑠
(𝑦)

= inf {sup
𝑟𝑠

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

((

𝑦𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

≤ 1, ∀𝑥 ∈ 𝑋} .

(20)

Then we have

sup
𝑟𝑠

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

((

𝑥𝑚𝑛 + 𝑦
𝑚𝑛

)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

≤ sup
𝑟𝑠

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

+ sup
𝑟𝑠

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

((

𝑦𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

.

(21)

Thus

sup
𝑟𝑠

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓


((

𝑥𝑚𝑛 + 𝑦
𝑚𝑛

)
1/𝑚+𝑛

,

𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

≤ 1,

(22)

and 𝑔
𝑟𝑠
(𝑥 + 𝑦) = 𝑔

𝑟𝑠
(𝑥) + 𝑔

𝑟𝑠
(𝑦).

Now, let 𝜆𝑢
𝑚𝑛

→ 𝜆, where 𝜆
𝑢

𝑚𝑛
, 𝜆 ∈ C and 𝑔

𝑟𝑠
(𝑥
𝑢

𝑚𝑛
−

𝑥
𝑚𝑛

) → 0 as 𝑢 → ∞. We have to prove that 𝑔
𝑟𝑠
(𝜆
𝑚𝑛

𝑥
𝑢

𝑚𝑛
−

𝜆𝑥
𝑚𝑛

) → 0 as 𝑢 → ∞. Let

𝑔
𝑟𝑠
(𝑥
𝑢
)

= {sup
𝑟𝑠

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓


((

𝑥
𝑢

𝑚𝑛

)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )

𝑝

]

𝜂
𝑚𝑛

≤ 1, ∀𝑥 ∈ 𝑋} ,

𝑔
𝑟𝑠
(𝑥
𝑢
− 𝑥)

= {sup
𝑟𝑠

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

((

𝑥
𝑢

𝑚𝑛
− 𝑥
𝑚𝑛

)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

≤ 1, } ∀𝑥 ∈ 𝑋.

(23)

We observe that

𝑓(



(
(
𝜆
𝑢

𝑚𝑛
𝑥
𝑢

𝑚𝑛
− 𝜆𝑥
𝑚𝑛

)
1/𝑚+𝑛

𝜆
𝑢

𝑚𝑛
− 𝜆



1/𝑚+𝑛

+ |𝜆|
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

))

𝑝

)

≤ 𝑓(



(
(
𝜆
𝑢

𝑚𝑛
𝑥
𝑢

𝑚𝑛
− 𝜆𝑥
𝑢

𝑚𝑛

)
1/𝑚+𝑛

𝜆
𝑢

𝑚𝑛
− 𝜆



1/𝑚+𝑛

+ |𝜆|
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
)

. . . , 𝑑
𝑛
(𝑥
𝑛−1

))

𝑝

)

+ 𝑓(



(
(
𝜆𝑥
𝑢

𝑚𝑛
− 𝜆𝑥
𝑚𝑛

)
1/𝑚+𝑛

𝜆
𝑢

𝑚𝑛
− 𝜆



1/𝑚+𝑛

+ |𝜆|
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

))

𝑝

)

≤

𝜆
𝑢

𝑚𝑛
− 𝜆


𝜆
𝑢

𝑚𝑛
− 𝜆

 + |𝜆|

× 𝑓(

((

𝑥
𝑢

𝑚𝑛

)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) , . . . , 𝑑

𝑛
(𝑥
𝑛−1

))
𝑝

)

+
|𝜆|

𝜆
𝑢

𝑚𝑛
− 𝜆

 + |𝜆|

× 𝑓(

((

𝑥
𝑢

𝑚𝑛
− 𝑥
𝑚𝑛

)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

) .

