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This paper establishes the global existence and uniqueness of classical solutions to the 2Dmicropolar fluid flows with mixed partial
dissipation and angular viscosity.

1. Introduction

In this paper, we investigate the Cauchy problem for the
viscous incompressible micropolar fluid flows. In three-
dimensional case it can be expressed as

k
𝑡
− (] + 𝜅) Δk − 2𝜅∇ × w + ∇𝜋 + (k ⋅ ∇) k = 0,

w
𝑡
− 𝛾Δw − (𝛼 + 𝛽)∇∇ ⋅ w + 4𝜅w − 2𝜅∇ × k + (k ⋅ ∇)w = 0,

∇ ⋅ k = 0,

k (0) = k
0
, w (0) = w

0
.

(1)

Here, k = (V
1
, V
2
, V
3
) is the divergence-free fluid velocity field,

𝜋 is a scalar pressure, w = (𝑤

1
, 𝑤

2
, 𝑤

3
) is the microrotation

field (angular velocity of the rotation of the particles of the
fluid), and the constant ] ≥ 0 is the Newtonian kinetic
viscosity, 𝜅 > 0 is the dynamics microrotation viscosity, and
𝛼, 𝛽, 𝛾 ≥ 0 are the angular viscosities (see, e.g., [1, 2]).

The micropolar fluid equations (1) enable us to consider
some physical phenomena that cannot be treated by the
classical Navier-Stokes equations (w = 0 in (1)), such as the
motion of animal blood, liquid crystals, and dilute aqueous
polymer solutions. Physically, (1)

1
represents the conserva-

tion of linear momentum, (1)
2
reflects the conservation of

angular momentum, and (1)
3
is the incompressibility of the

fluid, specifying the conservation of mass.

Besides their physical applications, the micropolar fluid
equations (1) are also mathematically important. The exis-
tence of weak and strong solutions was established by Galdi
and Rionero [3] and Yamaguchi [4], respectively.

In this paper, we study the global regularity problem of
the 2Dmicropolar fluid equations. Assuming that the velocity
component in the 𝑧-direction is zero and the axes of rotation
of particles are parallel to the 𝑧-axis, that is,

k = (V
1
, V
2
, 0) , w = (0, 0, 𝑤

3
) , (2)

we obtain by gathering (2) into (1)

k
𝑡
− (] + 𝜅) Δk − 2𝜅∇ × 𝑤 + ∇𝜋 + (k ⋅ ∇) k = 0,

𝑤

𝑡
− 𝛾Δ𝑤 + 4𝜅𝑤 − 2𝜅∇ × k + (k ⋅ ∇) 𝑤 = 0,

∇ ⋅ k = 0,

k (0) = k
0
, 𝑤 (0) = 𝑤

0
,

(3)

where k = (V
1
, V
2
) is a vector and 𝑤 is a scalar. Here and in

what follows, we use the notations

∇ × k = 𝜕
𝑥
V
2
− 𝜕

𝑦
V
1
, ∇ × 𝑤 = (𝜕

𝑦
𝑤, −𝜕

𝑥
𝑤) . (4)

The global regularity of (3) with full viscosity has been
established by Łukaszewicz [2] (see also [5] for more explicit
result). The purpose of this paper is to investigate the global
regularity of the 2Dmicropolar fluid flows withmixed partial
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dissipation and angular viscosity. To be precise, we will
consider the following system:

k
𝑡
− (] + 𝜅) k

𝑥𝑥
− 2𝜅∇ × 𝑤 + ∇𝜋 + (k ⋅ ∇) k = 0,

𝑤

𝑡
− 𝛾𝑤

𝑦𝑦
+ 4𝜅𝑤 − 2𝜅∇ × k + (k ⋅ ∇) 𝑤 = 0,

∇ ⋅ k = 0,

k (0) = k
0
, 𝑤 (0) = 𝑤

0
.

(5)

Our study is partially motivated by the global well-
posedness of the 2D MHD equations with partial viscosities
(see [6, 7], for instance), that of the 2D Boussinesq equations
with partial viscosity (see, e.g., [8, 9]), and that of the 2D
micropolar fluid equations with zero angular viscosity [10].

