
Research Article
The Multivariate Müntz-Szasz Problem in
Weighted Banach Space on R𝑛

Xiangdong Yang

Department of Mathematics, Kunming University of Science and Technology, Kunming, Yunnan 650093, China

Correspondence should be addressed to Xiangdong Yang; yangsddp@126.com

Received 19 February 2014; Accepted 1 May 2014; Published 19 May 2014

Academic Editor: Sung G. Kim

Copyright © 2014 Xiangdong Yang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The purpose of this paper is to give an extension of Müntz-Szasz theorems to multivariable weighted Banach space. Denote by
{𝜆

𝑘
= (𝜆

1

𝑘
, 𝜆

2

𝑘
, ..., 𝜆

𝑛

𝑘
)}
∞

𝑘=1
a sequence of real numbers in R𝑛

+
. The completeness of monomials {𝑡𝜆𝑘 } in 𝐶

𝛼
is investigated, where 𝐶

𝛼

is the weighted Banach spaces which consist of complex continuous functions 𝑓 defined on R𝑛 with 𝑓(𝑡) exp(−𝛼(𝑡)) vanishing at
infinity in the uniform norm.

1. Introduction and Notations

The object of this paper is to obtain some completeness crite-
ria for monomials {𝑡𝜆𝑘}, which is analogous to Müntz-Szasz
theorem in one variable.

The following notations will be used. Throughout this
paper, points of C𝑛 will be denoted by 𝑧 = (𝑧1, . . . , 𝑧𝑛), where
𝑧𝑘 ∈ C. If 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘, 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛),
then we write 𝑧 = 𝑥 + 𝑖𝑦. The vectors 𝑥 = R𝑧 and 𝑦 = I𝑧 are
the real and imaginary parts of 𝑧, respectively, andR𝑛 will be
thought of as the set of all 𝑧 ∈ C𝑛 with I𝑧 = 0, furthermore;
R𝑛

+
= {𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) | 𝑥𝑗 > 0 for all 1 ≤ 𝑗 ≤ 𝑛}, and

C𝑛

+
= {𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛) | R𝑧𝑗 > 0 for all 1 ≤ 𝑗 ≤ 𝑛}. The set

of nonnegative integers will be denoted by Z+. The notations

|𝑧| = (
󵄨
󵄨
󵄨
󵄨
𝑧1

󵄨
󵄨
󵄨
󵄨

2
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
𝑧𝑛

󵄨
󵄨
󵄨
󵄨

2
)

1/2

|R𝑧| = (
󵄨
󵄨
󵄨
󵄨
𝑥1

󵄨
󵄨
󵄨
󵄨

2
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
𝑥𝑛

󵄨
󵄨
󵄨
󵄨

2
)

1/2

|I𝑧| = (
󵄨
󵄨
󵄨
󵄨
𝑦1

󵄨
󵄨
󵄨
󵄨

2
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
𝑦𝑛

󵄨
󵄨
󵄨
󵄨

2
)

1/2

𝑧
𝛽
= 𝑧

𝛽1

1
⋅ ⋅ ⋅ 𝑧

𝛽𝑛
𝑛

⟨𝑧, 𝑡⟩ = 𝑧1𝑡1 + ⋅ ⋅ ⋅ + 𝑧𝑛𝑡𝑛

(1)

will be used for any multi-index 𝛽 and any 𝑡 ∈ R𝑛. The unit
ball of C𝑛 will be denoted by B𝑛 = {𝑧 ∈ C𝑛

: |𝑧| < 1}.
By a complete system of elements {ℎ𝑘} of a Banach space 𝐵,

wemean Span{ℎ𝑘} = 𝐵; that is, the completeness is equivalent

to the possibility of an arbitrary good approximation of any
element of the space by linear combination of elements of this
system.

The famous Müntz-Szasz theorem asserts that given a
sequence of real numbers 0 < 𝜆1 < 𝜆2 < ⋅ ⋅ ⋅ the functions
{1, 𝑡

𝜆1
, 𝑡
𝜆2
, ⋅ ⋅ ⋅ } are complete 𝐶[0, 1] if and only if

∞

∑

𝑘=1

1

𝜆𝑘

= ∞. (2)

This classical result inspired an intensive research of related
questions. Via duality, making use of suitable analytic vari-
eties in the polydisk, in [1], for 1 ≤ 𝑝1 < 𝑝2 < ∞ and 𝑛 ≥ 2, it
is shown that there exists a sequence of monomials {𝑡𝜆𝑘}with
𝜆
𝑗

𝑘
∼ 𝑘 for each 𝑗 = 1, 2, . . . , 𝑛 whose linear span is dense in

𝐿
𝑝1
(𝐼
𝑛
) but not in 𝐿𝑝2(𝐼𝑛), where 𝐼𝑛 is the Cartesian product

of 𝑛 copies of the closed unit interval [0, 1]. The Müntz-
Szasz theorem is extended to multivariables and more gen-
eral results are obtained by replacing 𝑡𝜆𝑘 by 𝜓(𝑡)𝜆𝑘 for some
function 𝜓(𝑡) in [2]. For Ω ⊂ R𝑛, the so-called Müntz set
relative toΩ is defined in [3], which enables one to construct
“optimally sparse” lattice points sets for which density holds.