(24)

From this inequality, it follows that

[

[

𝑓(



(
(
𝜆
𝑢

𝑚𝑛
𝑥
𝑢

𝑚𝑛
− 𝜆𝑥
𝑚𝑛

)
1/𝑚+𝑛

𝜆
𝑢

𝑚𝑛
− 𝜆



1/𝑚+𝑛

+ |𝜆|
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )

𝑝

)]

]

𝜂
𝑚𝑛

≤ 1,

(25)
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and consequently

𝑔
𝑟𝑠
(𝜆
𝑢

𝑚𝑛
𝑥
𝑢

𝑚𝑛
− 𝜆𝑥
𝑚𝑛

)

≤ (
𝜆
𝑢

𝑚𝑛
− 𝜆

)
𝜂
𝑚𝑛
/𝐻 inf {𝑔

𝑟𝑠
(𝑥
𝑢

𝑚𝑛
)}

+ (|𝜆|)
𝜂
𝑚𝑛
/𝐻 inf {𝑔

𝑟𝑠
(𝑥
𝑢

𝑚𝑛
− 𝑥)}

≤ max {|𝜆| , (|𝜆|)𝜂𝑚𝑛/𝐻} 𝑔𝑟𝑠 (𝑥
𝑢

𝑚𝑛
− 𝑥
𝑚𝑛

) .

(26)

Hence by our assumption the right-hand side tends to zero as
𝑢,𝑚, and 𝑛 → ∞. This completes the proof.

Theorem 6. (i) If 0 < inf
𝑚𝑛

𝜂
𝑚𝑛

= 𝐻
0

≤ 𝜂
𝑚𝑛

<

1, then Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂

⊂ Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . ,

𝑑
𝑛
(𝑥
𝑛
))‖
𝑝
].

(ii) If 1 ≤ 𝜂
𝑚𝑛

≤ sup
𝑚𝑛

𝜂
𝑚𝑛

= 𝐻 < ∞, then Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
),

. . . , 𝑑
𝑛
(𝑥
𝑛
))‖
𝑝
] ⊂ Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂.

(iii) If 0 < 𝜂
𝑚𝑛

< 𝜇
𝑚𝑛

< ∞ and {𝜇
𝑚𝑛

/𝜂
𝑚𝑛

} is ana-
lytic, then Γ

2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂
⊂ Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . ,

𝑑
𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜇.

Proof. The proof is easy. Therefore omit it.

Lemma 7. If a sequence E is solid, then it is monotone. (See
[10, page 53].)

Theorem 8. Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂 is solid and also

monotone.

Proof. Let 𝑥 ∈ Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂 and 𝛼 = (𝛼

𝑚𝑛
)

be scalars such that |𝛼
𝑚𝑛

|
1/𝑚+𝑛

≤ 1 for𝑚, 𝑛 ∈ N.Thenwe have

{ (𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

((

𝛼𝑚𝑛𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

))
𝑝

]

𝜂
𝑚𝑛

≤ 𝜖} ⊂ {{ (𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

𝑇

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓


((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

≤ 𝜖}

∈ 𝐼
2
} ,

(27)

where 𝑇 = max
𝑚𝑛

{1, |𝛼
𝑚𝑛

|
𝐻/𝑚+𝑛

}. Hence 𝛼𝑥 ∈ Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
),

. . . , 𝑑
𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂 with |𝛼|

1/𝑚+𝑛
≤ 1 for all 𝑚, 𝑛 ∈ N whenever

𝑥 ∈ Γ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂. Also by Lemma 7, it

follows that Γ2𝐼2
𝑓

[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂 is monotone. This

completes the proof.

Theorem 9. Let 𝑓, 𝑓
1
, and 𝑓

2
be modulus functions.Then one

has

(i) Γ2𝐼2
𝑓
1

[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂

⊂ Γ
2𝐼
2

𝑓∘𝑓
1

[‖(𝑑
1
(𝑥
1
), . . . ,

𝑑
𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂,

(ii) Γ2𝐼2
𝑓
1

[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂
⋂Γ
2𝐼
2

𝑓
2

[‖(𝑑
1
(𝑥
1
), . . . ,

𝑑
𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂
⊂ Γ
2𝐼
2

𝑓
1
+𝑓
2

[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂.

Proof. (i) Let inf
𝑚𝑛

𝜂
𝑚𝑛

= 𝐻
0
. For given 𝜖 > 0, we first choose

𝜖
0
> 0 such that max{𝜖𝐻

0
, 𝜖
𝐻
0

0
} < 𝜖. Now using the continuity

of 𝑓, choose 0 < 𝛿 < 1 such that 0 < 𝑡 < 𝛿 implies 𝑓(𝑡) < 𝜖
0
.