The main result of this paper now reads.

Theorem 1. Suppose ] > 0, 𝜅 > 0, (k
0
, 𝑤

0
) ∈ 𝐻

2
(R2) with

∇⋅k
0
= 0. Then (5)with initial data (k

0
, 𝑤

0
) possesses a unique

global classical solution (k, 𝑤). In addition, for any 𝑇 > 0,
(k, 𝑤) satisfies

(k, 𝑤) ∈ 𝐿∞ (0, 𝑇;𝐻2) , 𝜔

𝑥
∈ 𝐿

2
(0, 𝑇;𝐻

1
) ,

𝑤

𝑦
∈ 𝐿

2
(0, 𝑇;𝐻

2
) ,

(6)

where 𝜔 = ∇ × k is the vorticity.

Remark 2. Using the samemethod in this paper, we may also
establish the global regularity for the following system:

k
𝑡
− (] + 𝜅) k

𝑦𝑦
− 2𝜅∇ × 𝑤 + ∇𝜋 + (k ⋅ ∇) k = 0,

𝑤

𝑡
− 𝛾𝑤

𝑥𝑥
+ 4𝜅𝑤 − 2𝜅∇ × k + (k ⋅ ∇) 𝑤 = 0,

∇ ⋅ k = 0,

k (0) = k
0
, 𝑤 (0) = 𝑤

0
.

(7)

The rest of this paper is organized as follows. In Section 2,
we recall an elementary lemma from [7]. Section 3 is devoted
to establishing the a priori bounds for ‖𝜔‖

2
and ‖∇𝑤‖

2
, while

the bounds for ‖∇𝜔‖
2
and ‖∇2𝑤‖

2
are provided in Section 4.

With the a priori estimates in Sections 3 and 4, we may
conclude the proof of Theorem 1 as in [7]. Throughout this
paper, the 𝐿2-norm of a function 𝑓 is denoted by ‖𝑓‖

2
.

2. An Elementary Lemma

We recall in this section the following elementary lemma
from [7].

Lemma 3. Assume that 𝑓, 𝑔, 𝑔
𝑦
, ℎ, and ℎ

𝑥
all belong to

𝐿

2
(R2). Then,

∬









𝑓𝑔ℎ









𝑑𝑥 𝑑𝑦 ≤ 2









𝑓







2









𝑔









1/2

2











𝑔

𝑦











1/2

2
‖ℎ‖

1/2

2









ℎ

𝑥









1/2

2
. (8)

Proof. We provide a proof of (8) simpler than that of [7].
Applying Hölder inequality,

𝐹

2
(𝑥) = ∫ 2𝐹 (𝑥) 𝐹


(𝑥) 𝑑𝑥

≤ 2(∫ |𝐹 (𝑥)|

2
𝑑𝑥)

1/2

(∫









𝐹

𝑥
(𝑥)









2

𝑑𝑥)

1/2

.

(9)

Thus,

sup
𝑥∈R

|𝐹 (𝑥)| ≤

√

2(∫ |𝐹 (𝑥)|

2
𝑑𝑥)

1/4

(∫









𝐹

𝑥
(𝑥)









2

𝑑𝑥)

1/4

.

(10)

Consequently,

∬









𝑓𝑔ℎ









𝑑𝑥 𝑑𝑦

≤ ∫[(∫









𝑓









2

𝑑𝑥)

1/2

(∫









𝑔









2

𝑑𝑥)

1/2

sup
𝑥∈R

|ℎ|] 𝑑𝑦

≤

√

2∫[(∫









𝑓









2

𝑑𝑥)

1/2

(∫









𝑔









2

𝑑𝑥)

1/2

× (∫ |ℎ|

2
𝑑𝑥)

1/4

(∫









ℎ

𝑥









2

𝑑𝑥)

1/4

]𝑑𝑦

≤

√

2









𝑓







2
[sup
𝑦∈R

(∫









𝑔









2

𝑑𝑥)

1/2

] ‖ℎ‖

1/2

2









ℎ

𝑥









1/2

2

≤

√

2









𝑓







2
(∫ sup
𝑦∈R









𝑔









2

𝑑𝑥)