It is a natural goal to consider whether it could give
completeness conditions analogous to Müntz-Szasz theorem
in theweighted higher-dimensional Banach space onR𝑛 case.
The paper is concerned with this problem.
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Let 𝛼(𝑡) be a nonnegative continuous function defined on
R𝑛, henceforth, called a weight, satisfying

lim
|𝑡|→∞

𝛼 (𝑡)

log |𝑡|
= ∞. (3)

Given a weight 𝛼(𝑡), the weighted Banach space 𝐶𝛼 consists
of complex continuous functions 𝑓 defined on R𝑛 with
𝑓(𝑡) exp(−𝛼(𝑡)) vanishing at infinity, normed by

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝛼
= sup {󵄨󵄨󵄨

󵄨
𝑓 (𝑡) exp (−𝛼 (𝑡))󵄨󵄨󵄨

󵄨
: 𝑡 ∈ R

𝑛
} . (4)

Our space 𝐶𝛼 is rooted from [4–9, 12, 13], in which the
exponential polynomial approximation problem is investi-
gated.

Motivated by the Bernstein problem and the Müntz
theorem in [10], combining Malliavin’s uniqueness theorem
in [11], in his paper [12], Guantie Deng obtained a necessary
and sufficient condition for the functions {1, 𝑡𝜆1 , 𝑡𝜆2 , . . .} to be
dense in 𝐶𝛼. The result which initiated the investigation of
Müntz problem on weighted Banach space consists of com-
plex functions continuous on the real axis and is described
below.

Theorem 1. Suppose𝛼(𝑡) is an even function satisfying (3) and
𝛼(𝑒

𝑡
) is a convex function on R. Let Λ = {𝜆𝑘 : 𝑘 = 1, 2, . . .} be

a sequence of strictly increasing positive integers and let

Λ (𝑟) = 2 ∑

𝜆𝑘≤𝑟

1

𝜆𝑘

, if 𝑟 ≥ 𝜆1; 𝜆 (𝑟) = 0, otherwise, (5)

𝑘(𝑟) = Λ(𝑟) − log+𝑟, log+𝑟 = max{log 𝑟, 0}, ̃𝑘(𝑟) = inf{𝑘(𝑟󸀠) :
𝑟
󸀠
≥ 𝑟}. If

∫

+∞

0

𝛼 (exp {̃𝑘 (𝑡) − 𝑎})
1 + 𝑡

2
𝑑𝑡 = ∞,

(6)

for each 𝑎 ∈ R, then Span{1, 𝑡𝜆1 , 𝑡𝜆2 , . . .} is dense in 𝐶𝛼.
Conversely, if the sequence Λ contains all of the odd inte-

gers, then, for Span{1, 𝑡𝜆1 , 𝑡𝜆2 , . . .} to be dense in 𝐶𝛼, it is nec-
essary that (6) holds for each 𝑎 ∈ R.

Deng’s result was generalized to the case where the
weighted Banach space consists of complex functions contin-
uous on infinitely many disjoint closed intervals in [7]. The
result is described as follows.

Let 𝐸 be a union of infinitely many disjoint closed
intervals:

𝐸 =

∞

⋃

𝑘=1

𝐼𝑘,

𝐼𝑘 = [𝑎𝑘, 𝑏𝑘] , 0 < 𝑎1 < 𝑏1 < 𝑎2 < 𝑏2 < ⋅ ⋅ ⋅ < 𝑏𝑘,

(7)

where 𝐼𝑘 satisfies dist(0, 𝐼𝑘) → ∞.

Theorem 2. Suppose 𝛼(𝑡) is defined by (3) and Λ = {𝜆𝑘 : 𝑘 =

1, 2, . . .} is a sequence of complex numbers satisfying the follow-
ing conditions:

the 𝜆𝑘 are all distinct and lim
𝑘→∞

󵄨
󵄨
󵄨
󵄨
𝜆𝑘

󵄨
󵄨
󵄨
󵄨
= ∞,

lim
𝑘→∞

𝑘

󵄨
󵄨
󵄨
󵄨
𝜆𝑘

󵄨
󵄨
󵄨
󵄨

= 𝐷, (0 < 𝐷 < ∞) ,

󵄨
󵄨
󵄨
󵄨
arg (𝜆𝑘)

󵄨
󵄨
󵄨
󵄨
< 𝛽 <

𝜋

2

.

(8)

Let

ℎ =

1

𝜂

+ 𝜀0, (9)

where 𝜀0 is some positive number and

𝜂 = max
0<𝛿<𝐷 cos𝛽

2𝛿

√𝐷
2sin2𝛽 + 𝛿2

(𝐷 cos𝛽 − 𝛿) . (10)

If

∫

𝐸

𝛼 (𝑡) 𝜔 (𝑖, 𝑑𝑡,

C

𝐸

) = +∞, (11)

where 𝜔(𝑖, 𝑑𝑡,C \ 𝐸) is the harmonic measure for the domain
C \ 𝐸 as seen from 𝑖 and if

∫

∞
𝛼 (𝑡)

𝑡
1+ℎ

𝑑𝑡 = +∞, (12)

then the system {𝑡
𝜆𝑘
} (𝑘 = 1, 2, . . .) is complete in 𝐶0(𝐸).