Let 𝑥 ∈ Γ
2𝐼
2

𝑓
1

[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂.

We observe that

𝐴 (𝛿) =

{

{

{

(𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓
1


((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

))

𝑝

]

]

𝜂
𝑚𝑛

≥ 𝛿
𝐻
}

}

}

∈ 𝐼
2
.

(28)

Thus if (𝑟, 𝑠) ∉ 𝐴(𝛿) then

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓
1


((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

< 𝛿
𝐻

⇒

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓
1


((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

< 𝑟𝑠𝛿
𝐻
,

⇒ [𝑓
1


((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

< 𝛿
𝐻
, ∀𝑚, 𝑛 = 1, 2, . . . .

⇒ 𝑓
1
(

((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

) < 𝛿, ∀𝑚, 𝑛 = 1, 2, . . . .

(29)
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Hence from above inequality and using continuity of 𝑓, we
must have

𝑓(𝑓
1
(


((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

)) < 𝜖
0
, ∀𝑚, 𝑛 = 1, 2, . . . .

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓(𝑓
1


((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

)]

𝜂
𝑚𝑛

< 𝑟𝑠max {𝜖𝐻
0
, 𝜖
𝐻
0

0
} < 𝑟𝑠𝜖

⇒
1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓(𝑓
1


((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

)]

𝜂
𝑚𝑛

< 𝜖.

(30)

Hence we have

{ (𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓(𝑓
1


((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

)]

𝜂
𝑚𝑛

≥ 𝜖} ⊂ 𝐴 (𝛿) ∈ 𝐼
2
.

(31)

(ii) Let 𝑥 ∈ Γ
2𝐼
2

𝑓
1

[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂
⋂

Γ
2𝐼
2

𝑓
2

[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂. Then

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[ (𝑓
1
+ 𝑓
2
)

× (

( (

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

)]

𝜂
𝑚𝑛

≤
𝐷

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓
1
(

((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

)]

𝜂
𝑚𝑛

+
𝐷

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓
2
(

((

𝑥𝑚𝑛
)
1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

)]

𝜂
𝑚𝑛

.

(32)

This completes the proof.

Theorem 10. Let the double sequence 𝜂 = (𝜂
𝑚𝑛

) be analytic.
Then

Γ
2𝐼
2

𝑓
[
(𝑑1 (𝑥1) , . . . , 𝑑𝑛 (𝑥𝑛))

𝑝
]
𝜂

⊂ Λ
2𝐼
2

𝑓
[
(𝑑1 (𝑥1) , . . . , 𝑑𝑛 (𝑥𝑛))

𝑝
]
𝜂

(33)

and the inclusion are strict.

Theorem 11. The class of sequence Λ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . ,

𝑑
𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂 is sequence algebras.

Proof. Let (𝑥
𝑚𝑛

), (𝑦
𝑚𝑛

) ∈ Λ
2𝐼
2

𝑓
[‖(𝑑
1
(𝑥
1
), . . . , 𝑑

𝑛
(𝑥
𝑛
))‖
𝑝
]
𝜂 and

0 < 𝜖 < 1. Then the result follows from the following
inclusion relation:

{{ (𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

(
𝑥𝑚𝑛 ⊗ 𝑦

𝑚𝑛



1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

< 𝜖} ∈ 𝐼
2
} ⊇ {{ (𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

(
𝑥𝑚𝑛



1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

< 𝜖} ∈ 𝐼
2
}

⋂{{ (𝑟, 𝑠) ∈ 𝑁 × 𝑁 :

1

𝑟𝑠

𝑟

∑

𝑚=1

𝑠

∑

𝑛=1

[𝑓

(
𝑦𝑚𝑛



1/𝑚+𝑛

, 𝑑
1
(𝑥
1
) ,

. . . , 𝑑
𝑛
(𝑥
𝑛−1

) )
𝑝

]

𝜂
𝑚𝑛

< 𝜖} ∈ 𝐼
2
} .

(34)

Similarly we can prove the result for other cases.
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