1/2

‖ℎ‖

1/2

2









ℎ

𝑥









1/2

2

≤ 2









𝑓







2
[∫(∫









𝑔









2

𝑑𝑦)

1/2

(∫











𝑔

𝑦











2

𝑑𝑦)

1/2

𝑑𝑥]

1/2

× ‖ℎ‖

1/2

2









ℎ

𝑥









1/2

2

≤ 2









𝑓







2









𝑔









1/2

2











𝑔

𝑦











1/2

2
‖ℎ‖

1/2

2









ℎ

𝑥









1/2

2
.

(11)

3. A Priori Bounds for ‖𝜔‖
2

and ‖∇𝑤‖

2

In this section, we establish the a priori bounds for ‖𝜔‖
2
and

‖∇𝑤‖

2
. First, we have the following energy estimates.

Proposition 4. Assume (k, 𝑤) solves (5) on [0, 𝑇]. Then,

‖k (𝑡)‖2
2
+ ‖𝑤 (𝑡)‖

2

2
+ (] + 𝜅)∫

𝑡

0









k
𝑥
(𝜏)









2

2
𝑑𝜏

+ 𝛾∫

𝑡

0











𝑤

𝑦
(𝜏)











2

2
𝑑𝜏 ≤ 𝐶









(k
0
, 𝑤

0
)









2

2
.

(12)

Here 𝐶 is a constant depending only on ], 𝜅, 𝛾, and 𝑇.
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Proof. Taking the inner product of (5)
1
with k and (5)

2
with

𝑤 in 𝐿2(R3), respectively, we deduce

1

2

𝑑

𝑑𝑡

‖(k, 𝑤)‖2
2
+ (] + 𝜅) 





k
𝑥









2

2
+ 𝛾











𝑤

𝑦











2

2
+ 4𝜅‖𝑤‖

2

2

= 4𝜅∫ (∇ × 𝑤) ⋅ k 𝑑𝑥 𝑑𝑦

≡ 𝐼,

(13)

where we use the following facts (the first one being well-
known in the mathematical theory of fluid dynamics, and its
proof is provided in the appendix):

∇ ⋅ k = 0 ⇒ ∫ [(k ⋅ ∇) k] ⋅ Δk 𝑑𝑥 𝑑𝑦 = 0,

∫ (∇ × 𝑤) ⋅ k 𝑑𝑥 𝑑𝑦 = ∫𝑤 ⋅ (∇ × k) 𝑑𝑥 𝑑𝑦,

∫∇𝜋 ⋅ k 𝑑𝑥 𝑑𝑦 = −∫𝜋 (∇ ⋅ k) 𝑑𝑥 𝑑𝑦 = 0.

(14)

Now, 𝐼 can be dominated as

𝐼 = 4𝜅∫ (∇ × 𝑤) ⋅ k 𝑑𝑥 𝑑𝑦

= 4𝜅∫ (𝑤

𝑦
V
1
− 𝑤

𝑥
V
2
) 𝑑𝑥 𝑑𝑦

= 4𝜅∫ (𝑤

𝑦
V
1
+ 𝑤𝜕

𝑥
V
2
) 𝑑𝑥 𝑑𝑦

≤

𝛾

2











𝑤

𝑦











2

2
+ 𝐶‖k‖2

2
+

] + 𝜅
2









k
𝑥









2

2
+ 𝐶‖𝑤‖

2

2
.

(15)

Substituting (15) into (13), we obtain (12) by invoking Gron-
wall inequality.

Remark 5. Due to the partial dissipation and angular viscos-
ity, we are not able to establish the uniform boundedness of
‖(k(𝑡), 𝑤(𝑡))‖

2
on [0,∞) but rather the exponential growth:

‖(k (𝑡) , 𝑤 (𝑡))‖
2
≤ 𝑒

𝐶𝑡






(k
0
, 𝑤

0
)







2
.

(16)

Now, we are in a position to derive the bounds for ‖𝜔‖
2

and ‖∇𝑤‖
2
.