Motivated by [4–9, 12, 13], in this paper, wewill investigate
the completeness of monomials {𝑡𝜆𝑘} in 𝐶𝛼, where {𝜆𝑘 =

(𝜆
1

𝑘
, 𝜆

2

𝑘
, . . . , 𝜆

𝑛

𝑘
)}
∞

𝑘=1
is a sequence of real numbers in R𝑛

+
and

𝛼(𝑡) is a nonnegative continuous function defined in R𝑛 for
𝑡 ∈ R𝑛. Our result can be thought of as a generalization
of the results in [7, 8, 13] to multivariable case. It also can
be regarded as a generalization of the results in [1–3]. Our
main result depends upon the uniqueness theory of analytic
functions on the unit ball B𝑛. As is well known the zeros of
analytic functions inC𝑛 (𝑛 ≥ 2) are never discrete.Themulti-
variable casemay be different from a single variable case.That
is why it needs to be treated separately (see [9]).

In the sequel, we will use 𝐴 to denote positive constants
that may vary in value from one occurrence to the next. The
main results of this paper are as follows.

Theorem 3. Let 𝛽(𝑠) be a nonnegative and nondecreasing
function with continuous derivative defined on (𝐴, +∞) for
some positive constant 𝐴, satisfying

∫

+∞

𝐴

𝛽 (𝑠)

𝑠
2
𝑑𝑠 = +∞, (13)

and let 𝛼(𝑡) be a nonnegative continuous function defined on
R𝑛 satisfying

𝐴1(

𝑛

∑

𝑗=1

(log 󵄨󵄨󵄨󵄨
󵄨
𝑡𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

) ≤ ∫

|𝑡|

𝐴2

𝛽 (𝑠)

𝑠

𝑑𝑠 ≤ 𝛼 (𝑡) , (14)
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where 𝐴1 and 𝐴2 are fixed positive constants. Let {𝜆𝑘 = (𝜆1𝑘,
𝜆
2

𝑘
, . . . , 𝜆

𝑛

𝑘
)}
∞

𝑘=1
be a sequence of real numbers in R𝑛

+
. If

∞

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝜆
𝑗

𝑘
− 𝜆

1

𝑘
− 1

2𝜆
𝑗

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2+𝜀0

= +∞ (15)

for some 𝑗 ∈ {2, . . . , 𝑛}, where 𝜀0 is some fixed positive constant,
then {𝑡𝜆𝑘} is complete in 𝐶𝛼.

Theorem 4. Let 𝛼(𝑡) be a nonnegative continuous function
defined on R𝑛 satisfying

𝛼 (𝑡) ≤ 𝐴(log |𝑡|)2, (16)

where 𝐴 is some fixed positive constant. Suppose that {𝜆𝑘 =

(𝜆
1

𝑘
, 𝜆

2

𝑘
, . . . , 𝜆

𝑛

𝑘
)}
∞

𝑘=1
is a sequence of real numbers in R𝑛

+
. If

∞

∑

𝑘=1

1

(𝜆
𝑗

𝑘
)

2+𝜀
< +∞ (17)

is satisfied for every 𝑗 ∈ {1, 2, . . . , 𝑛} and arbitrary positive
constant 𝜀, then {𝑡𝜆𝑘} is incomplete in 𝐶𝛼.

There are obvious ways in which our main result can be
generalized: the example of Theorem 1 can be extended to
much more general sets by using Lemma 5 in Section 2. We
decided not to pursue elaborations; our aim is to present the
essence of an interesting qualitative phenomenon, avoiding
as far as possible obscuring technicalities.

The remaining part of this paper is organized as follows.
In Section 2 we give some notation and we introduce several
results used later. In Section 3 we prove our main results.

2. Preliminaries

In this section, we will establish a uniqueness result for func-
tions holomorphic in B𝑛. The proof of such a result depends
on several lemmas.

Following [14], we denote the angles (𝛼 ≤ arg ≤ 𝛽) and
(𝛼 < arg < 𝛽) by [𝛼, 𝛽] and (𝛼, 𝛽), respectively. Let a function
𝑓(𝑧) be analytic in (𝛼, 𝛽) and continuous in [𝛼, 𝛽], and let the
relations

max
𝛼≤𝜃≤𝛽

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑟𝑒

𝑖𝜃
)

󵄨
󵄨
󵄨
󵄨
󵄨
< exp (𝑟𝜐) , 𝑟 > 𝑟𝜐, (18)

hold for some 𝜐 > 0. Denote by 𝜌 the most lower bound of all
𝜐∗ > 0 such that

lim sup
𝑟→∞

𝑟
−𝜐∗ log 󵄨󵄨󵄨󵄨

󵄨
𝑓 (𝑟𝑒

𝑖𝜃
)

󵄨
󵄨
󵄨
󵄨
󵄨
≡ 0, 𝛼 ≤ 𝜃 ≤ 𝛽. (19)

Then, the number 𝜌 is called the order of the function 𝑓(𝑧).
Recall that the canonical Weierstrass factor is defined by

𝐸 (𝑧, 𝑞) = 1 − 𝑧, 𝑞 = 0, (20)

𝐸 (𝑧, 𝑞) = (1 − 𝑧) exp(𝑧 + 𝑧
2

2

+ ⋅ ⋅ ⋅ +

𝑧
𝑞

𝑞

) , 𝑞 = 1, 2 . . . .