Proposition 6. Assume as in Proposition 4. Then the vorticity
𝜔 = ∇ × k and 𝑤 satisfy

‖(𝜔 (𝑡) , ∇𝑤 (𝑡))‖

2

2
+ 2 (] + 𝜅)∫

𝑡

0









𝜔

𝑥
(𝜏)









2

2
𝑑𝜏

+ 2𝛾∫

𝑡

0











∇𝑤

𝑦
(𝜏)











2

2
𝑑𝜏 ≤ 2









(𝜔

0
, ∇𝑤

0
)









2

2
.

(17)

Proof. Taking the curl of (5)
1
, we find

𝜔

𝑡
− (] + 𝜅) 𝜔

𝑥𝑥
− 2𝜅∇ × (∇ × 𝑤) + (k ⋅ ∇) 𝜔 = 0. (18)

Then, taking the inner product of (18) with 𝜔 and (5)
2
with

−Δ𝑤 in 𝐿2(R2), respectively, we obtain

1

2

𝑑

𝑑𝑡

‖(𝜔, ∇𝑤)‖

2

2
+ (] + 𝜅) 





𝜔

𝑥









2

2
+ 𝛾











∇𝑤

𝑦











2

2
+ 4𝜅‖∇𝑤‖

2

2

= 2𝜅∫∇ × (∇ × 𝑤) ⋅ 𝜔 𝑑𝑥 𝑑𝑦 + 2𝜅∫∇ × k ⋅ Δ𝑤𝑑𝑥𝑑𝑦

= −2𝜅∫Δ𝑤 ⋅ 𝜔 𝑑𝑥 𝑑𝑦 + 2𝜅∫∇ × k ⋅ Δ𝑤𝑑𝑥𝑑𝑦

= 0.

(19)

Applying Gronwall inequality, we may complete the proof of
Proposition 6.

4. A Priori Bounds for ‖∇𝜔‖
2

and ‖∇

2
𝑤‖

2

This section is devoted to deriving the a priori bounds for
‖∇𝜔‖

2
and ‖∇2𝑤‖

2
.

Proposition 7. Assume as in Proposition 6. Then,

‖(∇𝜔 (𝑡) , Δ𝑤 (𝑡))‖

2

2
+ (] + 𝜅)∫

𝑡

0









∇𝜔

𝑥
(𝜏)









2

2
𝑑𝜏

+ 𝛾∫

𝑡

0











Δ𝑤

𝑦
(𝜏)











2

2
𝑑𝜏 ≤ 𝐶









(∇𝜔

0
, Δ𝑤

0
)









2

2
.

(20)

Here 𝐶 is a constant depending only on ], 𝜅, 𝛾, and 𝑇.

Proof. Taking the inner product of (18) with −Δ𝜔 and (5)
2

with Δ2𝑤 in 𝐿2(R3), respectively, we find

1

2

𝑑

𝑑𝑡

‖∇𝜔‖

2

2
+ (] + 𝜅) 





∇𝜔

𝑥









2

2

= −2𝜅∫∇ × (∇ × 𝑤) ⋅ Δ𝜔𝑑𝑥𝑑𝑦

+ ∫ [(k ⋅ ∇) 𝜔] ⋅ Δ𝜔𝑑𝑥 𝑑𝑦,

1

2

𝑑

𝑑𝑡

‖Δ𝑤‖

2

2
+ 𝛾











Δ𝑤

𝑦











2

2
= −4𝜅∫𝑤 ⋅ Δ

2
𝑤𝑑𝑥𝑑𝑦

+ 2𝜅∫𝜔 ⋅ Δ

2
𝑤𝑑𝑥𝑑𝑦 − ∫ [(k ⋅ ∇) 𝑤] ⋅ Δ2𝑤𝑑𝑥𝑑𝑦.