(21)

The canonical Nevanlinna factor is defined by

𝐷𝑞 (𝑧, 𝑎𝑘) =

𝐸 (𝑧/𝑎𝑘, 𝑞)

𝐸 (𝑧/𝑎𝑘, 𝑞)

. (22)

We define the following modified canonical factor by

𝐸
−
(

𝑧

𝑎𝑘

, 𝑞) = 1 −

𝑧

𝑎𝑘

, 𝑞 = 0,

𝐸
−
(

𝑧

𝑎𝑘

, 𝑞) = (1 −

𝑧

𝑎𝑘

) exp((−1) 𝑧
𝑎𝑘

+ (−1)
2 (𝑧/𝑎𝑘)

2

2

+ ⋅ ⋅ ⋅ + (−1)
𝑞 (𝑧/𝑎𝑘)

𝑞

𝑞

)

(23)

for 𝑞 = 1, 2 . . .,

𝐸
+
(

𝑧

𝑎𝑘

, 𝑞) = 1 +

𝑧

𝑎𝑘

, 𝑞 = 0,

𝐸
+
(

𝑧

𝑎𝑘

, 𝑞) = (1 +

𝑧

𝑎𝑘

)

× exp( 𝑧

𝑎𝑘

+

(𝑧/𝑎𝑘)
2

2

+ ⋅ ⋅ ⋅ +

(𝑧/𝑎𝑘)
𝑞

𝑞

)

(24)

for 𝑞 = 1, . . ., and

𝐷
±

𝑞
(𝑧, 𝑎𝑘) =

𝐸
−
(𝑧/𝑎𝑘, 𝑞)

𝐸
+
(𝑧/𝑎𝑘, 𝑞)

. (25)

From page 25 of [14], we know that an analytic function
of arbitrary finite order admits canonical representation as
follows.

Lemma 5. Every function 𝑓(𝑧) analytic and of a finite order 𝜌
in the right half planeR𝑧 > 0 admits the representations

𝑓 (𝑧) = 𝑒
(𝑏0+𝑏1𝑧+⋅⋅⋅+𝑏𝑞𝑧

𝑞
)
∏

|𝑎𝑘|≤1

𝑧 − 𝑎𝑘

𝑧 + 𝑎𝑘

∏

|𝑎𝑘|>1

𝐷
±

𝑞
(𝑧, 𝑎𝑘)

× exp{1
𝜋

∫

+∞

−∞

(𝑖𝑡𝑧 + 1)
𝑞+1 log 󵄨󵄨󵄨

󵄨
𝑓 (𝑖𝑡)

󵄨
󵄨
󵄨
󵄨

(𝑡
2
+ 1)

𝑞+1
(𝑡 − 𝑖𝑧)

𝑑𝑡

+

1

𝜋

∫

+∞

−∞

(𝑖𝑡𝑧 + 1)
𝑞+1
𝑑𝜑 (𝑡)

(𝑡
2
+ 1)

𝑞+1
(𝑡 − 𝑖𝑧)

} ,

(26)

where 𝑞 = [𝜌], 𝑏0, . . . , 𝑏𝑞 are complex numbers, 𝑎𝑘 = 𝑟𝑘𝑒
𝑖𝜃𝑘 ,

−𝜋/2 < 𝜃𝑘 < 𝜋/2 are zeros of 𝑓(𝑧), and 𝜑(𝑡) is a singular
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boundary function. All integrals and infinite products are
absolutely convergent. The following relations hold:

∑

𝑟𝑘≤1

𝑟𝑘 cos 𝜃𝑘 < ∞, ∑

𝑟𝑘>1

𝑟
−𝜐−𝜀

𝑘
cos 𝜃𝑘 < ∞,

∫

+∞

−∞

log 󵄨󵄨󵄨
󵄨
𝑓 (𝑖𝑡)

󵄨
󵄨
󵄨
󵄨

1 + |𝑡|
1+𝜐+𝜀

𝑑𝑡 < ∞,

∫

+∞

−∞

󵄨
󵄨
󵄨
󵄨
𝑑𝜑 (𝑡)

󵄨
󵄨
󵄨
󵄨

1 + |𝑡|
1+𝜐+𝜀

< ∞,

(27)

where 𝜐 = max(𝜌, 1) and 𝜀 is an arbitrary positive number.

We can deduce the following lemma by conformal maps.

Lemma 6. Suppose that 𝑓(𝑧) is analytic in the unit disk D =

{|𝑧| < 1}, satisfying
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨
≤ exp {𝐴(1 − |𝑧|)−𝜌} , (28)

for some∞ > 𝜌 > 1. If, for some fixed 𝜀0 > 0,
+∞

∑

𝑘=1

(

1 − 𝑎𝑘

1 + 𝑎𝑘

)

𝜌+𝜀0

= +∞ (29)

and 𝑓(𝑎𝑘) = 0, where {𝑎𝑘}
∞

𝑘=1
is a sequence of real numbers in

D = {|𝑧| < 1}, then, 𝑓(𝑧) ≡ 0.

Proof. Wewill show that the existence of some𝑓(𝑧) satisfying
(28) and 𝑓(𝑎𝑘) = 0 contradicts Lemma 5.

Suppose that 𝑓(𝑧) is a nontrivial function analytic in the
unit disk, satisfying (28) and𝑓(𝑎𝑘) = 0. Taking the conformal
transformation 𝑧 = (𝑤−1)/(𝑤+1), it is well known that such
transformation maps the unit disk onto the right half plane.
Thus,

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (

𝑤 − 1

𝑤 + 1

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐴 exp {𝐴(1 −
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑤 − 1

𝑤 + 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

)}

−𝜌

.

(30)

Define

𝑔 (𝑤) = 𝑓(

𝑤 − 1

𝑤 + 1

) ; (31)

then, we get a function 𝑔(𝑤) which is analytic in the right
half plane C+ = {R𝑤 > 0} and satisfies 𝑔(𝜆𝑘) = 0 for 𝜆𝑘 =
(1 + 𝑎𝑘)/(1 − 𝑎𝑘) > 0; furthermore, we have

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑤)

󵄨
󵄨
󵄨
󵄨
≤ 𝐴𝑒

𝐴|𝑤|
𝜌

(32)

for sufficient large |𝑤|. Applying Lemma 5, we have
+∞

∑

𝑘=1

1

𝜆
𝜌+𝜀

𝑘

< +∞ (33)

for arbitrary 𝜀 > 0; thus,
+∞

∑

𝑘=1

(

1 − 𝑎𝑘

1 + 𝑎𝑘

)

𝜌+𝜀

< +∞, (34)

which is a contradiction to (29).

The following uniqueness lemma is crucial in the estab-
lishment of the main result of this paper. It is closely related
to results of [15].

Lemma 7. Let {𝑎𝑘 = (𝑎1𝑘 , 𝑎
2

𝑘
, . . . , 𝑎

𝑛

𝑘
)}
∞

𝑘=1
be a sequence in R𝑛,

satisfying 0 < |𝑎
𝑗

𝑘
| < 1 for all 𝑘 and 𝑗 = 1, 2, . . . , 𝑛. Suppose

that

+∞

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
𝑗

𝑘
− 1

𝑎
𝑗

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜌+𝜀0

= +∞ (35)

for some 𝑗 ∈ {1, 2, . . . , 𝑛}, where 𝜀0 is some fixed positive
constant. Let 𝐸 be the set of all 𝑧 ∈ B𝑛 that have 𝑧𝑗 ∈ {𝑎

𝑗

𝑘
}. Let

𝑓(𝑧) be an analytic function on B𝑛 which satisfies the growth
condition

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨
≤ exp {𝐴(1 − |𝑧|)−𝜌} (36)

for some 0 < 𝐴 < ∞ and∞ > 𝜌 > 1. Denote by 𝑍(𝑓) the zero
set of 𝑓(𝑧). If 𝑍(𝑓) ⊃ 𝐸, then 𝑓 ≡ 0.

Proof. We will follow the proof of Theorem 7.3.4 on pages
135-136 of [15]. Without loss of generality, it is enough to
investigate the case where 𝑗 = 1.

Denote, by 𝑤 = (𝑤1, 𝑤
󸀠
), 𝑤󸀠

= (𝑤2, . . . , 𝑤𝑛). Let Ω be the
set of all 𝑤 ∈ B𝑛 satisfying

󵄨
󵄨
󵄨
󵄨
2𝑤1 − 1

󵄨
󵄨
󵄨
󵄨
< 1,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑤
󸀠󵄨󵄨
󵄨
󵄨
󵄨
<
󵄨
󵄨
󵄨
󵄨
1 − 𝑤1

󵄨
󵄨
󵄨
󵄨
. (37)

It is apparent that Ω is a nonempty set. Thus, it is enough to
prove that 𝑓 ≡ 0 for fixed 𝑤 ∈ Ω.

Define

ℎ (𝑧) = (

1 + 𝑧

2

,

1 − 𝑧

2 (1 − 𝑤1)

𝑤
󸀠
) , (38)

where 𝑧 = 𝑟𝑒𝑖𝜃 ∈ D. Let 𝛿 = 1−|𝑤󸀠
|
2
|1−𝑤1|

2.Then, 0 < 𝛿 < 1
and

4 (1 −

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ (𝑟𝑒

𝑖𝜃
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

) = 2 (1 − 𝑟
2
) + 𝛿 (1 − 2𝑟 cos 𝜃 + 𝑟2)

≥ 2 (1 − 𝑟
2
) ,

(39)

for 0 ≤ 𝑟 < 1 and |𝜃| ≤ 𝜋. It follows that ℎ maps D into B𝑛.
Define

𝑔 (𝑧) = 𝑓 (ℎ (𝑧)) , 𝑧 ∈ D. (40)

By (36) and (39), we have

log 󵄨󵄨󵄨󵄨
󵄨
𝑔 (𝑟𝑒

𝑖𝜃
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝐴

(1 −
󵄨
󵄨
󵄨
󵄨
ℎ (𝑟𝑒

𝑖𝜃
)
󵄨
󵄨
󵄨
󵄨

2
)

𝜌

≤

𝐴

(1 − |𝑧|)
𝜌
.