(21)

Gathering the above equations together, noticing that

∇ × (∇ × 𝑤) = −Δ𝑤,

∇ ⋅ k = 0 ⇒ ∫ [(k ⋅ ∇) 𝜔] ⋅ Δ𝜔𝑑𝑥 𝑑𝑦

= −∫ [(∇k ⋅ ∇) 𝜔] ⋅ ∇𝜔𝑑𝑥 𝑑𝑦,

(22)
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we see

1

2

𝑑

𝑑𝑡

‖(∇𝜔, Δ𝑤)‖

2

2
+ (] + 𝜅) 





∇𝜔

𝑥









2

2
+ 𝛾











Δ𝑤

𝑦











2

2

= −4𝜅∫ |Δ𝑤|

2
𝑑𝑥 𝑑𝑦 + 4𝜅∫Δ𝜔 ⋅ Δ𝑤𝑑𝑥𝑑𝑦

+ ∫ [(∇k ⋅ ∇) 𝜔] ⋅ ∇𝜔𝑑𝑥 𝑑𝑦

− ∫Δ [(k ⋅ ∇) 𝑤] ⋅ Δ𝑤𝑑𝑥𝑑𝑦.

(23)

Expanding the right-hand side of (23) gives

1

2

𝑑

𝑑𝑡

‖(∇𝜔, Δ𝑤)‖

2

2
+ (] + 𝜅) 





∇𝜔

𝑥









2

2
+ 𝛾











Δ𝑤

𝑦











2

2
+ 4𝜅‖Δ𝑤‖

2

2

≤ 4𝜅∫𝜔

𝑥𝑥
⋅ Δ𝑤𝑑𝑥𝑑𝑦 + 4𝜅∫𝜔

𝑦𝑦
⋅ Δ𝑤𝑑𝑥𝑑𝑦

+ ∫𝜕

𝑥
V
1
⋅ 𝜔

𝑥
⋅ 𝜔

𝑥
𝑑𝑥 𝑑𝑦 + ∫𝜕

𝑥
V
2
⋅ 𝜔

𝑦
⋅ 𝜔

𝑥
𝑑𝑥 𝑑𝑦

+ ∫𝜕

𝑦
V
1
⋅ 𝜔

𝑥
⋅ 𝜔

𝑦
𝑑𝑥 𝑑𝑦 + ∫𝜕

𝑦
V
2
⋅ 𝜔

𝑦
⋅ 𝜔

𝑦
𝑑𝑥 𝑑𝑦

+ 𝐶∫ |Δk| ⋅ |∇𝑤| ⋅ |Δ𝑤| 𝑑𝑥 𝑑𝑦

+ 𝐶∫ |∇k| ⋅










∇

2
𝑤











⋅ |Δ𝑤| 𝑑𝑥 𝑑𝑦

≡

8

∑

𝑖=1

𝐾

𝑖
.

(24)

For𝐾
1
, applying Hölder inequality yields

𝐾

1
= 4𝜅∫𝜔

𝑥𝑥
⋅ Δ𝑤𝑑𝑥𝑑𝑦

≤ ∫

] + 𝜅
12









∇𝜔

𝑥









2

+ 𝐶|Δ𝑤|

2
𝑑𝑥 𝑑𝑦.

(25)

For𝐾
2
, integrating by parts gives

𝐾

2
= 4𝜅∫𝜔

𝑦𝑦
⋅ Δ𝑤𝑑𝑥𝑑𝑦

= −4𝜅∫𝜔

𝑦
⋅ Δ𝑤

𝑦
𝑑𝑥 𝑑𝑦

≤ ∫𝐶|∇𝜔|

2
+

𝛾

6











Δ𝑤

𝑦











2

𝑑𝑥 𝑑𝑦.

(26)

For𝐾
3
, we apply Lemma 3 to deduce

𝐾

3
= ∫𝜕

𝑥
V
1
⋅ 𝜔

𝑥
⋅ 𝜔

𝑥
𝑑𝑥 𝑑𝑦

≤ 𝐶









𝜕

𝑥
V
1









1/2

2











𝜕

𝑥𝑦
V
1











1/2

2









𝜔

𝑥









1/2

2









𝜔

𝑥𝑥









1/2

2









𝜔

𝑥







2

≤ 𝐶‖𝜔‖

1/2

2









𝜔

𝑥









1/2

2









𝜔

𝑥









1/2

2









𝜔

𝑥𝑥









1/2

2









𝜔

𝑥







2

≤ 𝐶









𝜔

𝑥









2

2









∇𝜔

𝑥









1/2

2
(By Proposition 6, 𝜔 ∈ 𝐿

∞
(0, 𝑇; 𝐿

2
))

≤

] + 𝜅
12









∇𝜔

𝑥









2

2
+ 𝐶









𝜔

𝑥









2/3

2
‖∇𝜔‖

2

2
.