(41)

Note that

𝑔 (2𝑎
1

𝑘
− 1) = 𝑓(𝑎

1

𝑘
,

1 − 𝑎
1

𝑘

1 − 𝑤1

𝑤
󸀠
) . (42)
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Since 𝑍(𝑓) ⊃ 𝐸, the zero sequence {2𝑎1
𝑘
− 1}

∞

𝑘=1
satisfies (35)

which is (29) in Lemma 6. It follows that 𝑔(𝑧) = 0 for all 𝑧 ∈
D. In particular, 2𝑤1 − 1 ∈ D, so that 𝑓(𝑤) = 𝑓(𝑤1, 𝑤

󸀠
) =

𝑔(2𝑤1 − 1) ≡ 0.

We will be concerned with density of polynomials in 𝐶𝛼
which is essential in the proof of Theorem 3. We need the
following result from [16] (see also similar result in [17]).

Lemma 8. Let 𝛽(𝑠) be a nonnegative and nondecreasing func-
tion with continuous derivative defined on (𝐴, +∞) for some
positive constant 𝐴, satisfying

∫

∞

𝐴

𝛽 (𝑠)

𝑠
2
𝑑𝑠 = ∞. (43)

If 𝜇 is a complex measure on R𝑛 such that

∫

|𝑡|>𝐴

exp(∫
|𝑡|

𝐴

𝛽 (𝑠)

𝑠

𝑑𝑠) 𝑑𝜇 (𝑡) < ∞, (44)

then the polynomials are dense in 𝐿1(R𝑛
, 𝜇).

Proof. Since a real measure has the Jordan decomposition as
the difference of positive and negative variation (see page 119
of [18], e.g.), for any complex measure 𝜇 on a 𝜎-algebra in
𝑋, there is a measurable function ℎ such that |ℎ(𝑥)| = 1 for
all 𝑥 ∈ 𝑋 and such that 𝑑𝜇 = ℎ𝑑|𝜇| (see page 124 of [18],
e.g.), replacing the positive measure in the proof of Theo-
rems 2.1 and 2.3 in [16]; repeating the proof there word by
word, we can see that the same conclusion still holds for the
case of complex measures.

Wewill use the following elementary results on inequality
in [19].

Lemma 9. Let 𝑎𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑛. Then,

(

𝑛

∑

𝑗=1

𝑎𝑗)

𝑝

≤ 𝑛
𝑝−1

(

𝑛

∑

𝑘=1

𝑎
𝑝

𝑗
) (45)

for 1 ≤ 𝑝 < ∞.

Lemma 10. Let

log+𝑎 =
{

{

{

log 𝑎, 𝑎 ≥ 1

0, 0 ≤ 𝑎 < 1.

(46)

If 𝑎𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑛, then,

log+(
𝑛

∑

𝑗=1

𝑎𝑗) ≤

𝑛

∑

𝑗=1

log+𝑎𝑗 + 𝐴, (47)

where 𝐴 is some positive constant depending on 𝑛.

3. Proof of Main Results

In this section, we prove the main results of this paper.

Proof of Theorem 3. If {𝑡𝜆𝑘} is incomplete in𝐶𝛼, by the Hahn-
Banach theorem there exists a nontrivial bounded linear
functional𝑇 such that ‖𝑇‖ = 1 and𝑇(𝑡𝜆𝑘) = 0. So by the Riesz
representation theorem, there exists a complex measure 𝜇 on
R𝑛 satisfying

󵄩
󵄩
󵄩
󵄩
𝜇
󵄩
󵄩
󵄩
󵄩
= ∫

R𝑛
𝑒
𝛼(𝑡) 󵄨

󵄨
󵄨
󵄨
𝑑𝜇 (𝑡)

󵄨
󵄨
󵄨
󵄨
= ‖𝑇‖ ,

𝑇 (ℎ) = ∫

R𝑛
ℎ (𝑡) 𝑑𝜇 (𝑡) , ℎ ∈ 𝐶𝛼.

(48)

Define

𝑓 (𝑧) = ∫

R𝑛
𝑡
𝑧
𝑑𝜇 (𝑡)

= ∫

0

−∞

⋅ ⋅ ⋅ ∫

0

−∞

󵄨
󵄨
󵄨
󵄨
𝑡1

󵄨
󵄨
󵄨
󵄨

𝑧1
𝑒
−𝑖(𝜋/2)𝑧1

⋅ ⋅ ⋅
󵄨
󵄨
󵄨
󵄨
𝑡𝑛

󵄨
󵄨
󵄨
󵄨

𝑧𝑛
𝑒
−𝑖(𝜋/2)𝑧𝑛

𝑑𝜇 (𝑡)