(27)

Similarly, we have

𝐾

4
= ∫𝜕

𝑥
V
2
⋅ 𝜔

𝑦
⋅ 𝜔

𝑥
𝑑𝑥 𝑑𝑦

≤ 𝐶











𝜕

𝑦
V
2











1/2

2











𝜕

𝑥𝑦
V
2











1/2

2











𝜔

𝑦











1/2

2











𝜔

𝑦𝑥











1/2

2









𝜔

𝑥







2

≤ 𝐶‖𝜔‖

1/2

2









𝜔

𝑥









1/2

2











𝜔

𝑦











1/2

2









∇𝜔

𝑥









1/2

2









𝜔

𝑥







2

≤ 𝐶









𝜔

𝑥









3/2

2









𝜔

𝑥









1/2

2









∇𝜔

𝑥









1/2

2

≤

] + 𝜅
12









∇𝜔

𝑥









2

2
+ 𝐶









𝜔

𝑥









2/3

2
‖∇𝜔‖

2

2
;

𝐾

5
= ∫𝜕

𝑦
V
1
⋅ 𝜔

𝑥
⋅ 𝜔

𝑦
𝑑𝑥 𝑑𝑦

≤ 𝐶











𝜕

𝑦
V
1









2









𝜔

𝑥









1/2

2











𝜔

𝑥𝑦











1/2

2











𝜔

𝑦











1/2

2











𝜔

𝑦𝑥











1/2

2

≤ 𝐶‖𝜔‖

2









𝜔

𝑥









1/2

2











𝜔

𝑦











1/2

2









∇𝜔

𝑥







2

≤

] + 𝜅
12









∇𝜔

𝑥









2

2
+ 𝐶‖∇𝜔‖

2

2
;

𝐾

6
= ∫𝜕

𝑦
V
2
⋅ 𝜔

𝑦
⋅ 𝜔

𝑦
𝑑𝑥 𝑑𝑦

= −∫𝜕

𝑥
V
1
⋅ 𝜔

𝑦
⋅ 𝜔

𝑦
𝑑𝑥 𝑑𝑦

= 2∫ V
1
⋅ 𝜔

𝑦
⋅ 𝜔

𝑦𝑥
𝑑𝑥 𝑑𝑦

≤ 𝐶









V
1









1/2

2











𝜕

𝑦
V
1











1/2

2











𝜔

𝑦











1/2

2











𝜔

𝑦𝑥











1/2

2











𝜔

𝑦𝑥









2

≤ 𝐶











𝜔

𝑦











1/2

2









∇𝜔

𝑥









3/2

2

≤

] + 𝜅
12









∇𝜔

𝑥









2

2
+ 𝐶‖∇𝜔‖

2

2
.

(28)
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Now, for𝐾
7
,𝐾
8
, we use Lemma 3 and Young inequality to see

𝐾

7
= 𝐶∫ |Δk| ⋅ |∇𝑤| ⋅ |Δ𝑤| 𝑑𝑥 𝑑𝑦

≤ 𝐶‖Δk‖1/2
2









Δk
𝑥









1/2

2
‖∇𝑤‖

2
‖Δ𝑤‖

1/2

2











Δ𝑤

𝑦











1/2

2

≤ 𝐶‖∇𝜔‖

1/2

2









∇𝜔

𝑥









1/2

2
‖∇𝑤‖

2
‖Δ𝑤‖

1/2

2











Δ𝑤

𝑦











1/2

2

≤

] + 𝜅
12









∇𝜔

𝑥









2

2
+

𝛾

6











Δ𝑤

𝑦











2

2
+ 𝐶 (‖∇𝑤‖

2

2
+ ‖Δ𝑤‖

2

2
) ;

(29)

𝐾

8
= 𝐶∫ |∇k| ⋅











∇

2
𝑤











⋅ |Δ𝑤| 𝑑𝑥 𝑑𝑦

≤ 𝐶‖∇k‖1/2
2









∇k
𝑥









1/2

2











∇

2
𝑤











1/2

2











∇

2
𝑤

𝑦











1/2

2
‖Δ𝑤‖

2

≤ 𝐶‖𝜔‖

1/2

2









𝜔

𝑥









1/2

2
‖Δ𝑤‖

1/2

2











Δ𝑤

𝑦











1/2

2
‖Δ𝑤‖

2

≤

𝛾

6











Δ𝑤

𝑦











2

2
+ 𝐶









𝜔

𝑥









2/3

2
‖Δ𝑤‖

2

2
.

(30)

Gathering (25)–(30) into (24) yields

𝑑

𝑑𝑡

‖(∇𝜔, Δ𝑤)‖

2

2
+ (] + 𝜅) 





∇𝜔

𝑥









2

2
+ 𝛾











Δ𝑤

𝑦











2

2

≤ 𝐶(1 +









𝜔

𝑥









2/3

2
) ‖(∇𝜔, Δ𝑤)‖

2

2
.

(31)

According to Proposition 6, we may invoke Gronwall
inequality to deduce (20).

Appendix

In this appendix, we provide the proof of (14) for reader’s
convenience.

Lemma A.1. Let k = (V
1
, V
2
) ∈ 𝐻

2
(R2) be divergence-free;

that is, ∇ ⋅ k = 𝜕
𝑥
V
1
+ 𝜕

𝑦
V
2
= 0. Then

∫ [(k ⋅ ∇) k] ⋅ Δk 𝑑𝑥 𝑑𝑦 = 0. (A.1)

Proof. Integration by parts formula gives

∫ [(k ⋅ ∇) k] ⋅ Δk 𝑑𝑥 𝑑𝑦

= −∫ [(𝜕

𝑥
k ⋅ ∇) k] ⋅ 𝜕

𝑥
k 𝑑𝑥 𝑑𝑦

− ∫ [(𝜕

𝑦
k ⋅ ∇) k] ⋅ 𝜕

𝑦
k 𝑑𝑥 𝑑𝑦

= −∫𝜕

𝑥
V
1
𝜕

𝑥
V
1
𝜕

𝑥
V
1
𝑑𝑥 𝑑𝑦 − ∫𝜕

𝑥
V
1
𝜕

𝑥
V
2
𝜕

𝑥
V
2
𝑑𝑥 𝑑𝑦

− ∫𝜕

𝑥
V
2
𝜕

𝑦
V
1
𝜕

𝑥
V
1
𝑑𝑥 𝑑𝑦 − ∫𝜕

𝑥
V
2
𝜕

𝑦
V
2
𝜕

𝑥
V
2
𝑑𝑥 𝑑𝑦

− ∫𝜕

𝑦
V
1
𝜕

𝑥
V
1
𝜕

𝑦
V
1
𝑑𝑥 𝑑𝑦 − ∫𝜕

𝑦
V
1
𝜕

𝑥
V
2
𝜕

𝑦
V
2
𝑑𝑥 𝑑𝑦

− ∫𝜕

𝑦
V
2
𝜕

𝑦
V
1
𝜕

𝑦
V
1
𝑑𝑥 𝑑𝑦 − ∫𝜕

𝑦
V
2
𝜕

𝑦
V
2
𝜕

𝑦
V
2
𝑑𝑥 𝑑𝑦

≡

8

∑

𝑖=1

𝐿

𝑖
.

(A.2)

Noticing that 𝜕
𝑥
V
1
+ 𝜕

𝑦
V
2
= 0, we have

𝐿

1
+ 𝐿

8
= 𝐿

2
+ 𝐿

4
= 𝐿

3
+ 𝐿

6
= 𝐿

5
+ 𝐿

7
= 0. (A.3)

Consequently, we have

∫ [(k ⋅ ∇) k] ⋅ Δk 𝑑𝑥 𝑑𝑦 = 0 (A.4)

as desired.
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