+ ⋅ ⋅ ⋅ + ∫

+∞

0

⋅ ⋅ ⋅ ∫

+∞

0

𝑡
𝑧1

1
𝑒
𝑖(𝜋/2)𝑧1

⋅ ⋅ ⋅ 𝑡
𝑧𝑛
𝑛

× 𝑒
−𝑖(𝜋/2)𝑧𝑛

𝑑𝜇 (𝑡) ;

(49)

then, 𝑓(𝑧) is holomorphic in H = {𝑧 : R𝑧1 > |𝑧
󸀠
|
2
}⋂C𝑛

+
and

satisfies

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨
≤ 2

𝑛
∫

R𝑛
exp((

𝑛

∑

𝑗=1

𝑥𝑗 log
󵄨
󵄨
󵄨
󵄨
󵄨
𝑡𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
) − 𝛼 (𝑡))

× exp(
𝑛

∑

𝑗=1

𝜋

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
) exp (𝛼 (𝑡)) 𝑑𝜇 (𝑡) ;

(50)

thus, by (14), we have

sup
𝑡∈R𝑛

{

{

{

(

𝑛

∑

𝑗=1

𝑥𝑗 log
󵄨
󵄨
󵄨
󵄨
󵄨
𝑡𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
) − 𝛼 (𝑡)

}

}

}

≤

𝑛

∑

𝑗=1

sup
𝑡𝑗∈R

{𝑥𝑗 log
󵄨
󵄨
󵄨
󵄨
󵄨
𝑡𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
− 𝐴1(log

󵄨
󵄨
󵄨
󵄨
󵄨
𝑡𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

}

(51)

which yields

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨
≤ 2

𝑛
‖𝑇‖ exp

{

{

{

𝐴|R𝑧|
2
+

𝑛

∑

𝑗=1

𝜋

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

}

}

}

, (52)

for all 𝑧 ∈ H. Denote by 𝑒𝑗 = (0, . . . , 1, . . . , 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗

the Cayley

transform from H to B𝑛; consider

𝑤 = 𝜑 (𝑧) =

2𝑧

1 + 𝑧1

− 𝑒
1
. (53)

Define the function

𝑔 (𝑤) = 𝑓 (𝜑
−1
(𝑤)) , (54)
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where 𝑓 is the function defined in (52) and 𝜑−1 is the inverse
of the Cayley transform defined in (53). Thus, we have

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑤)

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝜑

−1
(𝑤))

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐴 exp{ 𝐴

(1 − |𝑤|)
2
} . (55)

Denote, by

𝑎
1

𝑘
=

2𝜆
1

𝑘

1 + 𝜆
1

𝑘

− 1,

𝑎
𝑗

𝑘
=

2𝜆
𝑗

𝑘

1 + 𝜆
𝑗

𝑘

,

(56)

for 𝑗 = 2, . . . , 𝑛. It is obvious that (15) relates to (35) in
Lemma 7.Thus, we have𝑓(𝑧) ≡ 0; it follows that𝑇(𝑡𝑗) = 0 for
all nonnegative integers 𝑗 = (𝑗1, . . . , 𝑗𝑛). From Lemma 8, it is
obvious that 𝑇 ≡ 0, from which the conclusion of Theorem 3
follows.

Proof of Theorem 4. If there exist a real constant 𝐴 and some
positive constant 𝜀0 such that both (16) and (17) are satisfied,
we will show the existence of a nontrivial bounded functional
which annihilates {𝑡𝜆𝑘}.

If (17) holds, we know that there exists analytic functions
𝑔𝑗(𝑧𝑗) (𝑗 = 1, 2, . . . , 𝑛) which can be represented in the
forms in Lemma 5. The function 𝑔𝑗(𝑧𝑗) (𝑗 = 1, 2, . . . , 𝑛)

verifies 𝑔𝑗(𝜆
𝑗

𝑘
) = 0 for all 𝜆𝑗

𝑘
satisfying (17); furthermore, the

following estimate

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔𝑗 (𝑧𝑗)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑒

𝐴1(|𝑥𝑗|
2
+|𝑦𝑗|
2
) (57)

holds for all 𝑧𝑗 ∈ C+. It is obvious that

exp (⟨𝑧, 𝑒𝑗⟩
2

) = exp (𝑧2
𝑗
) . (58)

For 𝑧 ∈ C𝑛

+
, define

𝐺0 (𝑧) =

𝑛

∏

𝑗=1

𝑔𝑗 (𝑧𝑗) =

𝑛

∏

𝑗=1

𝑔𝑗 (⟨𝑧, 𝑒
𝑗
⟩)

𝐺1 (𝑧) = 𝐺0 (𝑧) exp(𝐴2

𝑛

∑

𝑗=1

(⟨𝑧, 𝑒
𝑗
⟩)

2

) ,

(59)

where 𝐴2 > 𝐴1 is some positive constant satisfying

𝐴 −

1

4 (𝐴1 + 𝐴2)

< 0 (60)

for the constant𝐴 defined in (16).Then, we have the following
estimate:

󵄨
󵄨
󵄨
󵄨
𝐺1 (𝑧)

󵄨
󵄨
󵄨
󵄨
≤ exp

{

{

{

(𝐴1+𝐴2)(

𝑛

∑

𝑗=1

𝑥
2

𝑗
) − (𝐴1−𝐴2)(

𝑛

∑

𝑗=1

𝑦
2

𝑗
)

}

}

}

,

𝑧 ∈ C
𝑛

+
.

(61)

Suppose that 𝐺1(𝑧) is the analytic function defined in (59);
define

ℎ0 (𝑡) = ∫

R𝑛
𝐺1 (

1
2
+ 𝑖𝑦) 𝑡

−(1/2+𝑖𝑦)
𝑑𝑚𝑛 (𝑦) , 𝑡 ∈ R

𝑛

+
,

(62)

where 1/2 = (1/2, 1/2, . . . , 1/2) and𝑚𝑛 denotes the Lebesgue
of R𝑛. Note first that 𝐺1(1/2 + 𝑖𝑦) is in 𝐿1(R𝑛

) by 𝐴1 < 𝐴2

and (61); furthermore, ℎ0(𝑡) is continuous on R𝑛

+
.

Next, we claim that the integral

∫

+∞

−∞

𝐺1 (𝜁 + 𝑖𝜂, 𝑧2, . . . , 𝑧𝑛) 𝑡
−(𝜁+𝑖𝑦)

𝑑𝜂 (63)

is independent of 𝜁 for arbitrary 𝑡 = (𝑡1, . . . , 𝑡𝑛) ∈ R𝑛

+
and

complex 𝑧 = (𝑧1, . . . , 𝑧𝑛). Without loss of generality, we prove
it for the first coordinate. To see this, let Γ be a rectangular
path in the 𝜁 + 𝑖𝜂-plane, with one edge on the image axis and
one on the line 𝜁 = 𝜁1, whose horizontal edges move off to
infinity. By Cauchy’s theorem, the integral of the integrand
(63) over Γ is 0. From (61) we know that the contribution of
the horizontal edges to this integral is also 0. Thus, it follows
that (63) is the same for 𝜁 = 𝜁1 as for 𝜁 = 1/2, which
establishes our claim.

The same can be done for the other coordinates. Hence,
we conclude from (62) that

ℎ0 (𝑡) = ∫

R𝑛
𝐺1 (𝑥 + 𝑖𝑦) 𝑡

−(𝑥+𝑖𝑦)
𝑑𝑚𝑛 (𝑦) (64)

for every 𝑦 ∈ R𝑛 and 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛

+
. From (61) and

(64), we have

󵄨
󵄨
󵄨
󵄨
ℎ0 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝐴4𝑒

(𝐴1+𝐴2)(∑
𝑛

𝑗=1
𝑥
2

𝑗
−𝑥𝑗 log |𝑡𝑗|)

, (65)

where 𝐴4 = ∫R𝑛
𝑒
−(𝐴2−𝐴1)|𝑦|

2

𝑑𝑚𝑛(𝑦). Thus,

󵄨
󵄨
󵄨
󵄨
ℎ0 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝐴4

𝑛

∏

𝑗=1

𝑒
inf{(𝐴1+𝐴2)𝑥2𝑗−𝑥𝑗 log |𝑡𝑗|:𝑥𝑗∈R+}

; (66)

direct calculation yields

󵄨
󵄨
󵄨
󵄨
ℎ0 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝐴4𝑒

−(∑
𝑛

𝑗=1
(log |𝑡𝑗|)2/4(𝐴1+𝐴2))

. (67)

From (67) we know that ℎ0(𝑡) is in 𝐿
1
(R𝑛

). Taking the inverse
Fourier transform in (64), we obtain

𝐺1 (𝑧) = ∫

R𝑛
+

ℎ0 (𝑡) 𝑡
𝑧
𝑑𝑚𝑛 (𝑡) , (68)

for 𝑥 ∈ R𝑛

+
. Extend ℎ0(𝑡) to an even function by defining

ℎ0(𝑡) = ℎ0(−𝑡) whenever 𝑡𝑗 < 0.
It is apparent that, for |𝑡𝑗| ≥ 1, we have log

+
|𝑡𝑗| = log |𝑡𝑗|.

Thus, combining Lemmas 9 and 10with (16), we conclude that
there exists some positive constant 𝐴 such that

𝛼 (𝑡) ≤ 𝐴

𝑛

∑

𝑗=1

(log 󵄨󵄨󵄨󵄨
󵄨
𝑡𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

. (69)
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Therefore, from (69) and (67), if (60) holds, choosing 𝐴2

satisfying

𝐴 −

1

4 (𝐴1 + 𝐴2)

< 0, (70)

we obtain the bounded linear functional

𝑇 (ℎ) = ∫

R𝑛
ℎ0 (𝑡) ℎ (𝑡) 𝑑𝑚𝑛 (𝑡) , ℎ ∈ 𝐶𝛼 (71)

satisfying 𝑇(𝑡𝜆𝑘) = 0 for {𝜆𝑘 = (𝜆
1

𝑘
, 𝜆

2

𝑘
, . . . , 𝜆

𝑛

𝑘
)}
∞

𝑘=1
, satisfying

(17) and

‖𝑇‖ = ∫

R𝑛
𝑒
𝛼(𝑡) 󵄨

󵄨
󵄨
󵄨
𝑑𝜇 (𝑡)

󵄨
󵄨
󵄨
󵄨
> 0. (72)
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